硫酸锌溶液锌粉置换深度净化除钴实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深度净化不仅可提高电流效率与电锌质量,也是实现机械剥锌的前提条件,是湿法炼锌溶液净化的主要发展趋势。目前,我国湿法炼锌溶液净化技术,与国际先进水平比较,仍有一定差距,存在净化深度偏低、锌粉耗量过大等问题,因此,加强这一领域的研究,具有重要意义。
     锑盐法是目前应用最广的硫酸锌溶液净化除钻工艺。在锑盐法净化除钴中,国内外许多工厂都采用向溶液中加入一定量的硫酸铜或一段净化时保留少量Cu2+、Cd2+的方法,强化锌粉置换除钴,但是对Cu2+、Cd2+的加入量及其影响规律,仍存在较大争议;此外,在锌粉净化除钴中,锌粉活性随净化时间的延长逐渐降低,以致除钴速率减缓、锌粉消耗增加,通常认为,这是由于锌粉表面生成了碱式硫酸锌,阻碍传质过程所致,强化传质是解决这一问题的思路之一。针对上述两方面的问题,本论文系统研究了添加Cu2+、Cd2+对锑盐净化除钴的影响,并探索研究了超声波对锑盐净化除钴过程的作用。
     实验研究了未添加Cu2+、Cd2+条件下的锑盐净化除钴过程。考察了锌粉种类、锌粉用量、锑盐用量、温度、搅拌速度、溶液初始pH值等因素对置换除钴速率及净化深度的影响。结果表明,锌粉性质对置换除钴影响很大,采用含有少量Pb和Sb、粒度较细的锌粉,既能加快除钴速率,提高除钴的深度、还可减少锌粉用量;升高温度可显著提高除钴速率,实验确定锌粉置换除钴过程的表观活化能为90kJ/mol,表明锑盐净化除钴过程为化学步骤控制;实验确定的最佳工艺条件:温度85℃,锌粉用量2g/L,锑盐用量3mg/L,搅拌速度300r/min,溶液初始pH值4。
     在锑盐净化除钴最佳条件下,实验研究了添加Cu2+、Cd2+的影响。结果表明,单独添加一定量的Cu2+,不但能够提高除钴速率,而且可在较少锌粉用量下,实现溶液深度净化;在最佳Cu2+添加量50mg/L下,可使溶液中的[Co2+]在90 min内降至0.1 mg/L;单独添加少量的Cd2+有利于锑盐净化除钻,但其添加量过多(如150mg/L),反而对除钴过程有害;同时添加Cu2+、Cd2+,除钻效果比单独添加Cu2+时更好,与未添加Cu2+、Cd2+时相比,可以在更低的温度下使[C02+]达到更低的水平,实验确定的最优除钻工艺条件为:[Cu2+]015mg/L [Cd2+]015mg/L、锑盐用量3mg/L、锌粉用量2g/L、温度85℃、搅拌速度300 r/min,溶液初始pH值4,在此条件下净化60min,溶液中[C02+]降低至0.078mg/L
     探索研究了超声波对锑盐净化除钴过程的影响,得出的初步结论为:超声波对提高锌粉置换除钴速率具有一定的作用;超声波功率在160W范围内,置换率随功率的增大而增大,而超出此范围,继续增大功率则不利于除钴;高频率(如100kHz)超声波对净化除钻有利,若超声波净化时间超过60min,低频率(如45kHz)超声波更易促使已沉积的钴返溶。
Deep purification is the major trend in purifying zinc sulfate solution, which can not only improve the current efficiency and quality of the electrowined zinc, but also is the prerequisite of realizing mechanization of zinc ripping. There is still a certain gap for purification technology in our country compared with the international advanced level, such as lower purity of zinc sulfate solution, larger zinc dust consumption and so on, therefore, there is of great significance in strengthening research in this area.
     Antimony salt process is the most widely used for cobalt removal from zinc sulfate solution. In order to strengthen the process, many factories abroad and at home adopt the method of adding a certain amount of copper sulfate to the solution or retaining a small amount of Cu(Ⅱ) ions and Cd(Ⅱ) ions in the stage of removing copper and cadmium, but the addition amounts of Cu(Ⅱ) ions and Cd(Ⅱ) ions, as well as their effects on cementation of cobalt are still in dispute. In addition, the activeness of zinc dust present in the solution reduces gradually along with the time in the purification process, which always leads to the rate of cobalt removal slow and the dosage of zinc dust increase. Generally speaking, this is due to the basic zinc sulfate formed on the surfaces of zinc dust hinder the process of mass transfer in the purification process, therefore enhancing mass transfer is one idea to solve this problem. To deal with these two problems, the effects of adding Cu(II) ions and Cd(II) ions were systematically investigated in the paper, and also a preliminary study was carried out on the effect of ultrasonic wave on the cobalt cementation process by zinc dust.
     Experiments on cobalt removal using antimony salt as additive in the absence of Cu(Ⅱ) ions and Cd(Ⅱ) ions were carried out firstly. The effects of such factors, as types of zinc dust, dosage of zinc dust, dosage of antimony salt, temperature, stirring speed and initial pH value were examined on the rate of cobalt removal, as well as the purities of the zinc sulfate solution. The results showed that the characteristics of zinc dust used have a large effect on the purification of cobalt. Using zinc dust with finer particle size and containing a little amount of Pb, Sb, can not only increases the purities of zinc sulfate solution, saves the dosage of zinc dust used, but also accelerates the cobalt removal rate; Increasing temperature can increase the cobalt removal rate significantly, and the apparent activation energy for the process was calculated equal to 90 kJ/mol according to experimental results, suggesting that the cobalt removal process is controlled by a surface chemical reaction; The optimal conditions for cobalt removal without Cu(II) and Ca(Ⅱ) ions addition were obtained to be as follows:temperature 85℃, zinc dust dosage 2 g/L, antimony salt dosage 3 mg/L, stirring speed 300 r/min, initial pH 4.
     The effects of adding Cu(Ⅱ) ions and Cd(Ⅱ) ions on cobalt removal were investigated under the optimal conditions described above. The result showed that adding solely a certain amount of Cu(II) ions not only increases the cobalt removal rate, but also decrease zinc dust dosage added to obtain a deep purification, the optimal addition amount of Cu(Ⅱ) ions was determined to be 50 mg/L, which will result [Co2+] bellow 0.1 mg/L after purifying for 90 minutes; adding solely a certain amount of Cd(II) ions was beneficial to the process, but a Cd(II) ions concentration up to 150 mg/L would be harmful to cobalt removal; It was also validated that adding Cu(Ⅱ) and Cd(Ⅱ) ions at the same time behaves a better effects of cobalt removal than that of adding Cu(II) ions solely, and furthermore, compared with that in the absence of Cu(Ⅱ) ions and Cd(Ⅱ) ions, can obtain a low [Co2+] under a lower temperature. The optimal conditions for cobalt removal were obtained to be as follows:[Cu2+]015 mg/L, [Cd2+]015 mg/L, antimony salt dosage 3 mg/L, zinc dust dosage 2 g/L, temperature 85℃and stirring speed 300 r/min, initial pH 4.
     A primary investigation on the effect of ultrasonic wave on cobalt removal by zinc dust cementation was carried out, and the main conclusions were as follows:the rate of cobalt removal can be accelerate to a certain extent in the presence of ultrasonic wave; the higher the power of ultrasonic wave up to 160 W in the experiments, the higher the cobalt removal rate; but further increase of the ultrasonic power beyond this range was deleterious to the cobalt removal; the presence of ultrasonic wave with a higher frequency (e.g.100 kHz) was beneficial to the cobalt removal process, while the presence of ultrasonic wave with a lower frequency (e.g.45 kHz) accelerated the redissolution of cobalt deposited after an effecting duration for 60 min.
引文
[1]屠海令,赵国权,郭青蔚.有色金属冶金、材料、再生与环保[M].北京:化学工业出版社,2002:136-142
    [2]彭容秋.有色金属提取冶金手册(锌镉铅铋卷)[M].北京:冶金工业出版社,2000:92-109
    [3]彭容秋.锌冶金[M].长沙:中南大学出版社,2005
    [4]梅光贵,王德润,周敬元,等.湿法炼锌学[M].长沙:中南大学出版社,2001:277-336
    [5]《铅锌冶金学》编委会.铅锌冶金学[M].北京:科学出版社,2003
    [6]刘三军,欧乐明.中国锌冶炼工业现状[J].矿产保护与利用,2003,(6):36-40
    [7]王忠实.锌冶炼技术发展现状综述.2008年中国国际矿业大会论文集,2008:151-157
    [8]李若贵.我国铅锌冶炼工艺现状及发展[J].中国有色冶金,2010,39(6):13-20
    [9]郭天立,高良宾.当代竖罐炼锌术述评[J].中国有色冶金,2007,(1):5-6
    [10]李有刚,李波.锌氧压浸出工艺现状及技术进展[J].中国有色冶金,2010,(3):26-29
    [11]Nelson A. Novel activators in cobalt removal from zinc electrolyte by cementation[D]. Montreal:MeGill University,1988
    [12]Lawson F, Nhan I T. Kinetics of removal of cobalt from zinc sulfate electrolytes by cementation[J]. Hydrometallurgy,1981,30:1-10
    [13]梅光贵,简锦麟.降低钻的超电压及硫酸锌溶液深度净化的研究[J].有色金属(冶炼部分),1980,(6):22-27
    [14]徐采栋.锌冶金物理化学[M].上海:上海科学技术出版社,1978:317-343
    [15]福岛久哲,陶海玲.从高锌溶液中用锌粉置换铁族金属的工艺[J].有色矿冶,1995,11(6):29-32
    [16]陈世倌.硫酸锌溶液净化除钴的理论分析和工艺进展[J].上海有色金属,1996,17(4):161-168
    [17]刘中青,唐谟堂.硫酸锌溶液低温锑盐除钻研究[J].湿法冶金,1999,(4):22-27
    [18]曹家淑,严君其.湿法炼锌中用Pb-Sb置换锌粉除钴的研究[J].南方冶金学院学报,1982,(Z1):68-82
    [19]陈家镛.湿法冶金手册[M].北京:冶金工业出版社,2005
    [20]钟竹前,梅光贵.湿法冶金过程[M].长沙:中南工业大学出版社,1988
    [21]刘志宏,唐朝波,张多默,等.锑盐除钻净化工艺研究[J].中南工业大学学报,2000,31(3):225-227
    [22]马杨辉,阳雄魁.湿法炼锌锑盐锌粉除钴的生产实践[J].中国有色冶金,2005,34(1):22-23
    [23]李向东.硫酸锌溶液锑盐净化除钻工艺的优化[J].湖南有色金属,2004,20(4):24-26
    [24]郭天立.硫酸锌溶液逆锑净化实践[J].有色金属(冶炼部分),1995,(6):22-24
    [25]秦永宏,马进,宋红卫.几种锑盐净化法的应用实践[J].有色冶炼,2002,31(1):6-8
    [26]许洪文.锌粉-锑白净化除钴在湿法炼锌中的应用[J].稀有金属与硬质合金,1996,113:90-91
    [27]韩锋.硫酸锌溶液锑盐净化存在的问题及改进措施[J].有色冶炼,1998,27(5):34-36
    [28]宁模功,张秉录.锌硫酸盐溶液除钴镍净化[J].有色金属(冶炼部分),1997,(6):25-27
    [29]汤幼棋.电锌生产中锑盐除钻工艺的改进[J].有色冶炼,1995,(1):23-26
    [30]王文录.湿法炼锌工艺除钴的实践[J].湖南有色金属,2003,19(3):24-26
    [31]阳雄魁.逆锑锌粉净化除钴的生产实践[J].湖南有色金属,2002,18(6):16-18
    [32]张家国,王辉.试论我厂硫酸锌溶液的锑盐净化[J].株冶科技,1992,20(1):32-42
    [33]黄履端,王辉.试论锌改扩工程溶液净化方法的选择[J].株冶科技,1996,24(1):41-45
    [34]何砥坚.硫酸锌溶液净化流程的选择[J].有色冶炼,1991,20(4):9-13
    [35]Lew R W, Dreisinger D B, Gonzalez J A. The removal of cobalt from zinc sulfate electrolytes using the Cu-Sb process:kinetics, mechanisms and morphological characterization[J]. Australasian Institute of Mining and Metallurgy,1993,227-240
    [36]Van der Pas V, Dreisinger D B. A fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives[J]. Hydrometallurgy, 1997,43(1):187-205.
    [37]曾桂生.硫酸锌溶液中锌粉置换除钴的机理研究[D].昆明:昆明理工大学,2006
    [38]Francis D E, Blander. Influence de 1'antimoine et du cuivre sur la cementation du cobalt Par le zinc[J]. Eleetrochimica Aeta,1975,20:839-852
    [39]Fountoulakis S G. Studies on the cementation of cobalt with zinc in the presence of copper and antimony additives[D]. New York:Columbia University,1983
    [40]王德全,林茂森.砷净液和锑净液除钴的进展[J].有色金属(冶炼部分),1995,(4):9-11
    [41]Gonzalez J A, Dreisinger D B. Identifying research opportunities in zinc electrowinning[J]. J.Met,1997,49(4):38-39
    [42]Oluf Beckman, Terje Φstvold. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes[J]. Hydrometallurgy,2000,54(2):65-78
    [43]Yang Cao, Paul Duby. Cobalt cementation with ferromanganese[J]. Hydrometallurgy,2001,61(3):195-205
    [44]Yang Cao. Cobalt electrocrystallization and codeposition with zinc[D]. Columbia: Columbia University,2000
    [45]Yamashita S, Okubo M, Goto S, et al. Purification of zinc leaching solution mechanism of removal of cobalt by zinc dust with arsenious oxide and copper ion[J]. Metallurgical Review of MMIJ,1997,14(1):37-52
    [46]Tozawa K, Nishimura T, Akahori M, et al. Comparison between purification process for zinc leach solutions with zinc arsenic and antimony trioxides[J]. Hydrometallurgy,1992,30(1):445-461
    [47]曹为民.砷盐和锑盐净化除钴的探讨[J].湖南有色金属,2001,(z1):17-18
    [48]徐军.株冶锌冶炼Ⅰ系统硫酸锌溶液净化生产实践[J].株冶科技,2004,20(1):8-10
    [49]王越胜,余梦迪,袁季源.锌净化过程中黄药除钴的专家控制系统[J].矿冶工程,1997,17(2):57-59
    [50]周正华.高杂质硫酸锌溶液黄药净化法生产实践[J].湖南有色金属,2004,20(2):17-20
    [51]阎江峰.硫酸锌溶液深度净化除钻的现状与展望[J].云南冶金,1997,26(5):34-41
    [52]夏湘.硫酸锌溶液净化流程的选择与实践[J].湖南有色金属,2000,16(4):17-19
    [53]袁庆云,曹秀红.硫酸锌溶液中钴净化工艺研究[J].有色矿冶,2005,21(4): 35-36
    [54]蒋新宇,周春山.高钴硫酸锌溶液中钻的分离研究[J].有色矿冶,2001,17(6):29-31
    [55]刘春侠.处理湿法炼锌净化渣-钴镍渣的实验研究[D].昆明:昆明理工大学,2005
    [56]李志光,黄振谦.硫酸锌溶液中钴(Ⅱ)的阴极行为及深度净化新型添加剂的研究[J].有色金属(冶炼部分),1983,(2):41-46
    [57]Nelson A, Demopoulos G P, Houlachi G. The effect of solution constituents and novel activators on cobalt cementation[J]. Canadian Metallurgical Quarterly, 2000,39(2):175-186
    [58]Dreher T M, Nelson A, Demopoulos G P, et al. The kinetics of cobalt removal by cementation from an industrial zinc electrolyte in the presence of Cu, Cd, Pb, Sb and Sn additives[J]. Hydrometallurgy,2001,60(2):105-116
    [59]彭万金.超声波在冶金中的应用研究[J].上海有色金属,2008,29(3):135-139
    [60]徐盛明,张传福,赵天从,等.超声波在浸出过程中的应用[J].湖南有色金属,1994,10(6):350-353
    [61]袁明亮,赵国魂,邱冠周.砷金矿与锰银矿同时浸出中的超声强化作用[J].过程工程学报,2003,3(5):409-412
    [62]张杰,吴爱群,陈学松.铜矿尾砂超声强化浸出实验研究[J].矿业快报,2007,23(10):25-28
    [63]朱萍,李坤芳,周鸣,等.超声强化原位电氯化法浸取难处理金矿[J].稀有金属材料与工程,2009,38(6):1091-1095
    [64]胡松青,丘泰球,张喜梅,等.功率超声在分离纯化中的应用[J].声学技术,1999,18(4):180-84
    [65]Aurousseau M, Pham N T, Ozil P. Effects of ultrasound on the electrochemical cementation of cadmium by zinc powder[J]. Ultrasonic Sonochemistry,2004, 11(1):23-26
    [66]Kruus P, Robertson D A, McMillen L A. Effects of ultrasound on the cementation cobalt on zinc[J]. Ultrasounds,1991,29(5):370-375
    [67]闵华阳,申殿帮.三段净化工艺在我厂湿法炼锌中的应用[J].有色冶炼,1996,25(6):13-16
    [68]黄履端.关于硫酸锌溶液净化中采用Zn-Sb粉除钴的热力学讨论——兼谈Co2+的溶剂化对Zn-Sb粉除钴的影响[J].湖南冶金,1979,(2):1-5
    [69]任益民,蒋光勤,胡渊明,等.净化过程锌水解的控制及处理[J].有色冶炼,2001,30(5):108-110
    [70]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1984:211-215
    [71]杨显万.旋转圆盘电极研究硫酸锌溶液锌粉置换除钴动力学(科研报告).昆明理工大学,1995
    [72]徐承坤,张蕴珊,梁英教.硫酸锌溶液中锌粉净化除钴的机理[J].东北工学院学报,1987,(1):29-35
    [73]虢振强.Pb-Sb-Zn合金锌粉在硫酸锌溶液净化中的应用研究[J].湖南有色金属,2006,2(22):19-21
    [74]沈国华.电炉锌粉净化硫酸锌溶液的研究[J].湖南有色金属,1989,5(3):61-62
    [75]米家蓉.电炉锌粉用于硫酸锌溶液净化的生产实践[J].云南冶金,1990,(4):58-60
    [76]刘懿.株冶十万吨电锌溶液除杂实验研究[J].株冶科技,1999,27(2):8-12
    [77]梁力群.我厂锌电积大面积锑“烧板”及扭转[J].有色金属(冶炼部分),1997,(6):17-19
    [78]李世禄,王正明,朱军,等.湿法炼锌净化除钻实验研究及实践[J].湖南有色金属,2010,26(2):25-26
    [79]曾桂生,谢刚.镉离子对硫酸锌溶液除钴的影响及机理探索[J].科学技术与工程,2005,5(13):872-875
    [80]钟长庚.从湿法炼锌硫酸盐溶液中除钴[J].化学通报,2002,65(4):278-280
    [81]曾兴民,盛小敏,杨征,等.一种湿法锌冶金超声净化方法、装置及用途.中国,101392328,2009.3.25
    [82]唐淑贞.铅锑氧化渣资源循环利用新工艺的研究[D].长沙:中南大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700