黔西北土法炼锌废渣场复垦试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山开发引起的环境问题是一个世界性的问题,国内外许多学者对此做了大量研究。如矿山尾砂在风化过程中有害物质(如重金属)释放,酸性矿山废水的产生及其危害性等,都有了相当深入的探讨,相比较而言对于Pb、zn冶炼(特别是土法炼锌)引起的环境问题探讨较少。贵州黔西北是我国著名的土法炼锌基地,其土法炼锌历史悠久,产生的黑色烟尘,含有大量铅、锌、镍、镉、硫和一氧化碳,对人体和农作物都有非常大的危害。土法炼锌产生的废渣未通过任何处理直接堆放,对当地生态环境造成了极其严重的污染。因此本文通过在野外调查、勘测、采样分析的基础上,对黔西北土法炼锌的污染状况进行了初步的调查评价,在此基础上进行实验室栽培试验研究,以磷肥作为改良剂,以玉米作为试验栽培植物,探讨了不同磷肥配比对铅锌冶炼废渣中重金属的固化作用,根据其上玉米作物的生长状况,探索铅锌冶炼废渣场复垦的优良措施,本次试验取得结果如下:
     1、黔西北土法炼锌矿区土壤中重金属都有不同程度的积累,其中土壤中Zn为261.39—1647.29mg/kg;Cd为3.47—18.32mg/kg;Pb为128.72—941.75mg/kg;Cu为19.09—267.59mg/kg;As为13.73—39.32mg/kg,根据土壤环境质量标准,矿区周围土壤中重金属元素已经大大超过了贵州土壤背景值,中国A层土壤含量以及世界各国土壤中重金属含量限制,矿区土壤已受到重金属元素的严重污染;矿区废渣中重金属除Cu外,其余重金属含量都严重超标,是当地严重的污染源。矿区植物体内各种重金属都有不同程度的积累,植物Zn为31.56—340.49mg/kg;Cd为0.61—13.94mg/kg;Pb为1.10—64.42mg/kg;Cu为3.51—32.34mg/kg;As为0.04—2.09mg/kg。
     2、环境影响评价结果表明:土法炼锌矿区除个别土壤属于中度污染外,其余全部处于严重污染状态;土法炼锌矿区周围所种植蔬菜全部已受到严重的污染,综合污染指数在10.83—40.67之间,主要以Cd为主,超过国家蔬菜标准高达54倍;矿区周围其他植物玉米和紫花苜蓿等中的重金属亦严重超标,主要以Pb污染为主,超过国家粮食标准高达366.75倍;这对当地的居民的生活造成了很大的威胁。
     3、盆栽试验纯渣中重金属含量很高,和土壤按照1:1比例混合后,其配比中重金属含量降至一半左右。盆栽不同配比中重金属含量对玉米的发芽率没有多大影响,而对于玉米株高和鲜重有很大的影响,表现出明显的抑制现象。
     4、纯渣中生长的玉米茎叶中重金属含量很高,而且大大超过了国家食品卫生标准。按照各配比改良后,玉米茎叶中的重金属含量有所下降,Zn、Cd和Cu三种重金属都在配比K_4(15 mg/kg P)出现了玉米茎叶中浓度含量最低点,而Pb在K_5(17.5 mg/kg P)配比时,玉米茎叶中浓度含量最低。与玉米茎叶中含量变化恰好相反,根中各种重金属含量在K_1(5 mg/kgP)配比出现了浓度最低值,而在K_4(15 mg/kg P)和K_5(17.5 mg/kg P)配比,玉米根中重金属含量反而增加。综合考虑四种重金属在玉米中的累积状况,磷肥配比在15——17.5 mg/kg范围内可能对重金属的固定效果较好。
     5、不同种植时间对玉米中重金属含量都有很大的影响。生长50天后,玉米中各种重金属含量明显低于生长20天玉米茎叶中重金属含量。
     6、不同磷肥配比处理对土壤中有效态重金属含量有很大的影响,其变化随着配比的逐渐升高,土壤中有效态重金属(Zn、Cd和Cu)含量呈现出降低——升高的趋势,在K_3配比点出现的最低浓度值,这对以后的进一步研究提供了可靠的基础。但是Pb呈现出相反的变化趋势。
     7、总体来说,磷肥配比在10 mg/kgP——17.5 mg/kgP范围内对废渣中重金属的固定效果较好。
The environmental problem resulted from ore minerals development is a global concern and have accepted much attention in the world. So far, a lot of researches focused on the release of hazardous substances (such as heavy metals) in mine tailings during the weathering process, the production of acid mine drainage and its threat to environment. Nevertheless, the research for environmental problems caused by Pb, Zn smelting (especially historical Pb-Zn smelting) slag is less. The Northwestern Guizhou Province is a famous place for its long history in Pb-Zn smelting. The Mack dust omitted by Pb-Zn smelting contains large amounts of lead, zinc, nickel, cadmium, sulfur and carbon monoxide, which has a potential risk to human beings and crops. The historical Pb-Zn smelting slag has caused an extremely serious pollution to the local ecological environment without any treatment adopted. On the basis of field investigation, sampling, and analyses for heavy metals contents in contaminated soils, pollution situations in soils contaminated by Pb-Zn smelting were presented and maize pots experiment were conducted with phosphorus fertilizer as remediation media in different slag to soil ratios. According to the maize pots experiment results, some concluding remarks have been made as are as follows :
     1. Historical Pb-Zn smelting slag land in Northwestern Guizhou Province have been contaminated by heavy metals in varying content., which soil Zn between 261.39 to 1647.29 mg/kg; Cd between 3.47 to 18.32 mg/kg;Pb between 128.72 to 941.75 mg/kg; Cu between 19.09 to 267.59 mg/kg;As between 13.73 to 39.32 mg/kg. According to Environmental quality standard for soils (GB15618-1995), heavy metals in the soil around the Pb-Zn smelter have greatly exceeded soil back -ground values in Guizhou Province, contents of layer A in average Chinese soil, and contents of average soils over the world. Soils around the historical Pb-Zn smelters has been seriously polluted by heavy metal.
     2.The results of environmental impact assessment indicate that soils and vegetables grown on the soils have been seriously polluted by heavy metals, especially Cd, except the soil in Yemachuan of Hezhang County being moderately polluted. This has a potential threat to health of human beings and plants around the Pb-Zn smelters.
     3. Mixing soil with slag in the ratio of 1:1 in pots did not affected the maize germination rate too much, but greatly inhibited growth of the maize by lowering plant height and weight.
     4. The maize grows in pure slag have high content of heavy metals in its leaves, and significantly exceeded the national food hygiene standards. In accordance with the ratios conducted, the contents of heavy metals in maize leaves has declined, Zn, Cd, and Cu in leaves of maize have been lowest concentrations in the ratio of K_4 (15 mg/kg P), and Pb in K_5 (17.5 mg/kg P) ratio. On the contrary, the lowest concentrations for roots of various heavy metals is in K_1 (5 mg/kg) ratio, but have the high concentration of value in K_4 (15 mg/kg P) and K_5 (17.5 mg/kg P) ratio. Considering four heavy metals in the cumulative maize situation, phosphorus ratio in 15--17.5 mg/kg is suitable to immobilizing heavy metal transported from soils to plants.
     5. Different growth periods have greatly affected the heavy metals contents of maize. The contents of heavy metals in maize leaves in growth period of 50 days were lower than 20 days.
     6. Amounts of phosphorus fertilizer adding to pots have significant impact on the content of available heavy metals in soils. The available Zn, Cd, and Cu contents show the trend of ascending first, descending second, and ascending again along with increased phosphorus fertilizer addition. This provides a reliable basis for further study. But Pb showed the opposite trend. Therefore, it is difficult to control heavy metal composite pollution by simply adding soluble phosphate to contaminated soil.
     7. In general, the phosphorus ratio between 10ppm to 17.5ppm is better to reclaim soils contaminated by heavy metals.
引文
[1] 束文圣,华南铅锌尾矿生态恢复的理论与实践[J],生态学报,2003,23(8),1629—1639
    [2] 舒俭民,刘连贵,张岱松等,石墨矿废弃地生态复垦研究[J],中国环境科学,1996(6):191-195
    [3] 束文圣,中国矿业废弃地的复垦对策研究[J],生态科学,2000,19(2),24-29
    [4] Bradshaw A D, Chadwic M J, The Restoration of Land[M], Oxford, Blackwell Scientific Publication[M], 1980, 15-57
    [5] 郭焕成,吴登茹,朱宏星,我国的土地恢复[J],生态学报,1990,10(1):24—27
    [6] 刘树序,汪文生,我国冶金矿山土地复垦形势与对策[J],金属矿山,1998(5):36—39
    [7] 张蕾娜,冯永军,采煤塌陷区复垦土地的肥力状况研究[J],福建水土保持,2001,13(1):57-60
    [8] 孙泰森,师学义,杨玉敏等,五阳矿区采煤塌陷地复垦土壤的质量变化研究[J],水土保持学报,2003,17(4):35—37
    [9] 胡振琪,戚家忠,司继涛,粉煤灰充填复垦土壤理化性状研究[J],煤炭学报,2002,27(6):639-643
    [10] 胡振琪,戚家忠,司继涛,不同复垦时间的粉煤灰充填复垦土壤重金属污染与评价[J],农业工程学报,2003,19(2):214-218
    [11] 白中科,赵景逵,朱荫湄,试论矿区生态重建[J],自然资源学报,1999(1):35~41
    [12] 黄长干,张莉,余丽萍等,德兴铜矿同污染状况调查及植物修复研究[J],江西农业大学学报,2004,26(4):629-632
    [13] 束文圣,张志权,蓝崇钰,广东乐昌铅锌尾矿的酸化潜力[J],环境科学,2001,22(3):113-117
    [14] 胡宏伟,束文圣,蓝崇钰等,乐昌铅锌尾矿的酸化及重金属溶出的淋溶实验研究[J],环境科学与技术,1999,3:1-3
    [15] 黄铭洪,骆永明,矿区土地修复与生态恢复[J],土壤学报,2003,40(2):161—167
    [16] 吴攀等,矿山环境中重金属的释放迁移地球化学及其环境效应[J],矿物学报,2001,21(2):213—218
    [17] 参见《矿山开发生态环境破坏与重建调查报告》,载于中国环境统计信息网:http://www.sdinfo.net.cn/hjinfo/kd/wbcl/qgkd.htm
    [18] 李永庚,矿山废弃地生态重建研究进展[J],生态学报,2004,24(1):96-100
    [19] 夏星辉,陈静生,土壤重金属污染治理方法研究进展[J],环境科学,1997,18(3):72—76
    [20] 陈晓婷、连丰,无机改良材料对重金属形态及生物有效性的影响[J],福建环境,2003,20(1):39—41
    [21] 李小江,易艳红,清水塘地区土壤重金属污染现状及修复技术研究[J],环境科学与技术,2004(5):61—63
    [22] 李芬,冯永军,采煤沉陷地新型修复材料研究[J],水土保持学报,2004,18(3):100-193
    [23] Rufus L Chaney, Minnie Malik, Phytoremediation of soil metals, Environmental biotechnology[J], 1997, 8:279-284
    [24] Mishraa Ashutosh, Sharmaa S D, Khanb G H, Improvement in physical and chemical properties of sodic soil by 3, 6 and 9 years old plantation of Eucalyptus tereticornis Biorejuvenation of sodic soil, Forest Ecology and Management[J], 2003, 184: 115-124
    [25] 蓝俊康,植物修复技术在污染治理中的应用现状[J],地质灾害与环境保护,2004,15(1):46-51
    [26] 沈振国,刘友良,重金属超积累植物研究进展[J],植物生理学通讯,1998,34(2):133-139
    [27] 阎晓明,何金柱,重金属污染土壤的微生物修复机理及研究进展[J],安徽农业科学,2002,30.(6):877—879
    [28] 滕应,黄昌勇,重金属污染土壤的微生物生态效应及其修复研究进展[J],土壤与环境,2002,11(1):85—89
    [29] 李永庚等,矿山废弃地生态重建研究进展,引自Edwards C A,Bohlen P J, Biology and Ecology of Earthworm. London: Chapman Hall, 1996.和Edwards C A, Abe T, Striganova B R, Structure and Function of Soil Community. Kyoto: Kyoto University Press, 1995
    [30] 戈峰,刘向辉,潘卫东,蚯蚓在德兴铜矿废弃地生态恢复中的作用[J],生态学报,2001,21(11),1790-1795
    [31] G.Davis J, Weeks G., Parker M B, Use of deep tillage and liming to reduce zinc toxicity in peanuts grown on flue dust contaminated land[J], Soil Technology, 1995, 8:85~95
    [32] 陈怀满等,土壤—植物系统重金属污染[M],北京:科学出版社,1996
    [33] 胡宏伟,姜必亮,蓝崇钰,广东乐昌铅锌尾矿废弃地酸化控制研究[J],中山大学学报(自然科学版),1999,38(3):69-71
    [34] 曹仁林,霍文瑞,何宗兰等,钙镁磷肥对土壤中镉形态转化与水稻吸镉的影响[J],重庆环境科学,1993,6(15):6—9
    [35] Sparrow LA, Salardini, AA, Effect of residues of lime and phosphorus fertilizer on cadmium uptake and yield of potatoes and carrot[J], Journal of plant nutrition, 1997, 20(1): 1333-1349
    [36] 邓波儿,刘同仇,不同改良剂降低稻米镉含量的效果,华中农业大学学报[J],1993,12(2):117—121
    [37] 廖敏,黄昌勇,谢正苗,施加石灰降低不同母质土壤中镉毒性机理研究[J],农业环境保护,1998,17(3):101—103
    [38] Basta N T, Gradwohl R, Snethen K L, Chemical immobilization of lead, zinc and cadmium in smelter-contaminated soils using soil and rock phosphate[J], Environ. Qual., 2001,30: 1054-1057
    [39] 林玉锁,土壤对重金属缓冲性能的研究[J],环境科学学报,1995,15(3):289
    [40] Ciccu R, Ghiani M, Serci A, Heavy metal immobilization in the mining-contaminated soils using various industrial wastes[J], Minerals Engineering , 2003 (16): 187- 192
    [41] Gworek B, Inactivation of cadmium in contaminated soils using synthetic zeolites[J], Environmental Pollution, 1992, 75(3): 269-271
    [42] Baidina, N I, The use of zeolites as heavy metal absorbents in technogenically contaminated soils[J], Izve stiya Sibirskogo Otdeleniya Akademii Nauk SSSR, 1991, 6:32-38
    [43] Vangronsveld, J, Van Assche F , Clijsters, H., Reclamation of a bare industrial area contaminated by non-ferrous metals in situ metal immobilization and revegetation[J], Environment Pollution, 1995, 87(1): 51-59
    [44] Mench M J, Didier V I, Loffler M, A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead[J], Environmental Quality, 1994, 23(1):58-63
    [45] 屠乃美,郑华,邹永霞等,不同改良剂对铅镉污染稻田的改良效应研究[J],农业环境保护,2000;19(6):324—326
    [46] 华珞,陈世宝,有机肥对镉锌污染土壤的改良效应[J],农业环境保护,1998,17(2):55—59
    [47] Ma Q Y, Traina S J, Logan T J, In situ lead immobilization by apatite. Environ.Sci.Tech[J], 1993, 27:1803-1810
    [48] Cotter-Howells J, Remediation of contaminated land by formation of heavy.metal phosphates, Applied Geochemistry[J], 1996, 11:335-342
    [49] Sally Brown, Barbara Christensen, Enzo Lombi, An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ[J], Environmental Pollution, 2005, 138:34-45
    [50] 鲁如坤,时正元,熊礼明,我国磷矿磷肥中镉的含量及其对生态环境影响的评价[J],土壤学报,1992,29(2);150—157
    [51] 曹仁林,霍文瑞,何宗兰等,不同改良剂抑制水稻吸收镉的研究——在酸性土壤上[J],农业环境保护,1992,11(5):195—198
    [52] 霍文瑞,曹仁林,何宗兰,不同改良剂抑制水稻吸收镉的研究——在石灰性土壤上[J],农业环境保护,1989,8(6):38—40
    [53] 杨志敏,郑绍健,胡霭堂,不同磷水平和介质pH对玉米和小麦镉积累的影响[J],南京农业大学学报,1999,22(1):46—50
    [54] 杨志敏,郑绍健,胡霭堂等,镉磷在小麦细胞内的积累和分布特性及其交互作 用[J],南京农业大学学报,1998,21(2):54—58
    [55] Panwar B S, Singh J P, Laura, R D, Cadmium up—take by cowpea and mungbean as affected by Cd and P application[J]. Water, Air and Soil Pollution. 1999, 112: 163— 169
    [56] Kaushik R D , Gupta V K, Singh J P, Distribution of Zinc, cadmium , and copper forms in soils as influenced by phosphorus application[J], Arid Soil Research and Rehabilitation,. 1993, 7(2): 163—171
    [57] 曹仁林,霍文瑞,何宗兰,大冶县罗桥水稻土镉污染防治研究[J],中国环境科学,1993,13(6):433—439
    [58] Chen H M, Zheng C R, Tu C, Shen Z G., Chemical methods and phytoremediation of soil contaminated with heavy metals[J], Chemosphere, 2000 (41): 229-234
    [59] Donna L Jacob, Marinus L Otte, Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailings types[J], Science of the Total Environment, 2004 (333): 9 - 24
    [60] 杨元根,刘丛强,吴攀等,贵州赫章土法炼锌导致的重金属积累[J],矿物学报,2003,23(3):255-261
    [61] 吴攀,刘丛强,杨元根等,土法炼锌废渣堆中的重金属及其释放规律[J],中国环境科学 2002,22(2):109-113
    [62] 王亚平,鲍征宇,侯书恩,尾矿库周围土壤中重金属存在形态特征研究[J],岩矿测试,2000,(19)1:7—13
    [63] 王海峰,张元福,张中可,贵州锌工业现状及发展对策[J],贵州科学,2000,(18)3:229~233
    [64] 杨元根,刘丛强,张国平等,铅锌矿山开发导致的重金属在环境介质中的积累[J],矿物岩石地球化学通报,2003,(22)4:305—309
    [65] 刘凤枝,农业环境检测实用手册[M],北京:中国标准出版社,2001
    [66] 刘光崧,中国生态系统研究网络观测与分析标准方法:土壤理化分析与剖面描述[M],中国标准出版社,1996
    [67] Peters R W, Chelant extraction of heavy metals from contaminated soils[J], Journal of Hazardous Materials , 1999, 66: 151~210
    [68] 王军,徐晓春,陈芳,铜陵林冲尾矿库复垦土壤的重金属污染评价[J],合肥工业大学学报,2005,(28)2:142—145
    [69] GB 15618—1995,土壤环境质量标准[M],国家环境保护局,1995
    [70] 刘凤枝,农业环境检测实用手册[M],北京:中国标准出版社,2001
    [71] 余剑东,倪吾钟,杨肖娥.土壤重金属污染评价指标的研究进展[J],广东微量元素科学,2002,(9)5:11—16
    [72] 刘扬林,蒋新元,株洲市白马乡土壤和农作物重金属污染评价[J],土壤(Soils),2004,36(5):551-556
    [73] 刘凤枝,师荣光,徐亚平等,耕地土壤重金属污染评价技术研究——以土壤中铅和镉污染为例[J],农业环境科学学报,2006,25(2):422—426
    [74] 宋春然,何锦林,谭红等,贵州省农业土壤重金属污染的初步评价[J],贵州农业科学,2005,33(2):13~16
    [75] 蔡美芳,党志,文震等,矿区周围土壤中重金属危害性评估研究[J],生态环境,2004,13(1):6—8
    [76] Agbenin, J O, Phosphate-induced zinc retention in a tropical semi-arid soil, Soil Sci, 1998, 49:693-700
    [77] SinghJ P, Karwasra S P S, Singh M, Distribution and forms of copper, iron, manganese and zinc in calcareous soils of India[J], Soil Sci., 1998, 146:359-366;
    [78] Thornton, I, Bioabailability of the elements in the food chian.In Proceeding of the 5th International Conference on the Biogeochemsitry of Trace Elements[J], Vienna, 1999, 7:11-15
    [79] 陈晓婷,王果,梁志超,华村章,方玲,钙镁磷肥和硅肥对Cd、Pb、Zn污染土壤上小白菜生长和元素吸收的影响[J],福建农林大学学报(自然科学版),2002,31(1):109—112
    [80] Bradley S, Crannell T , Taylor Eighmy, James E , Heavy metal stabilization in municipal soil waste combustion bottom ash using soluble phosphate[J], Waste Management, 2000, 20:135-148
    [81] 何振立,周启星等,污染及有益元素的土壤化学平衡[M].北京:中国环境科 学出版社,1998:129—276,引自宋玉芳,许华夏,任丽萍等,土壤重金属污染对蔬菜生长的抑制作用及其生态毒性[J],农业环境科学学报2003,22(1):13—15
    [82] 吕家珑,罗厚庭.可变电荷土壤吸附吸磷酸根后对Cu、Zn和Cd次稀饭的影响[J],华中农业大学学报,1992,11(4):358.363
    [83] Cotter-Howells J, Capron S, Remediation of contaminated land by formation of heavy metal phosphate[J], Appl Ceochem, 1996, 11:335-342
    [84] 韩凤祥,我国某些旱地土壤中锌的形态及有效性[J],土壤,1990,22(6):302-306
    [85] 杜立宇,梁成华,陈新之,菜园土壤高磷条件对油菜磷、锌含量的影响[J],土壤通报,2003,34(4):330-332
    [86] 高志玲,刘建玲,廖文华,磷肥试用与镉污染的研究现状及防治对策[J],河北农业大学学报,2001,24(3):90-99
    [87] 雷鸣,廖柏寒,曾清如等,两种污染土壤中重金属Pb、Cd、Zn的EDTA萃取及形态变化[J],农业环境科学学报,2005,24(6):1233—1237
    [88] 王显海,刘云国,曾光明等,EDTA溶液修复重金属污染土壤的效果及金属的形态变化特征[J].环境科学,2006,27(5):1008-1012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700