磁场—趋磁细菌工艺处理含Cu~(2+)、Zn~(2+)废水的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,利用磁场-趋磁细菌工艺处理重金属废水是国内外一个新型的研究领域,它具有速度快、选择性高等优点,而且不造成二次污染,以该复合工艺处理重金属废水,这方面的研究鲜有报道。
     论文通过实验研究,证明该复合工艺用于处理重金属废水及趋磁细菌菌体的吸附分离是可行和有效的。
     论文通过研究发现:
     1)微好氧条件下较好氧条件下有利于趋磁细菌的培养。微好氧培养条件下趋磁细菌菌量较多,磁性较强。
     2)分离筛选出两个磁性较强的单株菌J-1和J-3,J-1为球菌,J-3为杆菌,且两种菌都呈革兰氏阴性。J-1菌对含Cu~(2+)、Zn~(2+)废水的去除率分别达到61.2%,55.7%;J-3菌对含Cu~(2+)、Zn~(2+)废水的去除率分别达到45.2%,41.8%。J-1菌吸附效果较好。3)J-1菌吸附Cu~(2+)最佳操作条件为pH=5、温度25℃、吸附时间1.5h、趋磁细菌量为60g/l。吸附Zn~(2+)最佳操作条件为pH=5、温度25℃、吸附时间2h、趋磁细菌量为80g/l。趋磁细菌对Cu~(2+)、Zn~(2+)的吸附等温线较符合Langmuir模型。
     4)Cu~(2+)、Zn~(2+)共存体系在两种离子浓度相同时,与单一体系相比,吸附率分别降低了36.76%,24.5%。在Cu~(2+)、Zn~(2+)二元竞争吸附体系中优先吸附Zn~(2+),Zn~(2+)与趋磁细菌的亲和力大Cu~(2+)。
     5)利用复合工艺对含Cu~(2+)、Zn~(2+)废水进行处理。发现磁分离器对附着有重金属离子的趋磁细菌有吸附作用,溶液OD600值分别降低0.128和0.107。对锌离子去除率分别为66%,62.5%去除效果理想。
Magnetic Field-Magnetotactic Bacteria(MTB) Comprehensive Technology removing heavy mental from wastewater has become a new hotspot reeently. It not only has the advantages of high speed and high seleetivity but also donotereate the second Pollution, microorganism which adsorb heavy metal ions can be easily isolated from the wastewater. But there are few reports concerning application of the technologies in dealing with the wastewater.
     In the study of this thesis,the result using magnetic separators absorbed Cu~(2+)、Zn~(2+) indicated the method was effective and feasible.
     The results of the research show us:
     1) MTB are more easily acclimated in slightly aerobic condition.the quantity and magnetism of MTB are more greater in this condition.
     2) The two strains named J-1,J-3 can remove Cu~(2+),Zn~(2+). Remove efficiency of J-1 is 61.2%,55.7%;and J-3 is 5.2%,41.8%。J-1 have higher remove efficiency.
     3) The best condition absorb Cu~(2+) is pH=5,T=25℃、t=1.5h、MTB=60g/l。the best condition absorb Zn~(2+) is pH=5,T=25℃, t= 2h、MTB=80g/l。A comparison of different isotherm models revealed that Langmuir model fitted the experimental data best.
     4) When Cu~(2+),Zn~(2+)coexist in water the remove efficiency descend 36.76%,24.5% respectively and MTB adsorb Zn~(2+) preferential.
     5) Use magnetic separators dealing with the wastewater.the OD600 have descend and the remove efficiency of heavy metal irons have arised .
引文
[1]国家环境保护局.环境背景值和环境容量研究[M].北京:中国科学出版社,1993:5~6.
    [2]邹家庆,宋军,李本玉.工业废水处理技[M] .北京:化学工业出版社,2003.8.1.
    [3]王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社,1993:20~118.
    [4]巴音,王蓝.用腐殖酸树脂处理工业废水[M].环境保护十年选编,环境保护杂志社,1984.
    [5]蓝淑澄.活性炭在水处理上的应用[M].环境保护十年选编,环境保护杂志社,1984.
    [6]Y. Qian. Appropriate process and technology for wastewater treatment and reclamation in China[J]. Water.
    [7]Kuyucak N,Volesky B,The mechanism of Cobalt biosorption[J].Biotechnology and Bioengi,neering,1989,33:823~831.
    [8] Tobin J M, Cooper D G, Neufeil R[J]. Appl. Environ. Mi-crobio, 1984, 4: 821~829.
    [9] Stranderberg G W, Shumate S E, Parrot J R. Mi-crobial cells as biosorbents for heavy metals: accumulation of uranium by S.cerevisiate and Paerugi-nosa[J].Appl.Environ. Microbial,1981.
    [10]韩润平,石杰,李建军等.生物材料对重金属离子的生物吸附富集作用[J].化学通报,2000,63(7):25~28.
    [11]Teixeira CR, Zezzi AMA. Biosorption of heavy metals using rice milling by-products characterization and application for removal of metals from aqueous effluents[J].Chemosphere,2004,54(7:) 987~995.
    [12]Brady D, Stoll D A, Starke L.Chemical and enzymatic Extraction of heavy metal binding polymers from isolated cell wall of Saccharomy cesrevisiae[J].Biotech. Bioeng. 1994,44:297~302.
    [13]陈小霞,梁世中,吴振强等.热致死小球藻生物富集Cr3+的研究[J].海洋科学, 2003,4:54~57.
    [14]吴涓洪丽玉.白腐真菌吸附铅的研究[J].微生物学报,1999,37~40.
    [15] Y.Sag, T.Kutsal. Biosorption of heavy metals by ZoogZ~ea ramigera: use of adsorptionn isotherms and a comparison of biosorption characteristics. The Chermcal Engmeenng Journal[J],1995,60:181~188.
    [16]叶锦韶尹华.生物吸附剂的制备及其对铬的吸附性能[J].环境化学,2002, 21:144~148.
    [17]牛慧许学书.非生长产黄青霉吸附铅的研究[J].微生物学报,1993, 33: 459~463.
    [18]刘月英,李仁忠,薛茹等.固定化地衣芽孢杆菌R08吸附Pd2+的研究[J].微生物学报,2002, 42: 700~705.
    [19]朱雪强,韩宝平.重金属生物吸附研究进展[J].中国环保产业,2004.5.
    [20]徐容.固定化产黄青霉废苗体吸附铅与脱附平衡[J].环境科学,1998,19(4):72
    [21] Blackmore R P. Magnetotactic Bacteria[J]. Science, 1975, 190: 377~379.
    [22]A.S Bahaj and P.A.B James and F.D Moeschler.Continuous Cultivation And Recovey of magnetotactic bacteria[J].IEEE Transaction on magnetics.1997,33(5):4263~4265.
    [23]Blackmore R P. Magnetotactic Bacteria[J]. Annual Review of Microbiology 1982;36:217~238.
    [24]Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schuler D. An acidic protein Aligns magnetosomes along a filamentous structure in magnetosomes along a filamentous structure in magnetotactic bacteria[J].Nature 2006; 440:110~114.
    [25] Frankel RB, Blakemore RP. Navigational Compass in Magnetic Bacterial[J]. Journal of Magnestism and Magnetic Materials 1980;15-8:1562~1564.
    [26] Frankel RB, Bazylinski DA, Johnson MS, Taylor BL. Magneto-aero taxis in marine coccoid bacteria[J]. Biophysical Journal 1997;73: 994~1000.
    [27] Moench TT, Konetzka WA. Novel Method for Isolation and Study of A Magnetotactic Bacterium[J]. Archives of Microbiology 1978; 119:203~212.
    [28] Blakemore RP, Frankel RB, Kalmijn AJ. South-Seeking Magnetotactic Bacteria in theSouthern-Hemisphere[J]. Nature 1980;286:384~385.
    [29] Matsunaga T.Application of Bacterial Magnets[J].Tibtech-March,1991,9:91~95.
    [30] Flies CB, Jonkers HM,de beer D, Baseman K, Botcher ME, Schuler D. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms[J]. Fems Microbiology Ecology 2005; 52:185~195.
    [31] Bazylinski DA, Schlezinger DR, Howes BH, Frankel RB, Epstein SS. Occurrence and distribution of diverse populations of magnetic protists in a chemically stratified coastal salt pond[J]. Chemical Geology 2000;169:319~328.
    [32] Bazylinski DA, Frankel RB, Jannasch HW. Anaerobic Magnetite Production by a Marine, Magnetotactic Bacterium[J]. Nature 1998;334:518~519.
    [33] Fassbinder JW, Stanjek H Vali H. Occurrence of magnetic bacteria in soil[J]. Nature 1990; 343:161~163.
    [34] Moench TT. Bilophococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus[J]. Antonie Van Leeuwenhoek 1988;54:483~496.
    [35] Bazylinski DA, Garratt-Reed A, Frankel RB. Electron-microscopic studies of magnetosomes in magnetotactic bacteria[J]. Microscopy Research technology, 1994, 27:389~401.
    [36] Rodgers F G, Blakemore RP, Blakemore N, et al .Intercellular connections in a many-celled magnetotactic prokaryote[J]. Archives of Microbiology, 1990,154:18~22.
    [37] Spring S, Amann R, Ludwig W, Schleifer KH, Vangemerden H, Petersen N. Dominating Role of An Unusual Magnetotactic Bacterium in the Micro aerobic Zone of A Fresh-Warer Sediment[J]. Applied and Environmental Microbiology 1993;59:2397~2403.
    [38] Sakaguchi T, Burgess JG, Matsunaga T. Magnetite Formation by A Sulfate-Reducing Bacterium[J]. Nature 1993; 365:47~49.
    [39] Spring S, Schleifer KH. Diversity of Magnetotactic Bacteria. Systematic and Applied[J] Microbiology 1995; 18:147~153.
    [40] George M. Garrity, Julia A.Bell, Timothy G. Lilburn, Taxonomic outline of the Prokaryotes bergey’s manual of systematic bacteriology[J]. New York Berlin Heidelberg.2004:35.
    [41] Frankel RB. Biological permanent magnets[J]. Hyperfine Interactoins2003; 151:145~153.
    [42] Bean CP. Single Domain Particles and Magnetotactic Bacterial[J]. Biophysical Journal 1979:25:AZ16.
    [43] Frankel RB,Zhang JP,Bazylinski DA. Single magnetic domains in magnetotactic bacteria[J]. Journal of Geophysical Reseacrh~Solid Earth1998;103:30601~30604.
    [44] Frankel RB. Magnetic Guidance of organisms[J]. Annual Review of Biophysics and Bioengineering1984;13:85~103.
    [45] Gorby Y A, Beveridge T J&Blakemore R P.Characterization of the bacterial magnetosome membrane[J]. Journal of Bacteriology,1988,170:834~841.
    [46] Matsunaga T, Sakaguchi T, Tadokoro F. Magnetite Formation by A Magnetic Bacterium Capable of Growing Aerobically[J]. Applied Microbiology and Biotechnology 1991; 35:651~655.
    [47] Bauerlein E. Biomineralization of unicellular organisms; An unusual membrane biochemistry for the production of inorganic nano-and microstructures[J]. Angewandte Chemic-International Edition 2003;42:614~641.
    [48] Frankel RB, Papaefthymiou GC, Blakemore RP, Obrien W. Fe3O4 Precipitation in Magnetotactic Bacteria[J]. Biochimica et Biophysica Acta 1983;763:147~159.
    [49] Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW. Biomineralization of Ferrimagnetic Greigite(Fe3S4) and Iron Pyrite(FeS2) in A Magnetotactic Bacterium[J]. Nature 1990;343:258~261.
    [50] Blakemore RP, Short K A,Bazylinski D A, Rosenblatt C.& Frankel R B. Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum[J].Geomicrobiol.1985,4:53~71.
    [51] Schuler D and Baeuerlein E. Iron-limited growth and kinetics of iron uptake in M. gryphiswaldense[J]. Arch.Microbiol.1996,166:301~307.
    [52] Schuler D, Baeuerlein E. Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense[J]. Journal of Bacteriology 1998;180:159~162.
    [53] Yang C D, Takeyama H er al.Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of lucifetase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1[J].Enzyme and Microbial Technology, 2001,29:13~19.
    [54]王艳红,孙津生.趋磁细菌吸附重金属离子的研究[C].第一界化学工程与生物化工年会,南京,2004.
    [55]Matsuda T, Endo J et al. Morphology and structure of biogenic magnetite particles[J].Nature,1983,302:411~412.
    [56] Frankel R B, Blakemore R P. Iron Biominerals[J]. New York:Plenum Press, 1990.69~77.
    [57]李金华.趋磁细菌研究方法及模式菌AMB-1生理特性研究[D].济南:山东大学, 2006.
    [58] Blakemore RP, Maratea D, Wolfe RS. Isolation and Pure Culture of A Freshwater Magnetic Spirillum in Chemically Defined Medium[J]. Journal of Bacteriology 1979; 140:720~729.
    [59]Bazylinski DA, Blakemore RP. Nitrogen-Fixation (Acetylene-Reduction) in Aquaspirillum-Magnetotacticum[J]. Current Microbiology 1983;9:305~308.
    [60] Schleifer KH, Schuler D, Spring S et al. The Genus Magnetospirillum Gen-Nov-Description of Magnetospirillum-Gryphiswaldense Sp-Nov and Transfer of Aquaspirillum-Magnetotacticum to Magnerospirillum-Magnetotacticum Comb-Nov[J]. Systeratic and Applied Microbiology 1991; 14:379~385.
    [61] Matsumaga T, Tadokoro F, Nakamura N. Mass culture of magnetic bacteria and their application to flow type immunoassays[J]. Magnetics, IEEE Transactions on 1990; 26:1557~1559.
    [62] Schuler D, Spring S, Bazylinski DA. Improbved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization[J]. Systematic and Applied Microbiology 1999;22:466~471.
    [63] Meldrum FC, Mann S, Heywood BR, Frankel RB, Bazylinski DA. Electron-Microscopy Study of Magnetosomes in A Cultured Coccoid Magnetotactic Bacterium.Proceedings of the Royal Society of London Series B-Biological [J].Science 1993;251:231~236.
    [64] Devouard B, Posfai M, Hua X, Bazylinski DA, Frankel RB, Buseck PR. Magnetite from magnetotactic bacteria: Size distributions and twinning[J]. American Mineralogist 1998;83:1387~1398.
    [65] Cox BL, Popa R, Bazylinski DA et al. Organization and elemental analysis of PS, and Fe-rich inclusions in a population of freshwater magnetotactic[J]. Geomicrobiology Journal 2002:19:387~406.
    [66] Meldrum FC, Mann S, Heywood BR, Frankel RB, Bazylinski DA. Eletron-Microscopy Study of Magnetosomes in Cultured Vibrioid Magnetotactic Bacteria. Proceedings of the Royal Society of London Series B-Biological[J] Science 1993; 251:237~242.
    [67]卫扬保,张洪霞,姜伟等.武昌东湖水体中趋磁细菌WD-1的分离[J].武汉大学学报(自然科学版),1994,6:115~120.
    [68] Nakamura N, Hashimoto K and Matsunaga T. Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles[J]. Anal.Chen.,1991,63:268~272 .
    [69]吴小玲,钟伟,都有为等.一株G球形趋磁细菌的发现与表征[J].南京大学学报(自然科学),1999,35:430~435.
    [70]范国昌,贾蓉芬.我国趋磁细菌的分布及其磁小体的研究[J].科学通报,1996,41:349~352.
    [71]范国昌,钱凯先.磁杆菌HMB-1的磁小体特性及其合成条件的研究[J].生物学杂志,1998,15:11~14.
    [72]彭先芝.趋磁细菌和小体在地质体中的分布及其研究意义[J].地质地球化学,1999,(03):68~73
    [73]彭先芝,贾蓉芬,李荣森等.黄土-古土壤序列中趋磁细菌分布和磁小体形成的古环境研究[J].科学通报, 2000,(S1).
    [74]戴欣,周惠,陈月琴等.中国南海南沙海区沉积物中细菌16s rDNA多样性的初步研究[J].自然科学进展, 2002,(05).
    [75]高峻.一株好氧海洋磁性细菌YSC-1的分离及其特性研究[D] .青岛:中国科院海洋研究所,2004.
    [76]姜伟,赵德华,李颖等.固氮条件下Greifswald磁螺菌的深层培养及其固氮活性的调节[J].科学通报,2002,47:1722~1725.
    [77] A.S Bahaj and P.A.B James Metal Uptake and Separation Using Magnetic Bacteria[J].IEEE Transaction on magnetics.1994,30(6):4707~4709.
    [78] J.H.PWatson and A.S Bahaj, Vortex capture in high gradient magnetic separation at moderate Reynolds number. Wastewater Treatment by Bio-magnetic Separation[J].IEEE Transaction on magnetlcs.1989,25(5):3803~3805.
    [79] Keim C N, Lins U and Farina M. Elemental analysis of uncultured magnetotactic bacteria exposed to heavy metals[J]. Can.J.Microbiol.,2001,47:1132~1136.
    [80]孙津生.磁场一趋磁细菌复合工艺处理含重金属离子废水[D].天津:天津大学,2005.
    [81] Qing Xia Liu and FJ Frid laender . Selective collection of non- magnetic notile and quartz by means of fag magnetic quartz by means of fag magnetic reagent by hgms[J]. IEEE. Trans Magn vo130 pp4668~4670 ,November 1994.
    [82]张金阳,闫卫旭,刘昌林.磁分离技术在轧钢浊循环水处理中的应用[J].冶金环保科技,2000 .
    [83]田琰,刘若茜,黄常钢,裴截景.高梯度磁分离技术在废水处理中的应用[J],磁性材料及器件.2000,31(2):24~26.
    [84]郑比胜,李林,蔡妙颜.高梯度磁分离的特性及应用[J],华南理工大学学报(自然科学版),1999,27(3):41~45.
    [85]陈国华.高梯度磁分离在污水处理方面的应用[J].环境科学, 1980.
    [86] J. A. Obertedffer etal , HGMS Filtration of Mill Process and waste water[J], IEEE Trans. On Magnetic , 1975 , MAG- 11 , 25 , 603.
    [87]区自清.高梯度磁性分离技术在水处理中的应用研究进展[J].环境科学丛刊. 1983,(27):71.
    [88]沈晓鲤.高梯度分离处理重金属废水的应用—电镀镍废水中间试验[J].环境科学与技术,1988,(1):37~401.
    [89]Misak,Nasr Z.Adsorption isotherms in ion exchange reactions. Further treatments and remarks on the application of the Langmuir isotherm [J].Colloids and Surface A:Physicochemical and Engineering AsPects,1995,97(2):129~140.
    [90]wnag xue song,Qin Yong.Equilibrium sorption isotherms for of Cu2+ On rice bran [J].Process Biochemistry,2005,40(2):677~680.
    [91]张淼,李亚青.黄土对重金属的吸附等温模型[J].西北水资源与水工程,1998,9(1):28~31
    [92]张增强,张一平.几个吸附等温模型热力学参数的计算方法[J].西北农业大学学报,1998,26(2):94~98
    [93]唐受印.废水处理工程[M].北京:化学工业出版社.2004.
    [94]Echeverria JC,Morera M.T. Competitive sorption of heavy metal by soil .Isotherms And factorial experiments[J].Environ. Pollution,1998,101:275~284. [95〕李宽良,周俊一,于乃诱等.锶、钴、铯溶质的竞争吸附与锶的迁移动态机理.环境科学学报[J],1994,14(3):330~334.
    [96]何江,李朝生,王新伟等.多离子体系中黄河沉积物对重金属的竞争吸附研究[J]].沉积学报,2003,21(3):500~505.
    [97]王新伟,李朝生.外源重金属离子在黄河沉积物中的竞争吸附[J].农业环境科学学报,2003,22(6):693~696.
    [98]Wan WS,Kamari NA,Koay YJ. Equilibrium and kinetics studies of adsorption of copper(Ⅱ)on chitosan and chitosan/PVA beads[J].intenational . Journal of Biological Macromolecules,2004,34:155~161.
    [99]Ozer A,Ozer D.Comparative study of the biosorption of Pb(Ⅱ),Ni(Ⅱ)and Cr(Ⅵ). Ions onto S. cerevisiae: determination of biosorprtion heats [J].Journal of Hazardous Materials,2003,BI00(l~3):219~229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700