Ag/Zn双元离子注入不锈钢的研制及抗菌性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平和保健意识的提高,抗菌不锈钢作为一种新型材料受到越来越多的关注。本文采用双元金属离子注入的方法制备抗菌不锈钢,得到了一种Ag/Zn双元金属离子注入的马氏体不锈钢。研究了注入参数对马氏体不锈钢的抗菌效果以及耐腐蚀性能的影响,采用X射线光电子能谱(XPS)、原子力显微镜(AFM)和接触角测量仪分析了不锈钢注入层的元素浓度分布、元素的价态、表面粗糙度和表面疏水性。
     注入层的XPS测试表明,当Ag注入剂量为2×10~(17)ions/cm~2、Zn为1×10~(17) ions/cm~2,注入加速电压都为47KV时,两种金属离子的注入深度约为70nm,两种金属离子的峰值浓度均在离不锈钢表面以下20nm处,Zn离子为+2价,Ag离子为+1价,因此Zn离子获得注入的能量大,其注入层中相对浓度要高于Ag离子的浓度。Ag/Zn金属离子注入不锈钢表面后,均以离子形式存在于注入层中,Ag以正一价离子形式与氧形成Ag2O,Zn以正二价形式与氧形成ZnO。在注入层内部,Ag与Zn的峰值均没有发生改变。
     AFM分析结果表明,随着注入剂量的增大,表征值峰-谷粗糙度明显减小,不锈钢表面粗糙度逐渐减小。接触角测量结果表明,随着离子注入剂量的增加,注入试样表层的疏水性增强。当Ag注入剂量为2×10~(17)ions/cm~2、Zn为2×10~(17) ions/cm~2时,注入试样表面的疏水性达到最大。离子注入试样表面疏水性增强。阳极极化曲线实验表明,离子注入不锈钢后,不锈钢表面的耐腐蚀性能没有下降,甚至有所提高,因此,双元金属离子注入后,不锈钢保持了原有的良好的耐腐蚀性能。
     以未经离子注入的不锈钢试样为对照样,单一Ag离子注入和Ag/Zn金属离子注入的不锈钢试样均表现出优良的抗大肠杆菌能力。随着锌离子注入剂量达到4×10~(17) ions/cm~2时,样品抗白色念珠球菌的能力得到显著提升,说明,锌离子的注入有助于抗白色念珠球菌能力的提高。
With the improvement of people’s living and health level, antibacterial stainless steel has attracted much attention due to its structural and functional properties. In this work, martensite stainless steel sample was implanted by Ag/Zn ions at an extracting voltage of 47KV. The structural properties of Ag/Zn implanted stainless steel were studied by Atom Force Microscope (AFM), X ray Photoelectron Spectroscopy (XPS), and surface tensiometer. The corrosion resistance was characterized by electrochemical polarization curve.
     Depth profile analysis shows that the Ag/Zn implanted layer is about 70nm in thickness under an implantation dose of 2×10~(17) ions/cm~2 for Ag and Zn ions at an extracting voltage of 47KV. The depth of the peak concentration of Ag and Zn ions is both 20nm. XPS analysis also shows that silver exists in Ag+ and Zn exists in Zn2+, according to the distribution of bingding energy.
     The results of AFM show that surface roughness of peak-valley decreases continuously with the increasing of implantation doses. The contact angle analyses imply that surface hydrophobic property of implanted stainless steel are increased with the increasing of implantation doses. The most hydrophobic property is observed with the implantation dose of 2×10~(17) ions/cm~2 Ag ion and 2×10~(17) ions/cm~2 Zn ion. Polarization curve show that the corrosion resistance are also increased with the increasing of implantation dose.
     The antibacterial properties of Ag/Zn implanted stainless steel were investigated in vitro using Eschericha coli and Candida albicans. The stainless steel implanted by single Ag ion shows good antibacterial property to Escherichia coli but poor antibacterial property to Candida albicans. The stainless steel implanted by Ag/Zn ions shows good antibacterial property to both Escherichia coli and Candida albicans, with the implantation dose of 2×10~(17) ions/cm~2 Ag ion and 4×10~(17) ions/cm~2 Zn ion.
引文
[1]童忠良.无机抗菌新材料与技术[M].北京:化学工业出版社, 2006
    [2]李梅,王庆瑞.抗菌材料的发展及其应用[J].化工新型材料, 1998, (5): 8-11
    [3]张文征,张羽天.载银抗菌材料及其制品[J].贵金属, 1998, (4): 50-53
    [4]金宗哲.无机抗菌材料及应用[M].北京:化学工业出版社, 2004
    [5]李宁,张伟,胥永刚,曾蔚,贾文祥.银对18-8铬镍奥氏体不锈钢抗菌性能的影响[J].特殊钢,2004,25(2):42-43
    [6] T.Yokota,M.Tochibara,M.Ohta.Silver Dispersed Stainless Steel with Antibacterial Property[J].Kawasaki Steel Technical Reports.2002,46:37-41
    [7]张逸远.600亿元抗菌市场谁来分享[J].中小企业科技,2005(10):18
    [8]刘康时,江显异,赵英.银系无机抗菌剂作用机理的研究进展[J].佛山陶瓷, 2001,11(56)1-5
    [9]康湛莹,李瑞增,车承斌.重金属杀菌作用的机理[J].哈尔滨科学技术大学学报, 1995 ,19 (3) :103-105
    [10]周祚万,刘国梅,罗雁彬等.国内外无机抗菌材料研究动态[J].新材料产业, 2007, 3: 74-76
    [11] Balazs DJ, Triandafillu K, Wood P, Chevolot Y, Delden CV, Harms H, et al. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments[J]. Biomaterials 2004, 25(11):2139–51
    [12] Baker C, Pradhan A, Pakstis L, et al. Synthesis and antibacterial properties of silver nanoparticles [J]. Journal of Nano-science and Nanotechnology 2005, 5(2):244-249
    [13]徐孝华.微生物世界[M].北京:农业大学出版社.1989
    [14]余贺,龙振洲.医学微生物学[M],第二版,北京:人民卫生出版社,2001
    [15]张界国.警惕微生物的危害[J],劳动安全与健康,1998,(6):27
    [16]董小平.非典冠状病毒对热辐射和紫外线敏感[J].人民政协报, (A4).北京: 2003, 6. 4
    [17]高丽宽纪.抗菌加工の基本的考ぇ方と将来展望[J].J. Antibact. Antifung. Agents, 1998, 26(10): 171-175
    [18]薛广波主编.灭菌.杀菌.消毒.防腐.保藏[M].北京:人民卫生出版社, 1993
    [19]姚爱华.新型矿物抗菌材料的研制[D].吉林大学硕士论文,长春, 2002:7
    [20]田树霖.中国首届抗菌制品(材料)国际展览会暨第二届中国抗菌材料产业发展大会[A],北京, 2002: 17
    [21]高山正彦. J. Antibact. Antifung. Agents, 1996, 24(8): 561-567
    [22]张宝恩主编.病原生物与免疫学基础[M].北京:科学出版社, 2003
    [23]黄勋.无机抗菌复合材料的制备、抗菌活性及其抗菌机理研究[D].长沙:中南大学内科学系, 2007
    [24]国家卫生部.消毒技术规范[M].北京:卫生部卫生法制与监督司, 2002
    [25]徐孝华.普通微生物学[M].北京:中国农业大学出版社, 1992
    [26]汪良贤.抗菌建筑卫生陶瓷的试制和展望[J].山东陶瓷, 2000(4): 5-9
    [27]冯乃谦,严建华,翟凡等.无机抗菌剂、抗菌制品及其测试方法[J].贵金属, 1998, 32(5): 315-316
    [28]山本則幸,加虅秀樹.無機抗菌劑の特長との應用[J]. J. Antibact Antifung Agents, 1998, 26(10): 581-586
    [29] Hashimoto K., Toda Y., Evaluation method of antibacterial activity of ceramics materials with antimicrobial characteristics and its application to phosphate compounds [J]. Inorganic materials, 1996, 3(9): 452-459
    [30] Nagashima T., Enoki A., Fuse G.. Method for assay of antibacterial activity of textile treated with antimicrobial and deodorant reagents [J]. J. Antibact Antifung Agents, 1997, 25(7):325-332
    [31]周贯宇.复合银系无机抗菌剂的制备及应用[D ] .杭州:浙江大学, 2003.
    [32]陈英,王立,俞豪杰等.新型高分子抗菌材料的制备及性能研究[A];2003全国高分子学术论文报告会论文集(第四册) [C], 2003
    [33]王冶秋.磷酸锆钠载银、、锌复合抗菌剂的制备及性能表征[D].广州:华东理工大学材料学系,2006
    [34]许霞.纳米组装无机抗菌剂的制备及其抗菌效果研究[J].中国非金属矿工业导刊, 2004, 42(4):19-20
    [35]马玉龙,郭彤.载蒙脱石及其杀灭大肠杆菌机制的研究[J].药学学报Acta Pharmaceutic Sinica 2007, 42(3): 311-315
    [36] Ma YL,Xu ZR. Advance in ion-type inorganic antibacterial materials[J]. Mater Rev(材料导报),2004,18:16-18
    [37] Kenawy E, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review[J]. Biomacromolecules, 2007, 8:1359–1384.
    [38]张延峰,余志伟.镁质粘土新型抗菌材料[J].中国非金属矿工业导刊,2005,50(5):24-27
    [39]李炜罡,吕维平,王海滨等.抗菌材料进展[J].化工新型材料, 2003,30(3):7-10
    [40]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001:88
    [41]张彬,李西平,白金峰.抗菌白炭黑的制备及抗菌效果[J],化工新型材料, 2004, 33(3):23-25
    [42]谌喜珠.金属离子沸石的制备及其抗菌活性[J].贵金属, 1999, 20(1):29-32
    [43]唐晓宁,谢刚,张彬.锌离子双组分无机抗菌剂研究[J].中国稀土学报,2004,8(22):576-577
    [44]刘志培.和其他重金属离子诱导大肠杆菌抗启动子的研究[J].遗传学报,1998,25(l):86 -94
    [45]谷俊改,张瑾,朱忠其,柳清菊. Cu2+、Zn2+复合无机抗菌剂的制备及性能研究[J].功能材料,2006,37(8):1310-1317
    [46] Liu Z, Stout J E, Tedesco L, et al. Controlled evaluation of copper silver ionization in eradicating legionella from a hospital water distribution system[J]. J. Infect. Dis.,1994, 169(4): 919-922.
    [47] Lin Y S, Vidic R D, Stout J E, et al. Individual and combined effects of copper and silver ions on inactivation of legionella pneumophila [J]. Water Research, 1996,30 (8):1905-1913.
    [48]高山正彦等.防菌防徵志. 1994, 32 (9):531-536
    [49] Wei Zhang a,b, Yunjun Luo b, Huaiyu Wang a, Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation [J]. Acta Biomaterialia, 2008,(4) : 2028–2036
    [50] Ayben Top, Semra U lku. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity[J] .Applied Clay Science ,2004, (27): 13– 19
    [51]墙蔷,倪红卫,幸伟等.银的抗菌作用机理[J].武汉科技大学学报(自然科学版),2007,30(2):121-124
    [52]周祚万,刘国梅,罗雁彬等.国内外无机抗菌材料研究动态[J].新材料产业, 2007, 3: 74-76
    [53] Balazs DJ, Triandafillu K, Wood P, Chevolot Y, Delden CV, Harms H, et al. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments[J]. Biomaterials 2004,25(11):2139–51
    [54] Baker C, Pradhan A, Pakstis L, et al. Synthesis and antibacterial properties of silver nanoparticles[J]. Journal of Nano-science and Nanotechnology 2005,5(2):244-249
    [55]董加胜,陈四红,吕曼祺等.抗菌材料发展与现状[J].材料导报. 2004, 18(3):41-44
    [56]杨志勇,李文辉,林师焱.抗菌不锈钢材料的开发[J].金属功能材料,2000,7(4):1
    [57] Nakamura S., Suzuki S., Ookubo N. et al. Microstructure and Antimicrobial Activity of Cu Contained Ferritic Stainless steels [J]. CAMP-ISIJ, 1998, 11(3 ): 1147
    [58] Toyokihara C., Nakamura S., Miyakusu K. et al. Microstructure and Antimicrobial Activity of Cu Contained Martensitic Stainless steels [J]. CAMP-ISIJ, 1999, 12(6): 1179
    [59]刘永前,南黎,陈德敏.含马氏体抗菌不锈钢的研究[J].稀有材料与工程, 2008, 37(8):1380-1383
    [60]敬和民,陈四红,董加胜等.抗菌不锈钢材料及其发展现状[J].材料保护, 2003, 36(10):9-12
    [61]但志刚.离子注入马氏体不锈钢制备抗菌功能材料的研究[D].武汉:武汉科技大学钢铁冶金系, 2004
    [62]倪红卫,但志刚,许伯藩.离子注入AISI 304不锈钢的抗菌性能研究[J].功能材料, 2005, 36(12):1906-1908
    [63]杨秀春,李佩瑾.光催化杭菌功能材料[J].化学工程师, 2005, 38(2): 38-39
    [64]马毓华.双相不锈钢的性能与应用[J].甘肃科技, 2004, 20(10):49-51
    [65]张通和,吴瑜光.离子束材料改性科学和应用[M].北京:科学出版社, 1999:42
    [66]张通和,梁宏.强流金属离子束材料表面改性研究[J].原子核物理论, 1997,14(13):167-172
    [67]张涛,宋教花,张荟星等.强流金属离子注入[J].微细加工技术, 2001, 4(1): 22-25
    [68]张通和,吴瑜光.离子注入表面优化技术[M].北京:冶金工业出版社, 1993: 233
    [69]戴达煌,周克崧,袁镇海等.现代材料表面技术科学[M].北京:冶金工业出版社,2004, 277-283
    [70] Zhigang Dan, Hongwei Ni, Bofan Xu. Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions[J]. Thin Solid Films, 2005, 492(1-2):93-100
    [71]倪红卫等.银离子注入剂量对2Cr13Ni2不锈钢耐蚀性能的影响研究[J].功能材料, 2008, 39(11):1897-1899
    [72]王超,刘正民. Cu离子和Al离子注入M2钢表面改性研究[J].核技术, 2001, 24(4):
    [73]王薇,史晶宇,张永刚等. Nb离子注入γ-TiAl的高温循环氧化行为[J].北京航空航天大学学报, 2001, 27(2): 125-128
    [74]张通和,吴瑜光,刘安东等. C和Ti双注入H13钢抗腐蚀钝化层的形成[J].北京师范大学学报(自然科学版), 2002, 38 (6): 751-754
    [75] Zhang Tonghe, Wei Fuzhong, Chen Jun et al. Ion Implantation of Ti, Mo, W ,Mo + C and W + C in H13 Steel and Alumimum[J]. Mat Res Soc Symp P roc, 1994,316:777-782
    [76]黄拿灿,吴起白,胡社军等. Ti、Y离子注入65Nb钢的表面优化[J].金属学报, 2000, 36(6):634-637
    [77]冷崇燕. Ta和Ag离子注入Ti6Al4V合金表面改性研究[D].昆明:昆明理工大学, 2008.
    [78]墙蔷,倪红卫,幸伟等.银的抗菌作用机理[J].武汉科技大学学报(自然科学版), 2007, 30(2): 121-124
    [79] I.T. Hong, C.H. Koo. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J]. Materials Science and Engineering A , 2005 , 393 (1): 213–222
    [80]李文茹,谢小保等.无机载银抗菌材料抗菌机理及细菌对其抗性机制[J],材料导报网刊, 2008, 1(1): 20-23
    [81] Holt K B, Bard A J. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry, 2005, 44:13-14
    [82]夏金兰,王春,刘新星.抗菌剂及其抗菌机理[J ] .中南大学学报:自然科学版, 2004 ,35 (1) :31-38.
    [83] Lingling Zhang, Yunhong Jiang et al. Yulong Ding, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nano?uids)[J]. Journal of Nanoparticle Research,2007, 9:479–489
    [84]曲敏丽,姜万超.纳米氧化锌抗菌机理探讨[J].印染助剂,2004,21(6): 45-46
    [85]吴跃辉,刘元隆,邓安民等.离子交换法合成非晶态铝硅酸盐抗菌材料研究[J].硅酸盐学报,2004,32(5): 564-566
    [86] Abdou Saad El-Tabl,Fathey A. El-Saied et al. Synthesis, spectroscopic characterization and biological activity of the metal complexes of the Schiff base derived from phenylaminoacetohydrazide and dibenzoylmethane[J]. Spectrochimica Acta Part A,2008(71):90-99
    [87]敬和民,吴欣强,郭莉莉等.含Ag-Zn无机抗菌剂的Ca3(PO4)2涂层的抗菌性能[J].材料保护,2007,47(5): 31-33
    [88]肖华,陈春宝,谢飚.银锌复合抗菌剂及纳米抗菌塑料的制备[J].新技术新产品,2006,9:25-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700