狗牙根、苇状羊茅和百喜草对Cu及Cu-Zn复合污染的耐性和积累性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物修复是国际上近年兴起的一门污染环境修复技术,它是以植物忍耐和超量积累某种或某些化学元素的理论为基础,利用植物及其共存微生物体系,清除环境中污染物的一门环境污染治理技术。植物修复技术能否成功实施的关键是如何筛选生物量大、对环境污染物富集能力强的积累植物和超积累植物。禾本科植物种类多,分布范围广,且多数植物具有较高的生物量。因此,有可能从禾本科植物中筛选出积累植物和超积累植物。本论文以广泛生长于矿区的禾本科植物狗牙根、苇状羊茅和百喜草为试验材料,运用砂培、土培等方法,研究它们对重金属吸收和积累性以及Cu、Zn胁迫条件下它们的生理生化特征,初步探讨它们在无机污染物污染土壤植物修复中的应用潜力。获得的主要研究结论如下:
     1.狗牙根、苇状羊茅和百喜草对Cu具有较强的耐性和蓄积能力。在染Cu环境中它们能正常生长。砂培条件下,这些植物能在7mg·L~(-1)Cu处理的营养液中生长并蓄积Cu。苇状羊茅根部含Cu量明显高于狗牙根和百喜草,前者平均含Cu量为4765.06±484.28mg·kg~(-1),后两者分别为1749.23±154.95 mg·kg~(-1)、590.26±57.21 mg·kg~(-1);茎叶部含Cu量也以苇状羊茅较高,平均为214.04±16.31mg·kg~(-1),百喜草和狗牙根较低,分别为34.59±4.94mg·kg~(-1)、27.59±5.32 mg·kg~(-1)。土培试验也证实,狗牙根和百喜草具有蓄积Cu的能力,当它们生长于50 mg·kg~(-1)的染Cu土壤70天时,它们的根部可分别蓄积101.16±10.26、132.13±73.46mg·kg~(-1)Cu,茎叶部可分别蓄积22.09±1.06、29.72±17.38mg·kg~(-1)Cu。上述结果表明,三种禾本科植物均可作为植物修复污染土壤的先锋物种。
     2.狗牙根和百喜草可生长于Cu、Zn复合污染环境中并能蓄积一定量的Cu、Zn。虽然砂培Cu、Zn复合污染条件下狗牙根和百喜草根和茎叶部生物量明显低于Cu、Zn单一污染和对照,它们仍能正常生长于这种复合污染环境条件下,并表现出一定的蓄Cu、Zn能力。复合污染条件下,植物吸收Cu、Zn过程中Cu、Zn之间交互作用明显,狗牙根对Cu、Zn的吸收表现为相互抑制,百喜草器官中Cu、Zn含量分别比单独染Cu、单独染Zn时低,染Cu抑制百喜草对Zn的吸收,染Zn抑制百喜草对Cu的吸收。
     3.Cu、Zn污染可影响狗牙根和百喜草某些生理生化特征。砂培单独染Cu处理后,百喜草叶绿素含量明显降低,叶绿素确值显著增大,MDA的积累加快,SOD、POD活性增强,CAT活性出现短暂升高,但随着处理时间的增加CAT活性又呈现出下降的趋势。土培单独染Cu处理后狗牙根和百喜草生理生化特征的变化趋势与砂培单独染Cu处理基本一致。砂培Cu、Zn复合污染对狗牙根和百喜草生理生化特征的影响较单一污染时显著:复合污染时百喜草叶绿素含量、CAT活性明显低于单一污染,MDA含量、SOD、POD活性也较单一污染明显升高;与单一污染相比,复合污染也使狗牙根POD活性明显升高。
Phytoremediation is an emerging environmental clean-up technique.It explores the nature with which plants can tolerate and hyperaccumulate some chemical elements,in combination with plant's natural ability and its associated microorganisms to remove the contaminants in the environment.Screening accumulators or hyperaccumulators with large biomass and strong ability to take up environmental pollutants is the key for suceessful phytoremediation practices.Plant species from the Polygonaceae are widely distributed with most of them having large biomass,and it is,therefore,possible to screen accumulators and hyperaccumulators from the Polygonaceae.A batch of sand culture and soil culture experiments were carried out to investigate heavy metal uptake and accumulation by Rumexacetosa Linn,Polygonum microcephalum D.Don,and Rumex hastatus D.Don widely distributed on copper mining areas,and their physiological and biochemical characteristics under Cu、Zn stress,as well their potentials in application to phytoremediation.The major results were summarized as follows:
     1.Cynodondactylon,FestucaarundinaceaSchreb,and Paspalumnotatum were found to have comparatively strong ability to tolerate and accumulate copper and to maintain normal growth in Cu-contaminated environment.Sand culture experimental results show that they could survive in 7 mg·L~(-1) Cu treated nutrient solution and accumulate copper to a certain extent.FestucaarundinaceaSchreb had higher root copper concentration than Cynodondactylon and Paspalumnotatum.The former has root copper concentrations averaging 4765.06±484.28 while the latter two have root copper concentrations averaging 1749.23±254.95 and 590.26±57.21mg·kg~(-1) respectively.FestucaarundinaceaSchreb also had higher shoot copper concentration averaging 214.04±16.31 mg·kg~(-1) than Paspalumnotatum and Cynodondactylon which contain average shoot copper concentration 27.59±5.32、34.59±4.94mg·kg~(-1),respectively.Soil culture experiments also demonstrated that Cynodondactylon and Paspalumnotatum can accumulate some amount of copper with root copper concentration averaging101.16±10.26、132.13±73.46 mg·kg~(-1),respectively and shoot copper concentration averaging 22.09±1.06、29.72±17.38 mg·kg~(-1),respectively when grown for 70 days on soils contaminated with 50mg Cu·kg~(-1).These results indicated that the three Gramineae can serve as pioneer species for phytoremediation of coppercontaminated soil.
     2.Cynodondactylon and Paspalumnotatum can in the contaminated with both Cu and Zn,and accumulate some amount of Cu and Zn.Although the combined treatments with both Cu and Zn decreased growth biomass compared with single Cu and single Zn treatments,they can also grow well in the combined polluted environment and accumulate certain amount of Cu and Zn.Under combined contamination,Cu and Zn showed obvious mutual interactions:Zn treatment decreased Cu uptake by Cynodondactylon and Paspalumnotatum,and Cu treatment depressed Zn uptake by Cynodondactylon and Paspalumnotatum.
     3.It is found that copper and zinc contamination has effect on some physiological and biochemieal characteristics of Cynodondactylon and Paspalumnotatum.Sand culture experimental results showed that the chlorophyll content of Paspalumnotatum grown in only copper treatment decreased but its chlorophyll a/b radio increased remarkably.It was also shown that single Cu treatment significantly enhaced MDA in Cynodondactylon and Paspalumnotatum leave cells,and increased the activity of SOD and POD,with CAT activity increasing at beging,and then decreasing With time.The soil pot experiment in single copper treatment showed similar variation characteristics of physiological and biochemical for Cynodondactylon and Paspalumnotatum.Under combined contamination physiological and biochemical characteristics of Cynodondactylon and Paspalumnotatum showed more rem-arkable variation than single treatment:Compared with single Cu and single Zn treatments,the cmbined treatments with both Cu and Zn decreased the chlorophyll content and CAT activity of Paspalumnotatum,while increased the root and leaf cell MDA content, SOD and POD activity of Paspalumnotatum,meanwhile the root and leaf cell POD activity of Cynodondactylon is also increased under combined contamination.
引文
[1]Temmerman LDE,Vanongeva L,Boon W,etal.Heavyrnetal content of arable soil in northem Belgium[J].Water,Air,and Soil Pollution,2003,148:61-76
    [2]周国华,黄怀曾,何红寥.重金属污染土壤植物修复及进展[J].环境污染治理技术与设备,2002,3(6):33-39
    [3]BRUN L A,MAILLET J,HINSINGER P,et al.Evaluation of copperavailability to plants in copper contaminated vineyard soils[J].Environmental Pollution,2001,111:293-302.
    [4]司友斌,岳永德,曹德菊,等.苄嘧磺隆对Cu~(2+)在粘土矿物上吸附-脱附的影响[J].环境科学学报,2001,21(5):587-591.
    [5]郭观林,周启星.土壤-植物系统复合污染研究进展[J].应用生态学报,2003,14(5):823-828.
    [6]Chaney RL.Plant uptake of inorganic waste constituents[A].In:PrrJ feds land treatment of hazadous wastes[C].Park Ridge New Jelsey,USA:Noyes Data Corporation,1983:50-76.
    [7]李忠海,王海燕,梁文彬等.土壤镉、锌、铅复合污染对芹菜的影响[J].中南林学院学报,2002,22(1):37-39.
    [8]蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景[J].农业环境保护,2000,19(3):179-183.
    [9]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报,2003,22(2):143-15
    [10]Books R R,Lee J,Reeves R D,et al.Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J].J Geochem Explor,1977,(7):49-57.
    [11]Baker A J M,Brooks R R,Pease A J,et al.Studies on copper and cobalt tolerance in three closely related taxa with in the genus Silence L.from Zaire[J].Plant and Soil,1983,73:377-385.
    [12]沈振国,刘友良.重金属超积累植物的研究进展[J].植物生理学通讯,1998,34(2):133-139.
    [13]Flathman P E,Lanza G R.Phytoremediation:current views on an emerging green technology[J].Journal of Soil Contamination,1998,7(6):415-432.
    [14]Anderson T A,Guthie E A,Walton B T.Bioremediation in the rhizosphere[J].Eviron sci technol,1993,27(13):2630-2263.
    [15]USEPA.Introduction to phytoreemediation[R].EPA/600/R99/107,Washington DC,2000.
    [16]张从,夏立江.污染土壤修复技术[M].北京:中国环境科学出版社,2000.
    [17]蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景[J].农业环境保护,2000,19(3):179-183.
    [18]Watanabe M E.Phytoremediation on the brink of commercialitation[J].Envirvn sci technol,1997,31:182-186.
    [19]韦朝阳,陈同斌.重金属超积累植物及其植物修复技术的研究进展[J].生态学报,2001,21(7):1196-1203.
    [20]沈振国,刘友良.超量积累重金属植物研究进展[J].植物生理学通讯,1998,34(2):133-139.
    [21]Cunningham,S D et al.Remediation of contaminated soils and sludgs by green plants.In:hinchee R.E&Mrans J L(eds)[M].Bioremediation of inorganiccs,Battelle Press,Columbus,Ohio,1995.
    [22]Salt D E,Blaylock M,Kumar P B A N,et al.Phytoremediation:a novel strategy for the removal of toxic metals form the environment using plants[J].Bio technology.1995,138-474.
    [23]Cunningham S D,Ow D W.Promises and prospects of phytoremediation[J].Plant physiology,1996,110(3):715-716.
    [24]Kham A G,Knek C,Chaudhry T M,et al.Role of plants,mycorrhizae and phytochelators in heavy metal contaminated landremediation[J].Chemosphere,2000,41(1-2):197-207.
    [25]T.Jaffr(?),R.R.Brooks,J.Lee,et at.Sebertia acuminate hyperaccumulator of nickel from New California[J].Science,1976,193:579-580.
    [26]Baker A J M,McGrath S,Sidoli C M D,et al.The possibility of heavy metal decontamination of polluted soils using crops of metals accumulating plants[J].Resource Conservation and Recycling,1994,11(1):41-49.
    [27]ROBINSON B H,BROOKS R R,CLOTHIER B E.Soil amendments affecting nickel and cobalt uptake by Berkheya coddii:potential use of phytomining and phytoremediation[J].Annual Botany,1999,84:689-694.
    [28]陈同赋,韦朝阳,黄泽春,等.华南的一些砷超集累植物种类[A].国际会议中关于土壤修复的研究进展[C].杭州,2000.194-195.
    [29]杨肖娥,龙新宪,倪吾钟,等.东南景天——一种新的锌超富集植物[J].科学通报,2002,47(13):1003-1007.
    [30]薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物——商陆[J].生态学报,2003,23(5):935-937.
    [31]韦朝阳,陈同斌,黄泽春,等.大叶井口边草——一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.
    [32]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2049.
    [33]魏树和,周启星,王新,等.一种新发现的镉超积累植物龙葵(Solanum nigrum L)[J].科学通报,2004,49(24):2568-2573.
    [34]Glass D J.Economic potential of phytoremediadion.In:Phytoremediation of contaminated soil and water.Terry N and Nanuels G.(eds)[J].Lewis publishers,Boca Raton,FL,2000,15-32.
    [35]Lakshmiand Kopolu,Davis Clements.Pyrolysis as a technique for separating heavy metal form Hyperaccumulator,Part Ⅰ:Preparation of synthenic hyperaccumulator biomass[J].Biomass and bioenergy.2003,24:69-79.
    [36]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004,20-23;134-143.
    [37]Yang X E,Shi W Y,Fu C X,et al.Copper-hyperaccumulators of Chinese Nitive ports:Characteristics and Possible Use for Phytoremediation[A].Sustainable Agriculture for Food,Energy and Industry[C].London:James and James Publishers Ltd,1998,484-489.
    [38]骆永明.强化植物修复的螯合诱导技术及其环境风险[J].土壤,2000,32(2):57-61:74.
    [39]Glass D J.Economic potential of phytoremediadion.In:Phytoremediation of contaminated soil and water.Terry N and Nanuels G.(eds).Lewis publishers,Boca Raton, FL,2000,15-32.
    [40]中国饲用植物志编辑委员会.中国饲用植物志:第2卷[M].北京:农业出版社,1989.60-61.
    [41]韩烈保,邓菊芬.草坪草种及其品种[M].北京:中国林业出版社,1999:89-93.
    [42]WU J,MERSIE,ATALAY A,et al.Copper retention from runoff by swith grass and tall rescue filter strips[J].Joural of Soil and Water Conservation,2003,58(1):67-73.
    [43]赵树兰,多立安.与锌递进胁迫苇状羊茅的初期生长效应及生态阈限研究[J].生态学报,2002,26(7):1098-1105.
    [44]孙健.灯心草对土壤重金属污染的抗性及修复潜力研究[J].[硕士学位论文].湖南农业大学,2006.
    [45]TANNANT T,WU L.Effects of water stress on selenium accumulation in tall rescue from a seleniumcontaminated soil[J].Environmental Contamination Toxicology,2000,38:32-39.
    [46]邓文靖,郑海龙,陈新庚.基因工程改良植物对重金属污染土壤的修复[J].生态环境,2004,13(3):403-405.
    [47]Dhankher,Om Parkash,Shasti,Nupur A.Rosen,Barry P,Fuhrmann,Mark,Meagher,Richar d B.Increased cadmium tolerance and accumulation by plants expressing bacterial arsenat e reductase[J].New Phytologist,2003,159(2),431-441.
    [48]GISBERT C,ROS R,HARO A D,et al.A plant genetically modified that accumulates Pb is especially promising for phytoremediation[J].Biochemical and Biophysical Research Communications,2003,303:440-445.
    [49]Harlan J R.Sources of variation in Cnodon actylon(L.) Pers[J].Crop sci.,1999,39:774-778.
    [50]GilbertW B,DavisD L.Influence of fertilityof ratios on w inter hardiness of bermudagrass[J].A gron.J.,1971,63:591-593.
    [51]Wang Y B,Liu D Y,Zhang L,et al.Patterns of vegetation succession in the process of ecological restoration on the deserted land of Shizishan copper tailings in Tongling City[J].Acta.Bot.Sin.,2004,46(7):780-787.
    [52]Panla K P,Thompson J E.Evidence for the accumulation of peroxidized lipids in membranes of senescing cotyledons[J].Plant Physiol,1984,75:1152-1157.
    [53]王友保,刘登义.Cu,As及其复合污染对小麦生理生态指标的影响[J].应用生态学报,2001,12(5):773-776.
    [54]崔玮,谢宗平,马嘉琦,等.镍锌离子对高羊茅幼苗生理特性的影响[J].农业环境科学学报,2004,23(6):1093-1096.
    [55]秦天才,吴玉树,黄巧云,等.镉铅单—和复合污染对小白菜抗坏血酸含量的影响[J].生态学杂志,1997,16(3):31-34.
    [56]Panla K P,Thompson J E.Evidence for the accumulation of peroxidized lipids in membranes of senescing cotyledons[J].Plant Physiol,1984,75:1152-1157.
    [57]陈桂珠.重金属对黄瓜籽苗发育影响的研究[J].植物学通报,1990,7(1):240-243.
    [58]王友保,刘登义.Cu,As及其复合污染对小麦生理生态指标的影响[J].应用生态学报,2001,12(5):773-776.
    [59]廖绵浚.百喜草在水土保持上之研究及应用[J].中华水土保持学报,1985,16(2):1-15.
    [60]蔡志发.幼龄果园套种百喜草的技术与效益研究初报.见:中国草原学会编.中国草地科学进展.北京:中国农业大学出版社,1998.183-187.
    [61]夏汉平,刘世忠,敖惠修.香根草等三种植物的抗盐性比较[J].应用与环境生物学报,2000,6(1):7-17
    [62]夏汉平,李美茹.香根草、百喜草、水花生3种植物的抗性比较[M].香根草研究与展望.北京:中国农业科技出版社,1998.45-49.
    [63]龙 健,黄昌勇,滕 应,等.尾矿对5种牧草生长情况的影响[J].中国草地,2003,25(2):18-21
    [64]张玉秀,柴团耀.植物对重金属耐性机制的研究进展[J].植物学报,1999,41(5):453-457
    [65]周泽义.中国蔬菜重金属污染及控制[J].资源环境生态环境网络研究动态,1999,10(3):21-27.
    [66]孙铁珩,李培军,周启星.土壤污染形成机理与修复技术[M].北京:科学出版社,2005.12-15.
    [67]周启星,魏树和,陈倩茹.生态修复[M].北京:中国环境科学出版社,2006.164-166.
    [68]夏来坤,郭天财,康国章等.土壤重金属污染与修复技术研究进展[J].河南农业科学,2005,5:88-91.
    [69]张春桂,徐华夏,姜晴楠.污染土壤生物恢复技术[J].生态学杂志,1997,16(4):52-58.
    [70]Caecieatore DA,Mcneil MA.Principles of soil bioremediation[J].Biocycle,1995,36(10):61-64.
    [71]Caplan JA.The worldwide biommediation industry:prospects forproits[J].Trends biotechnd,1993,11:320-323.
    [72]王慧忠,何翠屏,杨华.土壤重金属污染对草坪性状影响的调查研究[J].草业科学,2003,20(1):53-55.
    [73]MeNeilly T,Johnson MS.Mineral nutrtion of copper-tolerant BrowtoP on metal-contaminated mine spoil[J].J Environ Qual,1978,7(4):483-486.
    [74]唐世荣.超积累植物在时空、科属内的分布特点及寻找方法[J].农村生态环境,2001,17(4):56-60.
    [75]Chomchalow N & henle H V eds.Proceed ing s of the First International Conf erence on V etiver:A M iraele Grass.Bangkok:Office of the Royal Development[J]Projects Board,1998.
    [76]Cunningbam SD,Ow DW.Terrestrial higher plants Which hyperaccumulate metallic elements[J].Biorecovery,1989,1:81-97.
    [77]Tang SR,Fang YH.Copper accumulation by Polygonum microcephalum D.Don and Rumex hastatus D.Don from copper mining spoils in Yunnan Province,P.R.China[J].Environmental Geology,2001(40):902-907.
    [78]Raskin I,Smith RD and Salt DE.Phytoremediation of metals:using plants to remove pollutants from the environment[J].Current Opinion in Biotechnology,1997,8:221-226.
    [79]Brooks RR,Morrison RS,Reeves RD,et al.Copper and cobalt in African species of Aeolanthus Mart.(Plectrontinae,Labiatae)[J].Plant and soiil,1978,50:503-507.
    [80]Tang SR,Wilke BM,Huang CY.The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River,the People's Republic of China[J].Plant and Soil,1999,209:225-232.
    [81]唐世荣,黄昌勇,朱祖祥.利用植物修复重金属污染土壤[J].环境科学进展,1996,4(6):10-15.
    [82]White JW,Biernbaurn JA.Effects root-zone heating on elemental composition of calceolaria[J].J Amer Soc Hort Sei,1984,109(3):350-355.
    [83]Luo YM,Rimmer DL.Zinc-copper interaction affecting plant groth on a metal-contaminated soi[J]l.Environmental Pollution,1995,88:79-83.
    [84]Baker AJM,Brooks RR.Terrestrial higher plants which hyperaccurnulate metallic elememts[J].Biorecovey,1989,1:81-97.
    [85]Baker AJM.Accumulators and excluders-strategies in the response of plants toHeavy metals[J].Journal of Plant Nutrition,1981,3(1-4):643-654.
    [86]Luo YM,Rimmer DL.Zinc-copper interaction affecting plant groth on a metal-contaminated soil[J].Environmental Pollution,1995,88:79-83.
    [87]Devi SR,Prasad MNV.Copper toxicity in Ceratophyllum demersum L.(Coontail),afree floating macrophyte:Response of antioxidant enzymes and antioxidants[J].Plant Seience.1998,138:157-165.
    [88]叶志鸿.锌污染对植物的毒害及植物的忍耐性[J].生态学杂志,1992,11(5):42-45.
    [89]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.
    [90]王慧忠,翠屏.重金属离子胁迫对草坪草根系生长及其活力的影响[J].中国草地,2002,24(3):55-58,63.
    [91]陈素华,孙铁布,周启星.重金属复合污染对小麦种子根活力的影响[J].应用生态学报,2003,14(4):577-580.
    [92]Chris B,Marc VH,Dirk I.Superoxide dismutase and stress tolerance[J].Annu Pev Plant Pysiol Plant Mol Bilo,1992,43:83.
    [93]Eistner EE Oxygen activation and oxygen toxieity[J].Ann Rev Plant Physiol,1982,33:73.
    [94]Clark MJ and Smith FB.Wet and dry deposition of Chemobyl releases[J].Nature,1988,332:245-249.
    [95]Fridovich I.Superoxide readical and superxide dismutases[J].Annu Rev Biochem,1995,64:97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700