人骨髓干细胞源性恶性转化细胞的靶向清除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:人类骨髓干细胞(human bone marrow stem cells, hBMSC)移植给许多病人带来了希望的同时也带来了风险。干细胞治疗所带来的所有风险中,最严重而且最引人注目的是干细胞植入体内后发生恶性转化而致肿瘤的形成。因而制定一个干细胞植入后的可控制策略就成了各干细胞研究团队和临床医学研究者迫在眉睫要解决的问题。然而,制定这样的策略却不可避免地面临着许多挑战,包括高效肿瘤组织特特异性启动子的设计、获取大量hBMSC源性恶转细胞用于启动子的功能验证及体内外细胞毒性实验、恶性转化细胞异种移植成活率较低等。迄今为止仍然没有一个切实可行的方法来预防移入hBMSC发生致瘤性转化。
     目的:1.提高端粒酶启动子在hBMSC源性恶性转化细胞靶向转录活性的顺式修饰探讨,获取一种在端粒酶阳性细胞中具有高特异性和较强转录活性的hTERT启动子,为下一步预防干细胞发生恶性转化及靶向清除植入hBMSC源性恶性转化细胞打下基础;2.探寻一个在体外获取足够数量hBMSC源性恶性转化细胞的方法;3.建立一个为预防植入hBMSC发生恶性转化以及靶向清除发生恶性转化研究模型。
     方法:
     1. c-Myc结合元件对hTERT启动子的修饰:用化学合成方法在野生型hTERT(WThTERT)核心启动子片段(编码蛋白起始子ATG上游-268 bp~-10 bp)的3′端接入三个E-box序列,构建成修饰型hTERT(Mod1hTERT)启动子;分别用WThTERT和Mod1hTERT启动子去调控增强型绿色荧光蛋白(EGFP)及荧光素酶报告基因在293FT、HepGⅡ、SGC7901、U2OS(端粒酶阴性)、以及人骨髓干细胞(hBMSC)中表达,比较并分析不同启动子在端粒酶阳性与阴性细胞中的表达强度。
     2.源于hBMSC的恶性转化细胞的体外扩增:从骨髓中分离培养人骨髓干细胞,并用流式细胞仪进行表型鉴定;然后用慢病毒转染和致瘤化学诱导剂BPDE处理共同诱导骨髓干细胞发生恶性转化;用PALA进行IC50筛选纯化瘤变细胞克隆;最后再用PCR、RT-PCR、Western blot等方法对慢病毒转染、细胞周期调控相关基因表达进行分析。
     3.下调hTERT启动子在hBMSC中转录活性的修饰:在Mod1hTERT启动子的上游接入4个骨髓锌指蛋白-2(MZF-2)转录因子结合元件,形成新的修饰型启动子命名为Mod2hTERT启动子;分别从大肠杆菌K12和质粒pEGFP-N3中通过聚合酶链式反应合成胞嘧啶转氨酶(CD)基因和绿色荧光蛋白(EGFP)基因;用化学合成法分别制备野生型hTERT、Mod1hTERT及Mod2hTERT启动子;将EGFP和荧光素酶(luciferase)报告基因分别亚克隆入慢病毒载体pLenti6/V5-D-TOP中;将各启动子片段取代pLenti6/V5-D-TOPO中的CMV启动子片段;将重组慢病毒载体包装成病毒颗粒后转染正常人骨髓间充质干细胞(hBMSC)、慢病毒转染及化学致瘤剂BPDE处理后的人骨髓间充质干细胞(BR-hBMSC) ,以及PALA抗性的BR-hBMSC(PBR-hBMSC);通过荧光相差显微镜观察EGFP表达和荧光素酶分析kit检测荧光素酶活性(luciferase activity)。
     4. 5-FC对hBMSC源性恶性转化细胞的细胞毒性实验:分别用不同浓度梯度的5-FC来处理体外培养的转入WThTERT-luciferase-IRES-CD、Mod1hTERT-luciferase-IRES-CD、Mod2hTERT-luciferase-IRES-CD、CMV-luciferase-IRES-CD及prmoter(lack)-luciferase-IRES-CD融合基因的各组PBR-hBMSC细胞;用MTT法在体外测定不同浓度梯度5-FC对各组PBR-hBMSC的细胞毒性;转入WThTERT-luciferase-IRES-CD、Mod2hTERT-luciferase-IRES-CD、以及CMV-luciferase-IRES-CD的转基因PBR-hBMSC植入裸鼠的皮下一周后,腹腔注射5-FC 5㎎/天,并用活体荧光成像系统对植入细胞的生长状况进行观测。
     结果:
     1. c-Myc结合元件对hTERT启动子的修饰:在Mod1hTERT启动子的各实验组细胞中,能够在端粒酶阳性的293FT、HepGⅡ及SGC7901细胞组中观测到EGFP的表达,而在端粒酶阴性的U2OS及hBMSC细胞组中没有观测到EGFP的表达;进一步用荧光素酶活性对启动子的转录活性进行定量分析表明,在端粒酶阳性的293FT、HepGⅡ、SGC7901和U2OS细胞株中,Mod1hTERT启动子调控下的荧光素酶活性要高于WThTERT启动子组(P<0.01),而在端粒酶阴性的原代人成纤维细胞hBMSC及骨肉瘤细胞U2OS细胞中,Mod1hTERT启动子与WThTERT启动子的转录活性无显著性差别(P>0.05)。
     2.源于hBMSC恶性转化细胞的体外扩增: PCR结果表明,hBMSC在慢病毒介导下可以获得外源的遗传性表型;RT-PCR检测结果表明,细胞周期调控相关基因c-myc、bcl-2表达显著上调(p<0.01),p53及mzf-2则显著下调(p<0.01)。
     3.下调hTERT启动子在hBMSC中转录活性的修饰:通过荧光相差显微镜观察结果表明,启动子Mod1hTERT和Mod2hTERT在PBR-hBMSC(慢病毒转染、BPDE处理后,具有PALA抗性的hBMSC)中的表达较强而在hBMSC和BR-hBMSC(慢病毒转染hBMSC)中只有微弱的表达;启动子CMV驱动的EGFP基因在所有的细胞中都有很强的表达; Luciferase activity分析结果表明,在293FT及PBR-hBMSC细胞中,Mod1hTERT及Mod2hTERT启动子的转录活性要显著高于WT-hTERT启动子的转录活性(Sig.<0.05),而在hBMSC及BR-hBMSC(慢病毒转染hBMSC)中,Mod2hTERT的转录活性得到了有效的抑制(Sig.<0.05)。
     4. 5-FC对hBMSC源性恶性转化细胞的细胞毒性实验: MTT实验结果表明,当5-FC浓度100μM时,在Mod1hTERT细胞组中存活细胞占5.79%,Mod2hTERT细胞组中占6.53%, CMV细胞组中只有1.97%的细胞存活;而在相同条件下实验阴性对照组prmoter(lack)-luciferase-IRES-CD中,存活的细胞达到96.27%;活体荧光成像系统检测结果表明,在给药时间为O周时WThTERT-luciferase-IRES-CD细胞组的最大荧光信号比Mod2-luciferase-IRES-CD细胞组及CMV-luciferase-IRES-CD细胞组低4.33及5.29倍;而给药2至此周后,各组间的荧光信号强度差异不显著。给药4至周后,Mod2-luciferase-IRES-CD细胞组及CMV-luciferase-IRES-CD细胞组的荧光信号基本消失,WThTERT-luciferase-IRES-CD细胞组的荧光信号仍然存在。
     结论:
     1.在hTERT核心启动子的3′端增加E-box元件的数量可以提高hTERT核心启动子序列的肿瘤靶向转录活性。
     2. hBMSC在BPDE和慢病毒共同诱导后,用PALA的IC50筛选可以得到瘤变细胞克隆。
     3.野生型hTERT启动子经过c-Myc作用元件E-box进行修饰后,可以有效提高hTERT启动子在端粒酶阳性细胞中的转录活性.而经过修饰MZF-2结合位点修饰后,可以有效降低hTERT启动子在MZF-2表达阳性的正常hBMSC中的转录活性。
     4. c-Myc及MZF-2结合元件修饰的Mod2hTERT启动子在恶性转化的骨髓干细胞中有较强的靶向转录活性,同时该启动子驱动CD及luciferase表达的PBR-hBMSC在体内外能被5-FC特异性清除。
     终上所述,本研究不仅为骨髓干细胞源性的恶性转化细胞清除提供了一个实验方法,而且也为以后的干细胞临床移植研究提供了一个安全性研究策略。
Background: To many patients, transplantation of human bone marrow stem cells not only brings hopes, but also brings the risks. Of all of the risks of stem cell therapy, the most serious, and the risk that has gotten the most attention, is the risk for tumor formation. Human bone marrow stem cells do not exhibit the telomerase activation, but tumor cells will do. It is the responsibility of the community of stem cell scientists and clinicians to develop strategies to control the therapies after transplantation. However, this strategy must be faced many challenges, including high efficiency of tumor-targeting promoter design of mechanisms, obtaining a number of hBMSC-derived malignant cells for functional identification of designed promoters and tests of cytotoxicity in vitro and in vivo, and low survival rate of malignant cells after heterogenic implantation, etc. Until now, a reliable method has not been found to prevent neoplastic transformation of engrafted hBMSC.
     Purpose: 1. Investigate the improvement of targeting transcriptional activities in hBMSC-derived malignant cells; 2. Seek a method for obtaining enough number of hBMSC-derived malignant cells; 3. In order to establish a research model for prevention of malignant transformation and targeting eradication of malignant cells derived from hBMSC.
     Methods:
     1. Core hTERT promoter modified by c-Myc binding element: wild-type core hTERT (WThTERT) promoter fragment (from -268 to -10 upstream of the initiating ATG start codon) and the modified hTERT (Mod1hTERT) promoter fragment (a triplet of E-boxes were ligated to the 3′terminal of the WThTERT promoter) were generated through synthesis. The two reporter genes of enhanced green fluorescent protein (EGFP) and luciferase were expressed and assayed in 293FT, HepGⅡ, SGC7901, U2OS, and the primary culture human bone marrow stem cells (hBMSC) under the control of the WThTERT promoter and Mod1hTERT promoter, respectively.
     2. In vitro amplification of PALA resistant malignant cells derived from human bone marrow stem cells: isolated culture hBMSC from human bone marrow and assess their phaenotype by flow cytometer, FCM; after the treatment by carcinogenic reagent of BPDE and lentivirus infection, malignant cells could be sieved by selection of PALA; detect expression of lentivirus infection、cell cycle regulation related gene and telomerase activation by PCR, RT-PCT and west blot.
     3. Modification of hTERT promoter for down-regulation of transcriptional activities in human bone marrow stem cells: in this section, a tetrad of MZF-2 binding elements were ligated to the 5′terminal of the Mod1hTERT promoter, the new generated promoter was named as Mod2hTERT prmoter; Cytosine deaminase (CD) gene and enhanced green fluorescent protein (EGFP) gene from E.coli K12 and plasmid of pEGFP-N3 respectively are subcloned into plasmid of pLenti6/V5-D-TOP; The wild hTERT promoter fragment(WT-hTERT), Mod1hTERT, and Mod2hTERT promoters were generated by chemical synthesized; EGFP and luciferase gene code sequence into the lentivirus pLenti6/V5-D-TOP; CMV promoter in pLenti6/V5-D-TOP was replaced by above hTERT promoters, respectively; The hBMSC, BR-hBMSC and PBR-hBMSC were transfected by lentivirus; 6.The expression of EGFP under the controls of modified hTERT promoters were observed by fluorescence contrast phase microscope and the luciferase activity was detected by Kit.
     4. In vitro and in vivo cytotoxicity test: PBR-hBMSCs with fusion genes of WThTERT-luciferase-IRES-CD, Mod1hTERT-luciferase-IRES-CD, Mod2hTERT-luciferase-IRES-CD, CMV-luciferase-IRES-CD and prmoter(lack)-luciferase-IRES-CD were treated in the mediums with different concentration gradient of 5-FC, respectively; 2.MTT reduction assay were used for cytotoxicity detections of PBR-hBMSCs with different fusion genes in different concentration gradient of 5-FC; PBR-hBMSCs with fusion genes of WThTERT-luciferase-IRES-CD, Mod2hTERT-luciferase-IRES-CD, and CMV-luci-ferase-IRES-CD were transplanted into hypo of athymic mice; After one week, each mouse were detected with animal in vivo fluorescence imaging system were given a injection after given a injection of 5㎎ 5-FC once a day. The signal of survive engraft cells were detected once a week.
     Results:
     1. Core hTERT promoter modified by c-Myc cis element: in the Mod1hTERT groups, EGFP could be observed in the hTERT-positive groups of 293FT, HepGⅡ, and SGC7901 cells, but not in the hTERT-negative groups of U2OS and hBMSC. The luciferase activity of the Mod1hTERT promoter groups was significantly higher than that of the WThTERT promoter groups in the hTERT positive cell lines of 293FT, HepGⅡ, and SGC7901(P<0.01), however, no significant difference was found in U2OS and hBMSC (P>0.05).
     2. In vitro amplification of PALA resistant malignant cells derived from human bone marrow stem cells:
     3. Modification of hTERT promoter for down-regulation of transcriptional activities in human bone marrow stem cells: in the Mod1hTERT groups, EGFP could be observed in the hTERT-positive groups of 293FT, HepGⅡ, and SGC7901 cells, but not in the hTERT-negative groups of U2OS and hBMSC. The luciferase activity of the Mod1hTERT promoter groups was significantly higher than that of the WThTERT promoter groups in the hTERT positive cell lines of 293FT, HepGⅡ, and SGC7901(P<0.01), however, no significant difference was found in U2OS and hBMSC (P>0.05).
     4. In vitro and in vivo cytotoxicity test: MTT assays results shown that the relative survival rates of cells were only 5.79% in the Mod1hTERT group, 6.53% in the Mod2hTERT group, and 1.97% in the CMV group, when treated with 100μM 5-FC; 2. Bioluminescence imaging system test showed that after the administration of 4-5 weeks, in grope of malignant cells derived from hBMSC Mod2hTERT promoter and malignant cells derived from hBMSC with CMV mice bioluminescence signal was vanished. It is suggested that the malignant cell neoplasia be cleared.
     Conclusions:
     1. 3'terminal extra E-boxes can improve the tumor-targeting transcription activity of the core hTERT promoter.
     2. Malignant transformation of hBMSC can be co-induced by transfection of lentivirus and treatment of BPDE. The malignant cells derived from hBMSC could be amplification in vitro with IC50 selection culture of PALA.
     3. 5′terminal extra MZF-2 binding sites of core hTERT promoter can effectively degrade transcriptional activity of hTERT promoter in MZF-2-positive cells of hBMSC.
     4. Transcriptional activity of modification with c-Myc and MZF-2 binding elements is stronger than the normal cell. While in vitro and in vivo, the expression of the CD promoter and luciferase gene in PBR-hBMSC has been cleared by 5-FC.
     In briefly, this study has not just provided a method for the research of targeting eradication of malignant cells derived hBMSC, but may also provide a strategy for bio-safety research in future clinic stem cell therapy.
引文
[1] M.R.Loebinger, E.k.sage, and A.M. Janes. Mesenchymal Stem Cells as Vectors for Lung Disease [J]. Proceedings of the ATS, August 15, 2008, 5(6): 711-716.
    [2] Pereira RF, O’Hara Md, Laptev AV et al. Marrow stromal cells as a source of progenitor cells for non-hematopoietic itssues in transgenic mice with a phenotype of osteogenesis impergecta [J]. Proc Natl Acad Sci U S A, 1998 (95):1142-1147.
    [3] Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. PNAS September 14, 1999 vol.96 no.19 10711-10716.
    [4] Wang G, Bunnell BA, Painter RG et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: Potential therapy for cystic fibrosis. Rroc Natl Acad Sci U S A 2005,102:186-191.
    [5] PittengerMF,MackayAM,BeekSC, et al.Multilineage potential of adult human mesenchymal stem cells [J]. Seience,1999,284:143一147.
    [6] Murielle Mimeault, Ph.D., and Surinder K. Batra, Ph.D. Concise Review: Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer Therapies. Stem Cells Vol. 24 No.11 November 2006, pp.2319-2345.
    [7] Sabine Wislet- Gendebien, Gregory Hans, Pedrre Leprince, Jean-Michel Rigo, Gustave Moonen, Bernard Rogister. Plasticity of Cultured Mesenchymal Stem Cells: Switch from Nestin-Positive to Excitable Neuron- Like Phenotype. Stem Cells Mar 2005, 23:392-402.
    [8] Friedenstein, A. J., Petrakova, K. V., Kurolesova, A.I., et al: Heteropic transplants of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues [J]. Transplantation, 1968, 6: 230-247.
    [9] Sun A, Tang J, Hong Y, et al. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression [J]. Prostate, 2008, 68(4):453-461.
    [10] Gojo S,Gojo N,Takeda Y,et al. In vivo cardiovasculogenesis by dircet injection of isolated adult mesenchymal stem cells [J]. Exp Cell Res, 2003,288: 51-59.
    [11] Wang G, Bunnell BA, Painter RG et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: Potential therapy for cystic fibrosis [J]. Rroc Natl Acad Sci U S A 2005, 102:186-191.
    [12] Liu Y,Song J,Liu W,et al. Growth and differentiation of rat bone marrow stromal cells: does 5-azacytidine trigger their cardiomyogenic differentiation[J], CardiovaseRes , 2003 ,58:460-468.
    [13] JeanMarie Houghton, Calin Stoicov, Sachiyo Nomura, et al. Gastric Cancer Originating from Bone Marrow-Derived Cells [J]. Science, 2004,306 (5701):1568-1571.
    [14] Derrick J.Rossil, Irving L.Weissman. Pten, umorigenesis, and Stem Cell-Renewal. Cell, 2006; 125(2):229-231.
    [15] Gwendal Lazennec, Christian Jorgensen. Concise Review: Adult Multipotent Stromal Cells and Cancer: Risk or Benefit? [J] Stem Cells, 2008, 26(6): 1387-1394.
    [16] I.Avital, A.L.Moreira, D.S.Klimstra, et al. Downey and R. Donor-Derived Human Bone Marrow Cells Contribute to Solid Organ Cancers Developing After Bone Marrow Transplantion. Stem cells, 2007, 25, 2903-2909.
    [17] Hung SC, Yang DM, Chang CF et al. Immortalization without neoplastic transformation of human mesenchymal stem cells by transduction with HPV16 E6/E7 genes [J]. Int J Cancer, 2004; 110: 313–319.
    [18] Serakinci N, Guldberg P, Burns JS et al. Adult human mesenchymal stem cell as a target for neoplastic transformation [J]. Oncogene 2004 (23): 5095–5098.
    [19] Rubio D, Garcia-Castro J, Martin MC et al. Spontaneous human adult stem cell transformation [J]. Cancer Res 2005 (65): 3035–3039.
    [20] Bernardo ME, Zaffaroni N, Novara F et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms [J]. Cancer Res 2007 (67): 9142–9149.
    [21] G. V. Rosland, A. Svendsen, A. Torsvik, E. Sobala, E. McCormack, H. Immervoll, J. Mysliwietz, J.-C. Tonn, R. Goldbrunner, P. E. Lonning, et al. Long-term Cultures of Bone Marrow-Derived Human Mesenchymal Stem Cells Frequently Undergo Spontaneous Malignant Transformation [J]. Cancer Res., July 1, 2009, 69(13): 5331 - 5339.
    [22]韩崇旭,许文荣.细胞周期蛋白Ⅰ基因在骨髓间质干细胞诱导致瘤过程中的表达[J].中华医学杂志,2009,32(2):209-213.
    [23]程天民,史春梦,粟永萍,宗兆文.成体干细胞在体外培养扩增中的自发恶性转化[J].中华医学杂志,2005,7,20,85,7.
    [24]孙强玲.组织特异性启动子及其在肿瘤基因治疗中的应用[J].国外医学肿瘤学分册,2004 ,31(3):166-168.
    [25]郑姝颖.增强基因治疗特异性的有效途径[J].国外医学遗传学分册,2001,24(1):13-17.
    [26] WaltherW et al. Compositions and methods for treating diabetes [J]. JMolMed, 1996 (74): 379-392.
    [27] Meyerson M, Counter CM, Eaton EN ,et al. HEST2, the putative human telomerase catalyticsubunit gene, is up-regulated in tumor cells and during immortalization [J]. Cell, 1997 (90):785.
    [28] Kyo S, Inoue M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: how can we apply them for cancer therapy [J]. Oncogene, 2002, 21(4):688-697.
    [29] Cong YS et al..The role of SMN in spinal muscular atrophy [J]. Hum Mo l Genet, 1999, (8): 137.
    [30] Richard G, Nicholas A, Zhengmin Jin,et al. Conditional expression of a suicide gene by the telomere reverse transcriptase promoter for post-therapeutic deletion of insertional mutagenesis [J].Molecular Therapy, 2004 (9):159.
    [31] Majumdar AS, Hughes DE, Lichtsteiner SP, et al . The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters [J].Gene Ther,2001,8(7) :568.
    [32]王亚轩,蔡文清,黎玮,等.人端粒酶逆转录酶启动子调控腺病毒介导的胸苷激酶基因治疗膀胱癌的实验研究[J].中华泌尿外科杂志,2005,26(4):229-232.
    [33]李帆,谭晓华,彭晓君,等.人端粒酶反转录酶启动子的克隆与肿瘤靶向治疗的研究[J].第一军医大学学报,2005,25(2):207-211.
    [34]宋悦,孔北华,刘培淑等.hTERT启动子调控下HSV-tk/GCV系统对人卵巢癌细胞系Skov3的杀伤作用[J].中国医学科学院学报,2003,25(4):438-442.
    [35]况舸,黄爱龙,唐霓.端粒酶逆转录酶(hTERT)启动子的克隆及在人肝癌细胞的肿瘤特异性分析[J].重庆医科大学学报,2005,30(3):325-328.
    [36]杨邵敏,张波,廖松林,等.hTERT转录调控区克隆及在人癌细胞的转录特异性分析[J].肿瘤,2002,22(6):470-474.
    [37] Binley K,Iqball S , Kingsman A. An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer [J]. Gene Ther, 1999 (6):1721-1727.
    [38]滑玮,辛晓燕,苏明权,等.修饰hTERT核心启动子靶向转录FCY1的重组腺病毒的构建及鉴定[J].第四军医大学学报,2003,24(8):734-737.
    [39]高进.动物肿瘤模型的建立及其标准研讨[J].中国肿瘤生物治疗杂志,1995,2(1):769.
    [40] Stanton MF,Miller E,Wreneh C,et al. Experimental induetion of epidermoid Carcinoma in the lung of rats by cigarette smoke condensate [J]. J Natl Cancer Inst,1972,49: 867-877.
    [41] Liu Z,Liu Y,Zeng Y. Synergistic effect of Epstein-Barr virus and tumor promoters on induetion of lymphoma and careinoma in nude mice [J]. J Cancer Res Clin Oneol,1998 , 124(10): 541-548.
    [42] JavadPour N,Thomas W,Nabong R,et al. Transplantation of the renal blastema: a new experimental model for the produetion of Wilms’tumor [J]. Surg Forum, 1970,21: 534-535.
    [43] Pantelouris E. M. Absence of thylllus in a mouse mutant [J]. Nature,1968,217: 370-371.
    [44] Rygaard J,Povlsen C. O. Heterotransplantation of a human malignant tumor to nude mice [J]. Act Path Microbiol Scand,1969,77: 758-760.
    [45] Homma S,Nagamori S,Fujise K,et al. Human bile duct carcimona cell line produeing abundant mucin in vitro [J]. Gastroenterol Jpn,1987, 22(4): 474-479.
    [46] Fidler IJ. Critieal factors in the biology of human cancermetas-tasis: Tweniy-eighth G. H. A. Clowes Memorial Award Lecture [J].Cancer Res,1990, (50):6130-6138.
    [47]郑宏祥,毛立军,郝林等.3种建立人肾癌皮下荷瘤裸鼠模型方法比较[J].徐州医学院报,2007,27,(4):216-218
    [48] Bouquet C,Frau E,Opolon P,et al. Systemic administration of a recombinant Adenovirus encoding a HAS-Angiostatin Kringle l-3 conjugate inhibits MDA-MB-231 tumor growth and metastasis in a transgenic model of spontaneous eye caneer [J]. Mol Ther,2003,7(2): 174-184.
    [49] van der Houven,van Oordt CW,Smits R,et al. The genetic background modifies the spontaneous and X-ray-induced tumor spectrum in the APc l638N mouse model [J]. Genes Chromosomes Cancer,1999,24(3): 191-195.
    [50] Deerberg F,KasPareit J. Endometrial careinoma in BDⅡ/Han rats: model of a Spontaneous hormone-dependent tumor [J]. J Natl Cancer Inst,1987,78(6): 1245-1251.
    [51] Chalfiem, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression [J]. Science, 1994, 263(5148) : 802-805
    [52] S Zeamaril, G Rumping, B Floot, et al. In vivo bioluminescence imaging of locally disseminate in rats[J]. British Journal of Cancer. 2004, 90:1259-1264.
    [53] Wang G, Bunnell BA, Painter RG, et al. Aduit stem cells from bone marrow stroma differentiate into airway epithelial cells: Potential therapy for cystic fibrosis [J]. Proc Natl Acad Sci USA. 2005,102: 186-191.
    [54] HARRINGTON KJ, LINARDAKS E, VILE RG. Transcriptional control: an essential component of cancer gene therapy strategies? [J]. Adv Drug Deliv Rev, 2000, 44(2-3): 167-184.
    [55] Shi CX, Hitt M, Ng P, Graham FL. Superior Tissue-Specific Expression from Tyrosinase and Prostate-Specific Antigen Promoters/Enhancers in Helper-Dependent Compared with First-Generation Adenoviral Vector[J].Hum Gene Ther, 2002:13(2):211-224.
    [56] Ueno M, Koyama F, Yamada Y, Fujmoto to H, Takayama T, Kamada K, Naito A, Hirao S, Mukogawa T, Hamada H, Nakajma Y. Tumor-specific chemo-radio-gene therapy for colorectal cancer cells using adenovirus vector expressing the cytosine [J]. Anticancer Res.2001, 21(4): 2601-2608.
    [57] Majumdar AS, Hughes DE, LIchtsteiner SP, Wang Z, Lebkow ski JS, Vasserot AP. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters [J]. Gene Ther, 2001:8(7): 568-578.
    [58] Gu J, Kagaw a S, Takakura M, Kyo S, Inoue M, Roth JA, Fang B. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to Cancers [J] Cancer Res, 2001; 61(7): 3045-3052.
    [59] Jacob D, Bahra M, Schuma cher D, et al. Gene therapy in colon cancer cells with a fiber modified adenovector expressing the TRA IL gene driven by the hTERT promoter[ J ]. Anticancer Res, 2004, 24 (5A) : 3075 - 3079.
    [60] Abdul Ghani R, Ohana P, Matouk I, et al. Use of transcriptional regulatory sequences of telomerase ( hTER and hTERT ) for selective killing of cancer cells [ J ]. Mol Ther, 2000, 2 (6) : 539 - 44.
    [61] Maria Ester Bernardo, Nadia Zaffaroni, Francesca Novara, Angela Maria Cometa, Maria Antonietta Avanzini, Antonia Moretta, Daniela Montagna, Rita Maccario, Raffaella Villa, Maria Grazia Daidone, Orsetta Zuffardi and Franco Locatelli. (2007).
    [62] Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67, 9142–9149.
    [63] Burns JS, Abdallah BM, Guldberg P et al. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells.[J]. Cancer Res, 2005, 65(8):3126-3135.
    [64] Cultraro, CM, T Bino, and S Segal. Function of the c-Myc antagonist Mad1 during a molecular switch from proliferation to differentiation[J]. Mol. Cell. Biol. 1997; 17: 2353-2359.
    [65] Foley, KP, GA McArthur, C Queva, et al. Targeted disruption of the MYC antagonist MAD1 inhibits cell cycle exit during granulocyte differentiation[J]. EMBO J. 1998; 17:774-785.
    [66] Henriksson, M., and G Luscher. Proteins of the Myc network: essential regulators of cell growth and differentiation[J]. Cancer Res. 1996; 68:110-182.
    [67] Hurlin, PJ, C Queva, D E Ayer, et al. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation[J]. EMBO J. 1995; 14: 5646-5659.
    [68] Hurlin, PJ, C Queva, and RN Eisenman. Mnt, a novel Max-interacting protein is coexpressedwith Myc in proliferating cells and mediates repression at Myc binding sites[J]. Genes Dev. 1997; 11: 44-58.
    [69] Meroni G.A, Reymond M, Alcalay G., et al. Rox, a novel bHLHZIP proteinexpressed in quiescent cells that heterodimerizes with Max, binds a non-canonical E box and acts as a transcriptional repressor[J]. EMBO J. 1997; 16: 2892-2906.
    [70] Schreiber-Agus, N, L Chin, K Chen, et al. An amino-terminal domain of Mxi1 mediates Anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor Sin3[J]. Cell 1995; 80: 777-786.
    [71] Ayer, D E, L Kretzner, and R N Eisenman. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity[J]. Cell 1993; 72: 211-222.
    [72] Gu, W, K Cechova, V Tassi, et al. Opposite regulation of gene transcription and cell proliferation by c-Myc and Max[J]. Proc. Natl. Acad. Sci. USA1993; 90: 2935-2939.
    [73] Amin, C, AJ Wagner, and N Hay. Sequence-specific transcriptional activation by Myc and repression by Max[J]. Mol. Cell. Biol. 1993; 13: 383-390.
    [74] SchramL P, Kononen J, Bubendorf L, et al. Tissue microarrays for gene amplification surveys in many different tumor types[J]. Clin Cancer Res. 1999; 5(8): 1966-1975.
    [75] Kyo S, Takakura M, Taira T, et al. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT) [J]. Nucleic Acids Res. 2000; 28(3): 669-677.
    [76] Greenberg RA, O'Hagan RC, Deng H, et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation[J]. Oncogene. 1999; 18(5):1219-1226.
    [77] HARRINGTON KJ, LINARDAKS E, VILE RG. Transcriptional control: an essential component of cancer gene therapy strategies? [J]. Adv Drug Deliv Rev, 2000, 44(2-3): 167-184.
    [78] Sun A, Tang J, Hong Y, et al. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression [J]. Prostate, 2008, 68(4):453-461.
    [79] Yao X, Yoshioka Y, Eto Y, et al. TERT promoter-driven adenovirus vector for cancer gene therapy via systemic injection[J]. Biochem Biophys Res Commun, 2007, 362(2): 419-424.
    [80] Sato F, Abraham J M, Yin J, et al. Polo-like kinase and survivin are esophageal tumor-specific promoters [J]. Biochem Biophys Res Commun, 2006, 342(2): 465-471.
    [81] Ueno M, Koyama F, Yamada Y, et al. Tumor-specific chemo-radio-gene therapy for colorectal cancer cells using adenovirus vector expressing the cytosine deaminase gene [J]. Anticancer Res, 2001, 21(4A):2601-2608.
    [82] Majumdar A S, Hughes D E, LIchtsteiner S P, et al. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters [J]. Gene Ther, 2001, 8(7): 568-578.
    [83] Kyo S,Takakura M, Taira T, et al. Sp1 cooperates with c-Myc to activate t ranscription of the human telomerase reverset ranscriptase gene (hTERT) [J]. Nucleic Acids Res,2000, 28(3): 669-677.
    [84] Horikawa I, Cable P L, Mazur S J, et al. Downstream E-box-mediated regulation of the human telomerase reverse transcriptase (hTERT) gene transcription: evidence for an endogenous mechanism of transcriptional repression [J]. Mol Biol Cell, 2002, 13(8):2585–2597.
    [85]王瓞,林其谁.核酸转染技术和阳离子脂质体[J].细胞生物学杂志,1998, 20(1): 21-25. ]陈吉祥,薛飞群,李广林,等.脂质体介导基因转移的研究进展[J].微生物学通报,1999,26(3):223-225.
    [86] Kim NW, Piatyszek MA,Prowse KR et al.: Specific association of human telomerase activity with immortal cells and cancer[J]. Science.1994;266,2011-2015.
    [87] DjouadF,PlenceP,oB nyC,et a1.Immunosuppressive Effect to fmesenchymal stem cells favors tumor growth in allogeneic animals [J]. Blood,2003,102(10):3837.
    [88] BecherPS . The current status of gene therapy inautolo—Gous transplantation [J]. ActaHaematol,2005,114(4):8.
    [89] S.Perwez Hussain, Paul Amstad, Kamran Raja, et al. Mutability of p53 Hotspot Codons to Benzo(a)pyrene Diol Epoxide(BPDE) and the Frequency of p53 Mutations in Nontumorous Human Lung[J]. Cancer Research 61,6350-6355, September 1,2001.
    [90] Tobias Else , Alessia Trovato, Alex C. Kim, Yipin Wu, David O. Ferguson, Rork D. Kuick, Peter C. Lucas and Gary D. Hammer. Genetic p53 Deficiency Partially Rescues the Adrenocortical Dysplasia Phenotype at the Expense of Increased Tumorigenesis[J]. Cancer Cell. 15 (2009):465-476.
    [91] Yuan Wang, Jiong Yang, Huarui Zheng, Gerald J. Tomasek, Peng Zhang, Paul E. McKeever, Eva Y.-H.P. Lee and Yuan Zhu. Expression of Mutant p53 Proteins Implicates a Lineage Relationship between Neural Stem Cells and Malignant Astrocytic Glioma in a Murine Model[J].Cancer Cell. 15 (2009) 514-526.
    [92] Zhaohui Jin, W. Stratford May, Fengqin Gao, Tammy Flagg, and Xingming Deng. Bcl2 suppresses DNA repair by enhancing c-Myc transcriptional activity[J]. J. Biol. Chem. 281 (2006) 14446-14456.
    [93] RAINOVN G.A phaseI1clinicalevaluationofherpessim—plexvirustype 1thymidinekinase andgan ciclovirgenethem - PYasna adjuvantsurcalresectionandradiationinadultswiht previous lyun treated glioblastoma multiforme[J]. Hum GeneTher, 2000,11(17):2389—2401.
    [94] SINN P L,SAUTER S L,MCCRAY P B.Genetherapy progress and prospects:development of improved of lentiviral and retroviral vectors-design, biosafety, and production[J]. GeneTher. 2005, 12(14):1089-1098.
    [95] Maria Ester Bernardo, Nadia Zaffaroni, Francesca Novara, Angela Maria Cometa, Et al. Human Bone Marrow Derived Mesenchymal Stem Cells Do Not Undergo Transformation agter Long-term In vitro Culture and Do Not Exhibit Telomere Maintenance Mechanisms. Cancer Res 2007;67(19):9142-9149.
    [96] OmotoE, DeguehiS, TakabaS, eta1. Low—dosemelphlaan for treatment of high—irskmyelodys plastic syndromes [J]. Leukemia, 1996, 10(4):609-611.
    [97] Zhang X, Horwitz GA, Prezant TR, eta1. Structure,expression and function of human pituitary tumor- transofr—minggene (fyITrG) [J]. MolEn docfinol, 1999, 13(1):156—166.
    [98] DworakowskaD, GozdzS, Jassem E, eta1. Prognostic relevance of proliferating cell nuclear antigen and P53Expressioninnon—small cell lung cancer[J]. Lung Cancer, 2002. 35(1): 35~41.
    [99] Kai GE, Ling fei XU, Ahongcheng ZHENG, et al. Transduction of Cytosine deaminase gene makes rat glioma cells highly sensitive to 5- fluorocytosine. Int. J. Cancer: 1997,71:675-679.
    [100] Dull T, Zufferey R, Kelly M et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72:8463-8471.
    [101] Zhaohui Jin, W.Stratford May, Fengqin Gao, et al. Bcl2 Suppresses DNA Repair by Enhancing c-Myc Transcriptional activity assay in vitro[J]. CJBMB, 2009.
    [102] Olga B. Chernova, Michail V. Chernov, Yukihito Ishizaka, Et al. MYC Abrogates p53-Mediated Cell Cycle Arrest in N- (Phosphonacetyl) -1–Aspartate -Treated Cells, Permitting CAD Gene Amplification.Mol Cell Biol[J]. 1998 January; 18(1):536-545.
    [103] Van Damme A, Thorrez L, Ma L, Vandenburgh H, Eyckmans J,Dell;Accio F,De Bari C, Luyten F, Lillicrap D, Collen D, Vanden Driessche T, Chuah MK.Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells[J]. Stem Cells.2006 Apr;24(4):896-907.
    [104] Munna L. Agarwal,Archana Agarwal,et al. A p53-dependent S-phase checkpoint helps to protect cells from DNA damage in response to starvationfor pyrimidine nucleotides[J]. PNAS December 8, 1998 Vol.95 no.25:14775-14780.
    [105] Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers[J]. Science, 253: 49-53, 1991.
    [106] Hainaut P., Hernandez T., Robinson A., Rodriguez-Tome P., Flores T., Hollstein M., Harris C. C., Montesano R. IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualization tools[J]. Nucleic Acids Res., 26: 205-213, 1998.
    [107] Hainaut P., Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv[J]. Cancer Res., 77: 81-137, 2000.
    [108] Schimke, R. T. 1988. Gene amplification in cultured cells[J]. J. Biol. Chem, 263:5989-5992.
    [109] Stanton, L. W., R. Watt, and K. B. Marcu. Translocation, breakage and truncated transcripts of c-myc oncogene in murine plasmacytomas[J]. Nature ,1983,(303):401-406.
    [110] YANG Ying-Bin, CAI Shao-Xi, YU Shu-Hui, YANG Li, LI Jun, YU Song-Tao, DAI Xiao-Zhen, WANG Xing-Xing, YAN Xiao-Qing, XIN Xin, KL Paul Sung. hTERT core promoter modified by E-boxes element and transcriptional activity assay in vitro. Chinese Journal of Biochemistry and Molecular Biology [J]. 2009 (25): 510-514.
    [111] Kohtaro Fujimoto, Satoru Kyo, Masahiro Takakura,et al. Identification and characterization of negative regulatory elements of the human telomerase catalytic subunit (hTERT) gene promoter: possible role of MZF-2 in transcriptional repression of hTERT[J]. Nucleic Acids Res, 2000, 28(13): 2557–2562.
    [112] Maria Ester Bernardo, Nadia Zaffaroni, Francesca Novara, Angela Maria Cometa, Maria Antonietta Avanzini, Antonia Moretta, Daniela Montagna, Rita Maccario, Raffaella Villa, Maria Grazia Daidone[J]. Orsetta Zuffardi and Franco Locatelli. (2007).
    [113] Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms [J]. Cancer Res 67, 9142–9149.
    [114] Van Damme A, Thorrez L, Ma L, Vandenburgh H, Eyckmans J, Dell’Accio, F, De Bari C, Luyten F, Lillicrap D, Collen D, VandenDriessche T, Chuah M.K.L. Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells [J]. Stem Cells, 2006 (24): 896-907.
    [115] Grandori, C., S. M. Cowley, L. P. James, and R. N. Eisenman. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev[J]. Cell Dev. Biol. 2000,16:653-699.
    [116] Xu, D., N. Popov, M. Hou, Q. Wang, M. Bjorkholm, A. Gruber, A. R. Menkel, and M. Henriksson. Switch from Myc/Max to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells [J]. Proc. Natl. Acad. Sci. USA 2001(98):3826-3831.
    [117] Gunes, C., S. Lichtsteiner, A. P. Vasserot, and C. Englert. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1[J]. Cancer Res, 2000 (60):2116-2121.
    [118] TEWART S A, WEINBERG R A. Senescence: does it all happen at the ends? [J]. Oncogene, 2002, 21(4):627-630.
    [119] Yu-Sheng Cong, Woodring E. Wright, Jerry W. Shay. Human Telomerase and Its Regulation [J]. Microbiol Mol Biol Rev. 2002, 66(3): 407–425.
    [120] Rosalind M Glasspool, Sharon Burns, Stacey F Hoare, et al. The hTERT and hTERC Telomerase Gene Promoters Are Activated by the Second Exon of the Adenoviral Protein, E1A, Identifying the Transcriptional Corepressor CtBP as a Potential Repressor of Both Genes[J]. Neoplasia. 2005; 7(6): 614–622.
    [121] Maria Ester Bernardo, Nadia Zaffaroni, Francesca Novara, Angela Maria Cometa, Maria Antonietta Avanzini, Antonia Moretta, Daniela Montagna, Rita Maccario, Raffaella Villa, Maria Grazia Daidone, Orsetta Zuffardi and Franco Locatelli. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms[J]. Cancer Res, 2007, 67, 9142–9149.
    [122] el-Deiry, W. S. Regulation of p53 downstream genes[J]. Semin Cancer Biol. 1998, 8:345-357.
    [123] Xu, H. J., Y. Zhou, W. Ji, G. S. Perng, R. Kruzelock, C. T. Kong, R. C. Bast, G. B. Mills, J. Li, and S. X. Hu. Reexpression of the retinoblastoma protein in tumor cells induces senescence and telomerase inhibition[J]. Oncogene, 1997.15:2589-2596.
    [124] Oh, S., Y. Song, J. Yim, and T. K. Kim. 1999. The Wilms' tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase[J], gene. J. Biol. Chem. 274:37473-37478.
    [125] Xu, D., S. Erickson, M. Szeps, A. Gruber, O. Sangfelt, S. Einhorn, P. Pisa, and D. Grander. Interferon alpha downregulates telomerase reverse transcriptase and telomerase activity in human malignant and nonmalignant hematopoietic cells[J]. Blood, 2000 (96):4313-4318.
    [126] Gojo S,Gojo N,Takeda Y,et al. In vivo cardiovasculogenesis by dircet injection of isolated adult mesenchymal stem cells [J]. Exp Cell Res, 2003,288:51-59.
    [127] Wang G, Bunnell BA, Painter RG, et al. Aduit stem cells from bone marrow stroma differentiate into airway epithelial cells: Potential therapy for cystic fibrosis[J]. Proc Natl Acad Sci USA. 2005,102: 186-191.
    [128] Maija Kiuru, Julie L Boyer, Timothy P O’Connor, and Ronald G Crystal. Genetic Control of wayward pluripotent stem cells and their progeny after transplantation[J]. Cell Stem Cell. 4(2009)289-300.
    [129] JeanMarie Houghton, Calin Stoicov, Sachiyo Nomura, Arlin B. Rogers, Jane Carlson, Hanchen Li, Xun Cai, James G. Fox, James R. Goldenring, Timothy C. Wang. Gastric cancer originating from bone marrow-derived cells[J]. Science.306 (2004)1568– 1571.
    [130] Daniel Rubio, Javier Garcia-Castro, María C. Martín, Martín, Ricardo de la Fuente, Alison C. Lloyd and Antonio Bernad. Spontaneous human adult stem cell transformation[J]. Cancer Research .65 (2005)3035-3039.
    [131] Derrick J. Rossi1, Irving L. Weissman. Pten. Tumorigenesis, and stem cell self-renewal[J]. Cell. 125 (2006) 229-31.
    [132] Avital, IMoreira, ALKlimstra, DSLeversha, MPapadopoulos, EBBrennan, MDowney,RJ. Donor-derived human bone marrow cells contribute to solid organ cancers developing after bone marrow transplantation[J]. Stem Cells. 25 (2007) 2903-2909.
    [133] Reza Izadpanah, Deepak Kaushal, Christopher Kriedt, Fern Tsien, Bindiya Patel, Jason Dufour and Bruce A. Bunnell. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells[J]. Cancer Research . 68 (2008) 4229-4238.
    [134] M Akimoto, T Miyahara, J Arai, H Hamada, Y Yoshida, Y Yoshida and N Yoshimura. A new delivery system for 5-fluorouracil using prodrug and converting enzyme[J]. Br J Ophthalmol. 86 (2002) 581–586.
    [135] Kai GE, Lingfei XU, Zhongcheng ZHENG, Xu D, Sun L, Liu X. Transduction of cytosine deaminase gene makes rat glioma cells highly sensitive to 5-fluorocytosine[J]. Int. J. Cancer. 71 (1997) 675–679.
    [136] Rygaard J,Povlsen C. O. Heterotransplantation of a human malignant tumor to nude mice[J]. Act Path Microbiol Scand,1969,77: 758-60.
    [137] Homma S,Nagamori S,Fujise K,et al. Human bile duct carcimona cell line produeing abundant mucin in vitro[J]. Gastroenterol Jpn,1987,22(4): 474-9.
    [138] Fass. J, Perkins. R.L. 5-fluorocytosine in the treatment of cryptococcal and candida mycoses [J]. Ann intern Med. 1971(74): 535-539.
    [139] M Akimoto, T Miyahara, J Arai, et al. A new delivery system for 5-fluorouracil using progrug and converting enzyme[J]. Br J Ophthalmol. 2002 May;86(5):581-586.
    [140] Bouquet C,Frau E,Opolon P,et al. Systemic administration of a recombinant Adenovirus encoding a HAS-Angiostatin Kringle l-3 conjugate inhibits MDA-MB-231 tumor growth and metastasis in a transgenic model of spontaneous eye caneer[J]. Mol Ther,2003,7(2): 174-84.
    [141] van der Houven,van Oordt CW,Smits R,et al. The genetic background modifies the spontaneous and X-ray-induced tumor spectrum in the APc l638N mouse model[J]. Genes Chromosomes Cancer,1999,24(3): 191-5.
    [142] Deerberg F,KasPareit J. Endometrial careinoma in BDⅡ/Han rats: model of a Spontaneous hormone-dependent tumor[J]. J Natl Cancer Inst,1987,78(6): 1245-51.
    [143] Stanton MF,Miller E,Wreneh C,et al. Experimental induetion of epidermoid Carcinoma in the lung of rats by cigarette smoke condensate[J]. J Natl Cancer Inst,1972,49: 867-77.
    [144] Liu Z,Liu Y,Zeng Y. Synergistic effect of Epstein-Barr virus and tumor promoters on induetion of lymphoma and careinoma in nude mice[J]. J Cancer Res Clin Oneol,1998,124(10): 541-548.
    [145] JavadPour N,Thomas W,Nabong R,et al. Transplantation of the renal blastema: a new experimental model for the produetion of Wilms’tumor[J]. Surg Forum,1970,21: 534-535.
    [146] Pantelouris E. M. Absence of thylllus in a mouse mutant[J]. Nature,1968,217: 370-1.
    [147]吴四海,俞晨杰.鼻咽癌移植瘤动物模型的建立及其肿瘤生物学特性观察[J].齐齐哈尔医学院学报,2007.9(18):45-47.
    [148] Fidler IJ. Critieal factors in the biology of human cancermetas-tasis: Tweniy-eighth G. H. A. Clowes Memorial Award Lecture[J]. Cancer Res,1990,50:6130-6138.
    [149] Chalfiem, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression[J]. Science, 1994, 263(5148): 802-805.
    [150] S Zeamaril, G Rumping, B Floot, et al. In vivo bioluminescence imaging of locally disseminate in rats[J]. British Journal of Cancer. 2004 (90):1259-1264.
    [151] Derrick J. Rossi1, Irving L. Weissman. Pten, Tumorigenesis and stem cell self-renewal[J]. Cell 125 (2006) 229-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700