芳香二酸基d~(10)金属配合材料的构筑及其降解酸性品红性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用分子组装原理精心设计和调控高级有序结构分子聚集体,尤其是配位聚合物或超分子聚合物是当今化学、材料、医学和生物学等领域的前沿研究主流和热点课题。由于配合物分子固体同时含有无机金属和有机配体,使其在材料设计和功能复合上具有区别于纯无机或纯有机固体的优势和发展空间。目前文献报道的功能配合材料主要集中在磁性、光学、电学和生物等功能方面,而对其催化性能的研究报道较少。本文以邻、间、对苯二乙酸为基本构件,过渡金属离子Zn、Cd为中心离子,并辅以芳香族含N配体,构筑了12个新型有机-无机功能配合材料,它们是:{[Cd(1,4-pda)(bpb)(H_2O)]·H_2O}_n (1),{[Zn2(1,3-pda)_2(phen)_2]·4H_2O}_n(2),{[Cd_2(1,3-pda)_2(bpy)_2]·2H_2O}_n(3) , {[Cd_2(1,3-pda)(phen)]·2H_2O}_n(4) ,[Zn(1,3-pda)(bpp)]_n(5) , {[Zn(1,2-pda)(phen)_4]·NO_3·4H_2O}_n(6) ,[Zn(1,2-Hpda)_2(bpy)]_n(7) , [Zn(1,2-pda)_2(bpy)(H_2O)]_n(8) ,{[Cd_2(1,2-pda)_2(phen)_3(H_2O)]·EtOH·3H_2O}_n (9)、[Cd_2(1,2-pda)_2(bpy)_2(H_2O)_2]_n(10) ,{[Cd_2(1,2-pda)_2(ip)4]·3H_2O}_n(11),[Cd_2(1,2-pda)_2(ip)4]_n(12);对所合成的配合材料进行了单晶结构测试和分析,运用红外光谱、荧光光谱、热分析等技术对其进行了表征;最后以酸性品红为模型污染物,考察了配合物及其敏化纳米TiO_2的光催化降解性能。结果表明,上述三类配体在功能分子材料的构筑中起到了重要作用,它们不仅呈现出多种配位方式,而且可作为氢键的给-受体形成高维扩展结构,同时对三种苯二乙酸构筑的功能配合材料的结构特点、组装规律、谱学特征、荧光性质、光催化降解及其敏化TiO_2的光催化性能进行了比较分析,得出了一些规律性结论。
The exquisite designed construction of metal-assembled and metal-cluster frameworks by use of the principles of self-assembly, especially for coordination polymers and supramolecular architectures, represents a topical and current research interest in chemistry, materials, medicals and biology areas today. As complexe molecular solid contain inorganic metal and organic ligand at the same time, so it has more advantage and developmental space in the facet of material design and functional complex, which is compared with pure inorganic and organic solid. Presently, literatures about functional complex materials mostly focus on magnetism, optics, electricity, biology, but the report about its catalytic area is still rare. In this theses, we choose O-Phenylenediacetic acid(1,2-H_2pda)、m-Phenylenediacetic acid(1,3-H_2pda)、p-Phenylenediacetic acid(1,4-H_2pda), as building units and use transition metal ions as Zn, Cd metal center, meanwhile, accompany aromatic ligands including N donors. As results, 12 novel organo-matel supramolecular polymers namely {[Cd(1,4-pda)(bpb)(H_2O)]·H_2O}_n(1) , {[Zn2(1,3-pda)_2(phen)_2]·4H_2O}_n(2) ,{[Cd_2(1,3-pda)_2(bpy)_2]·2H_2O}_n(3) , {[Cd_2(1,3-pda)(phen)]·2H_2O}_n(4) ,[Zn(1,3-pda)(bpp)]_n(5) , {[Zn(1,2-pda)(phen)4]·NO3·4H_2O}_n(6) ,[Zn(1,2-Hpda)_2(bpy)]_n(7) , [Zn(1,2-pda)_2(bpy)(H_2O)]_n(8) ,{[Cd_2(1,2-pda)_2(phen)_3(H_2O)]·EtOH·3H_2O}_n (9)、[Cd_2(1,2-pda)_2(bpy)_2(H_2O)_2]_n(10) ,{[Cd_2(1,2-pda)_2(ip)4]·3H_2O}_n(11),[Cd_2(1,2-pda)_2(ip)4]_n(12);The 12 complexes have been determined by the X-ray single crystal diffraction analysis, and IR spectra, thermal analyses were used to investigate their spectroscopy characters and properties. Finally, Nanoporous TiO_2 sensitized by complex has been used for cheaking photocatalytic activity for degradation of acidic fuchsin as stimulant dyes. The results show that the 3 kinds of phenylenediacetic acids mentioned above play an important role in the construction of novel organo-metal supramolecular polymers, which could act as donor-acceptor of hydrogen bonds formulating multi-dimensional expanded networks. Meanwhile, some regular conclusion have been summarized through the comparison studies on structures, assembled rules, spectroscopy characters, fluorescence,photocatalytic activity of TiO_2 sensitized by compounds of the supramolecular polymers constructed from 3 kinds of phenylenediacetic acids.
引文
[1] Fujita M, Yu S Y, Kusukawa T. Self-Assembly of Nanometer-Sized Macrotricyclic Complexes from Ten Small Component Molecules[J]. Angew. Chem., Int. Ed., 1998, 37(15): 2082-2085.
    [2] Lavoie G G, Bergman R G. Synthesis, Srtuctural Characterization, and Reactivity of Novel Zirconium(IV) Complexes Containing the Tropidiny Ligand[J]. Angew. Chem., 1997, 109: 2450-2452.
    [3] Yaghi O M, Li H. T-Shaped Molecular Building Units in the Porous Structure of Ag(4,4'-bpy)·NO3[J]. J. Am. Chem. Soc., 1996, 118: 295-296.
    [4] James S L. Metal-organic frameworks[J]. Chem. Soc. Rev., 2003, 5: 276-288.
    [5] Roth A, Koth D, Gottschaldt M, Plass W. An Inorganic Thymidine Helix: Design of Homochiral Helical Arrays[J]. Crystal. Growth. Design., 2006, 12: 2655-2657.
    [6] Yaghi O M, Li H, Avis C D, Richardson D. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids[J]. Acc. Chem. Res., 1998, 31: 474-484.
    [7] Zaworotko M. J. Crystal engineering of diamondoid networks[J]. Chem. Soc. Rev., 1994, 23: 283-288.
    [8] Zaworotko M J. Superstructural diversity in two dimensions: crystal engineering of laminated solids[J]. Chem. Commun., 2001, 1: 1-9.
    [9] Hagrman P J, Haagrman D, Zubieta J. Organic-inorganic hybrid materials: from"simple" coordination polymers to organodiamine-templated molybdenum oxides[J]. Angew. Chem. Int. Ed., 1999, 38: 2638-2684.
    [10] Janiak C. Functional Organic Analogues of Zeolites Based on Metal-Organic Coordination Frameworks[J]. Angew. Chem. Int. Ed., 1997, 36: 1431-1434.
    [11] Cotton F A, Hillard E A, Murillo C A. The First Dirhodium Tetracarboxylate Molecule without Axial Ligation: New Insight into the Electronic Structures of Molecules with Importance in Catalysis and Other Reactions[J]. J. Am. Chem. Soc., 2002, 124: 5658-5660.
    [12] Chae H K, Siberio D Y, Kim J, et al. Experimental investigation of geologically produced antineutrinos with KamLAND[J]. Nature, 2004, 427(8): 523-527.
    [13] Scheiner S, Ka T, Pattanayak J. Comparison of Various Types of Hydrogen Bonds Involving Aromatic Amino Acids[J]. J. Am. Chem. Soc., 2002, 124(44): 13257-13264.
    [14] Cotton F A, Hillard E A, Murillo C A. The First Dirhodium Tetracarboxylate Molecule without Axial Ligation: New Insight into the Electronic Structures of Molecules with Importance in Catalysis and Other Reactions[J]. J. Am. Chem. Soc., 2002, 124(20): 5658-5660.
    [15] Zaworotko, Michael J. Cooperative bonding affords a holesome story[J]. Nature, 1997, 386(20): 220-221.
    [16] Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(18): 276-279.
    [17] Tong M L, Kitagawa S, Chang H C, et al. Temperature-controlled hydrothermal synthesis of a 2D ferromagnetic coordination bilayered polymer and a novel 3D network with inorganic Co3(OH)2 ferrimagnetic chains[J]. Chem. Commun., 2004, 4: 418-420.
    [18] Saied O, Maris T, James D W. Deformation of Porous Molecular Networks Induced by the Exchange of Guests in Single Crystals[J]. J. Am. Chem. Soc., 2003, 125(49): 14956-14957.
    [19] Tong M L, Chen X M, Batten S R. A New Self-Penetrating Uniform Net, (8,4) (or 86), Containing Planar Four-Coordinate Nodes[J]. J. Am. Chem. Soc., 2003, 125(52): 16170-16171.
    [20] Du M, Guo Y M, Chen S T, et al. Preparation of Acentric Porous Coordination Frameworks from an Interpenetrated Diamondoid Array through Anion-Exchange Procedures: Crystal Structures and Properties[J]. Inorg. Chem., 2004, 43(4): 1287-1293.
    [21] Zhang J P, Zheng S L, Huang X C, et al. Two Unprecedented 3-Connected Three-Dimensional Networks of Copper(I) Triazolates: In Situ Formation of Ligands by Cycloaddition of Nitriles and Ammonia[J]. Angew. Chem. Int. Ed., 2004, 43(2): 206-209.
    [22] Mironov Y V, Naumov N G, Brylev K A, et al. Rhenium-Chalcogenide-Cyano Clusters, Cu2+ Ions, and 1,2,3,4-Tetraaminobutane as Molecular Building Blocks for Chiral Coordination Polymers[J]. Angew. Chem. Int. Ed., 2004, 43(10): 1297-1300.
    [23] Fujita Mm, Umemoto K, Yoshizawa M, et al. Molecular paneling via coordination[J]. Chem. Commun., 2001, 6: 509-519.
    [24] Lin W, Evans O R, Xiong R G, et al. Supramolecular Engineering of Chiral and Acentric 2D Network. Synthesis, Structures and Second-Order Nonlinear Optical Properties of Bis(nicotinato)zinc and Bis{3-[2-(4-pyridyl) ethenyl] benzoate} cadmium[J]. J. Am. Chem. Soc., 1998, 120(50): 13272-13273.
    [25] Miller S J, Epstein A J. Organic and organometallic Molecular Magnetic Meterials-Designer[J]. Angew. Chem. Int. Ed. Engl., 1994, 33(4): 385-415.
    [26]杨士姚.钴、镍、锌离子与芳香羧酸配位聚合物的组装、结构和性质[D]:厦门,厦门大学,2002.
    [27] Eddaoudi M, Moler D B, Li H L, et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robudt metai- organic carboxylate frameworks[J]. Acc. Chem. Res., 2001, 34: 319-324.
    [28] Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404(27): 982-986.
    [29] Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283: 1148-1152.
    [30] Reineke T M, Eddaoudi M, Fehr M, et al. From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites[J]. J. Am. Chem. Soc., 1999, 121(8): 1651-1657.
    [31] Yaghi O M, Li G M, Li H L. Selecyive binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378: 703-706.
    [32] Yaghi O M, Li H L, Groy T L. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid[J]. J. Am. Chem. Soc., 1996, 118: 90-96.
    [33] Lee E Y, Suh M P. A Robust Porous Material Constructed of Linear Coordination Polymer Chains: Reversible Single-Crystal to Single-Crystal Transformations upon Dehydration and Rehydration[J]. Angew. Chem. Int. Ed., 2004, 43(21): 2798-2801.
    [34] Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chem. Rev., 2001, 101(6): 1629-1658.
    [35] Kitagawa S, Kitaura R, Noro S I. Functional Porous Coordination Polymers[J]. Angew. Chem. Int. Ed., 2004, 43(18): 2334-2375.
    [36] Wang R, Hong M, Yuan D, et al. The Role of Spacers between Carboxylate Groups in Self-Assembly Process: Syntheses and Characterizations of Two Novel Cadmium(II) Complexes Derived from Mixed Ligands[J]. Eur. J.Inorg.Chem., 2004, 1: 37-43.
    [37] Wang R H, Hong M C, Luo J H, et al. A new type of three-dimensional framework constructed from dodecanuclear cadmium(II) macrocycles[J]. Chem. Commun., 2003, 8: 1018-1019.
    [38] Robson R. A net-based approach to coordination polymers[J]. J. Chem. Soc. Dalton Trans., 2000, 21: 3735-3744.
    [39]徐杰.超分子建筑—从分子到材料[M].科学技术文献出版社, 2000, 525.
    [40]沈昊宇,廖代正.生物体系和模型化合物顺磁离子间的磁相互作用[J].化学通报, 1998, 10: 14-15.
    [41] Bianchini C, Giambastiani G, Meli A, et al. Diastereoselective Alkylation-Vinylation of Norbornene Catalyzed by a Tetrahedral Cobalt(II) Pyridinimine Complex[J]. Organometallics., 2007, 26: 1303-1305.
    [42] Canales E, Corey E J. Highly Enantioselective [2+2]-Cycloaddition Reactions Catalyzed by a Chiral Aluminum Bromide Complex[J]. J. Am. Chem. Soc., 2007, 129: 12686-12687.
    [43] Fujita M, Kwon Y J, Washizu S, et al. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine[J]. J Am.Chem.Soc., 1994, 116: 1151-1152.
    [44] Fujita M, Umemota K, Yoshizaw M, et al. Molecular paneling via coordination[J]. Chem.Commun., 2001, 6: 509-518.
    [45] Hasegawa S, Kitagawa S. Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis[J]. J. Am. Chem. Soc., 2007, 129: 2607-2614.
    [46] Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantio-selective separation and catalysis[J]. Natuer, 2000, 404: 982-986.
    [47] Hong S L, Ryu J Y, lee J Y, et al. Synthesis, structure and heterogeneous catalytic activities of Cu-containing polymeric compounds: anion effect and comparison of homogeneous vs. heterogeneous catalytic activity[J]. Dalton.Tran., 2004, 17: 2697-2710.
    [48] Suresh E, Boopalan K, Jasra E V, et al. Bhadbhade, Synthesis and single crystal investigation of two-dimensional rectangular network [M(4,4'-bpy)(phth)(H2O)]n·2H2O with small neutral cavities[J]. Inorg. Chem., 2001, 40(16): 4078-4080.
    [49] Wan Y H, Jin L P, Wang K Z, et al. Hydrothermal synthesis and structural studies of novel 2-D lanthanide coordination polymers with phthalate acid[J]. New J. Chem., 2002, 26(10): 1590-1596.
    [50] Ma C B, Wang W G, Zhu H P, et al. Phenanthroline-manganese inclusion complexes of dicarboxylic acid containing extensive hydrogen-bonding interactions[J]. Inorg. Chem. Commun., 2001, 4(12): 730-733.
    [51] Ding H, Chen W, Yue Q, et al. Synthesis, structure and photoluminescence of two zinc carboxylate polymers with different coordination archite- ctures[J]. Chinese J. Chem., 2003, 21: 1305-1309.
    [52] Zheng C G, Zhang J, Chen Z F, et al. A novel three-dimensional network isophthalato-bridged lanthanide complex: {[Ln(C6H4COO-)-1,3][CH3COO-] (H2O)2}·H2O[J]. J. Coord. Chem., 2002, 55(7): 835-840.
    [53] Tao J, Chen X M, Huang R B, et al. Hydrothermal synthesis and crystal structures of two rectangular grid coordination polymers based on unique prismatic [M8(ip)8(4,4'-bipy)8] building blocks [M=Ni(Ⅱ) or Cd(Ⅱ) , ip = isophthalate, bipy=bipyridine][J]. J. Solid State Chem., 2003, 170(1):130-134.
    [54] Zhang L P, Wan Y H, Jin L P. Hydrothermal synthesis and crystal structure of neodymium(Ⅲ) coordination polymers with isophthalic acid and 1,10-phenanthroline[J]. Polyhedron, 2003, 22(7): 981-987.
    [55] Groeneman R H, Atwood J L. Terephthlate bridged coordination polymers based upon group two metals[J]. Cryst. Eng., 1999, 2(4): 241-249.
    [56] Pan L, Zheng N W, Wu Y G, et al. Synthesis, characterization and structural transformation of a condensed rare earth metal coordination polymer[J]. Inorg. Chem., 2001, 40(5): 828-830.
    [57] Yuan R X, Xiong R G, Chen Z F, et al. Preparation, characterization and X-ray crystal structure of a one-dimensional calcium-based coordination polymer with strong blue emission[J]. Inorg. Chem. Commun., 2001, 4(7): 430-433.
    [58] Zhu L N, Zhang L Z, Wang W Z, et al. [Zn(BDC)(H2O)]n: a novel blue luminescent coordination polymer constructed from BDC-bridged 1-D chains via interchain hydrogen bonds (BDC=1,4-benzenedicarboxylate)[J]. Inorg. Chem. Commun., 2002, 5(12): 1017-1021.
    [59] Baeg J Y, Lee S W. A porous, two-dimensional copper coordination-polymer containing guest molecules: hydrothermal synthesis, structure, and thermal property of [Cu(BDC)(bipy)](BDCH2) (BDC=1,4-benzenedicarboxylate; bipy= 4,4'-bipyridine)[J]. Inorg. Chem. Commun., 2003, 6(3): 313-316.
    [60] Zhang X M, Tong M L, Gong M L, et al. Supramolecular organisation of polymeric coordination chains into a three-dimensional network with nanosized channels that clathrate large organic molecules[J]. Eur. J. Inorg. Chem., 2003, 1: 138-142.
    [61] Ma C B, Chen C N, Liu Q T, et al. Structural transformation mediated by o-, m-, p-phthalates from two to three dimensions for manganese/ phthalate/ 4,4'-bpy complexes (4,4'-bpy=4,4'-bipyridine)[J]. New J. Chem., 2003, 27(5): 890-894.
    [62] Zhang L J, Zhao X L, Cheng P, et al. A unique two-dimensional terephthalate-bridged structure with alternate tetra- and pentra- coordinate cobalt(Ⅱ) sites. Synthesis, crystal structure and magnetic properties of [{Co3(tp)2(OH)2(phen)2}n][J]. Bull. Chem. Soc. Jpn., 2003, 76(6): 1179-1184.
    [63] Braun M E, Steffek C D, Kim J, et al. 1,4-benzenedicarboxylate derivatives as links in the design of paddle-wheel units and metal-organic framewodks[J]. Chem. Commun., 2001, 24: 2532-2534.
    [64]阎冰,张洪杰,王淑彬,倪嘉赞.铽苯二酸同多核和异多核配合物的发光性能[J].应用化学, 1997, 14(6): 84.
    [65] Shi X, Zhu G S, Fang Q R, et al. Novel supramolecular frameworks self- assmbled from one- dimensional polymeric coordination chains[J]. Eur. J. Inorg. Chem., 2004, 1: 185-191.
    [66]袁良杰.流变相合成法及其应用研究[D]:武汉:武汉大学, 2003.
    [67] Zhou Y F, Jiang F L, Xu Y, et al. Two-dimensional lanthanide-isophthalate coordination polymers containing right- and left- handed helical chains[J]. J. Mol. Struct., 2004, 691: 191-195.
    [68] Zhou J, Sun C, Jin L P. Metal-dependent assembly and structure of metal 1,4-phenylenediacetate complexes with 1,10-phenanthroline[J]. J. Mol. Struct., 2007, 832: 55-62.
    [69] Albert F C, Lin C, Carlos A M. Connecting Pairs of Dimetal Units To Form Molecular Loops[J]. Inorg. Chem., 2001, 40: 472-477.
    [70] Lin X, Wang Y Q, Cao R, et al. A new chain-like cadmium(Ⅱ) coordination polymer containing chains of water molecules[J]. Acta Cryst, 2005, 61: 292-294.
    [71] Pan L, Adams K M, Hernandez H E, et al. Porous Lanthanide-Organic Frameworks: Synthesis, Characterization, and Unprecedented Gas Adsorption Properties[J]. J. Am. Chem. Soc., 2003, 125: 3062-3067.
    [72] Zhou Y F, Wang R H, Wu B L, et al. Syntheses, structures and luminescent properties of chain-like Zn(Ⅱ) and Cd(Ⅱ) complexes of 1,3-phenylenedia- cetate ligand[J]. J. Mol. Struct., 2004, 697: 73-79.
    [73]杨燕、曾明华、蒙法艳、邓前军、梁宏、张淑华.之字链聚合物[Zn(O-bda)(phen)(H2O)]n·nH2O的结构[J].无机化学学报, 2007, 23(1): 137-140.
    [74] Chen Z L, Zhang Y Z, Liang F P. A novel nickel(Ⅱ) coordination polymer incorporating 1,4-phenylenediacetic acid and 1,10-phenanthroline[J]. Acta Cryst, 2006, 62: 48-50.
    [75] Xu Y Q, Zhou Y F, Yuan D Q, et al. Cadmium(Ⅱ)-1,4-phenylenediacetate Complex with Green Luminescence[J]. Comments. Inorg. Chem, 2006, 25(6): 704-708.
    [76] Braverman M A, LaDuca R L. Luminescent Two- and Three-Dimensional Zinc Coordination Polymers Containing Isomers of Phenylenediacetate and a Kinked Tethering Organodiimine[J]. Cryst. Growth Des., 2008, 15: 894-897.
    [77] Volkmer D, Tellenbroker J, Dirk G, et al. Structure and Properties of the Dendron-Encapsulated Polyoxometalat (C52H60NO12)12[(Mn(H2O))3 (SbW9O33)2], a First Generation Dendrizyme[J]. J. Am. Chem. Soc., 2002, 124(35): 10489-10496.
    [78] Maxym V V, Neumann R. New Heterogeneous Polyoxometalate Based Mesoporous Catalysts for Hydrogen Peroxide Mediated Oxidation Reactions[J]. J. Am. Chem. Soc., 2004, 126(3): 884-890.
    [79] Gabriel J, Rodriguez R, Kim W B, et al. Hydrogenation of Benzene Using Aqueous Solution of Polyoxometalates Reduced by CO over Gold Catalysts[J]. J. Am. Chem. Soc., 2005, 127(31): 10790-10791.
    [80] Liu S Q, Dirk G, Kurth B V D. The Structure of Self-Assembled Multilayers with Polyoxometalate Nanoclusters[J]. J. Am. Chem. Soc., 2002, 124: 12280-12284.
    [81] Peter T, Witte P L, Alsters. Self-Assembled Na12[WZn3(ZnW9O34)2] as an Industrially Attractive Multi-Purpose Catalyst for Oxidations with Aqueous Hydrogen Peroxide[J]. Org. Process Res. Dev., 2004, 8(3): 524-531.
    [82] Chae H K, Siberio D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(05), 523-527.
    [83] Haiper S R, Cohen S M. Self-Assembly of Two Distinct Supramolecular Motifs in a Single Crystalline Framework[J]. Angew. Chem. Int. Ed., 2004, 43(18): 2385-2388.
    [84] Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(12): 705-714.
    [85] Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry[J]. Coord. Chem. Rev., 2003, 246: 247-289.
    [86] Eddaoudi M, Moler D B, Li H, et al. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal?Organic Carboxylate Frameworks[J]. Acc. Chem. Res., 2001, 34(4): 319-330.
    [87] Stang P J, Olenyuk B. Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra[J]. Acc. Chem. Res., 1997, 30(12): 502-518.
    [88] Shoji O, Okada S, Satake A, et al. Coordination Assembled Rings of Ferrocene-Bridged Trisporphyrin with Flexible Hinge-like Motion: Selective Dimer Ring Formation, Its Transformation to Larger Rings, and Vice Versa[J]. J. Am. Chem. Soc., 2005, 127(7): 2201-2210.
    [89] Harkins S B, Peters J C. A Highly Emissive Cu2N2 Diamond Core Complex Supported by a [PNP]-Ligand[J]. J. Am. Chem. Soc., 2005, 127(7): 2030-2031.
    [90] Hoffart D J, Loeb S J. Metal-Organic Rotaxane Frameworks: Three-Dimensional Polyrotaxanes from Lanthanide-Ion Nodes, Pyridinium N-Oxide Axles, and Crown-Ether Wheels[J]. Angew. Chem. Int. Ed., 2005, 44(6): 901-904.
    [1] Yaghi O M, Li H, David C, et al. Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids[J]. Acc. Chem. Res., 1998, 31(8): 474-484.
    [2] Batten S R, Robson R. Interpentrating Nets: Ordered, Periodic Entanglement[J]. Angew. Chem. Int. Ed., 1998, 37(11): 1460-1494.
    [3] Hagrman D, Hagrman J, Zubieta J. Organic-Inorganic Hybrid Materials: From "Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides[J]. Angew. Chem. Int. Ed., 1999, 38(18): 2638-2684.
    [4] Zhang L P, Hou H W. Coordination polymers[J]. J. Inorg. Chem., 2000, 16(1): 1-12.
    [5] Tao J, Tong M L, Chen X M, et al. Blue photoluminescent zinc coordination polymers with supertetranuclear cores[J]. Chem. Commun., 2000,20: 2043-2045.
    [6] Mizuta T, Wang J, Miyoshi K. X-ray crystallographic studies on the molecular structures of some salts of Titanium(III) complexes with ethylenediamine-N,N,N′,N′-tetraacetate, Ba[Ti(edta)(H2O)]Cl·6H2O, Na2[Ti(edta)(H2O)]2·NaCl·7H2O, and K[Ti(edta)(H2O)]·2.5H2O[J]. Bull. Chem. Soc. Jpn., 1993, 66: 3662-3670.
    [7] Sun D F, Cao R, Liang Y, et al. Hydrothermal syntheses, structures and properties of terephthalate-bridged polymeric complexes with zig-zag chain and channel structures[J]. J. Chem. Soc. Dalton. Trans., 2001, 16: 2335-2340.
    [8] Douglas B E, Radanovic D J. Coordination chemistry of hexadentate EDTA-type ligands with M(III) ions[J]. Coord. Chem. Rev., 1993, 128: 139-165.
    [9] Liu G F, Ye B H, Chen X M, et al. Interlocking of molecular rhombi into a 2D polyrotaxane network via– interactions. Crystal structure of [Cu2(bpa)2(phen)2 (H2O)]2·2H2O (bpa2– = biphenyl-4,4-dicarboxylate, phen = 1,10-phenanthroline)[J]. Chem. Commun., 2002, 14: 1442-1444.
    [10] Plater M J, St M R, Foreman J, et al. Synthesis and characterisation of polymeric manganese and zinc 5-hydroxyisophthalates[J]. Polyhedron, 2001, 20(18): 2293-2303.
    [11] Zheng S L, Tong M L, Yu X L, et al. Syntheses and structures of six chain-, ladder- and grid-like co-ordination polymers constructed fromμ-hexamethylenetetramine and silver salts[J]. J. Chem. Soc. Dalton Trans., 2001, 5: 586-592.
    [12] Tao J, Tong M L, Chen X M. Hydrothermal synthesis and crystal structures of three-dimensional co-ordination frameworks constructed with mixed terephthalate (tp) and 4,4 -bipyridine (4,4 -bipy) ligands: [M(tp)(4,4-bipy)] (M = CoII, CdII or ZnII)[J]. J. Chem. Soc. Dalton. Trans., 2000, 20: 3669-3674.
    [13] Forster P M, Burbank A R, Livage C, et al. The role of temperature in the synthesis of hybrid inorganic–organic materials: the example of cobalt succinates[J]. Chem Commun., 2004, 4: 368-340.
    [14] Carlucci L, Ciani G, Proserpio D M. A new type of entanglement involving one-dimensional ribbons of rings catenated to a three-dimensional network in the nanoporous structure of[Co(bix)2(H2O)2](SO4)·7H2O [bix = 1,4-bis(imidazol-1-ylmethyl)benzene][J]. Chem. Commun., 2004, 4: 380-382.
    [15] Wang R H, Hong M C, Luo J H, et al. The First Two Novel Metallomacrocycles Constructed from Cubane-Like Cu4I4 Cluster Units and Ditopic Diamines[J]. Eur. J. Inorg. Chem., 2002, 12: 3097-3100.
    [16] Khuhaw M Y. High-performance liquid chromatographic determination of uranium using solvent extraction and bis(salicyladehyde) tetramethyle- nediimine as complexingre agent[J]. Talanta, 1995, 42: 1925-1929.
    [17] Kondo M, Okubo T, Asami A, et al. Rational Synthesis of Stable Channel-Like Cavities with Methane Gas Adsorption Properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine-2,3-dicarboxylate; L=a Pillar Ligand)[J]. Angew. Chem. Int. Ed., 1999, 38: 140-143.
    [18] Kyle K R, Ryu C K, Dibenedetto J A, Ford P C. Photophysical studies in solution of the tetranuclear copper(I) clusters Cu4I4L4 (L = pyridine or substituted pyridine)[J]. J. Am. Chem. Soc., 1991, 113(8): 2954-2965.
    [19] Clegg W, Harbron D R, Homan C D, et al. Crystal structures of three basic zinc carboxylates together with infrared and FAB mass spectrometry studies in solution[J]. Inorg. Chim. Acta., 1991, 186(1): 51-60.
    [20] Bianchini C, Giambastiani G, Meli A, et al. Diastereoselective Alkylation-Vinylation of Norbornene Catalyzed by a Tetrahedral Cobalt(II) Pyridinimine Complex[J]. Organometallics., 2007, 26: 1303-1305.
    [21] Tao J, Shi J X, Tong M L, et al. A New Inorganic?Organic Photoluminescent Material Constructed with Helical [Zn3(μ3-OH)(μ2-OH)] Chains[J]. Inorg. Chem., 2001, 40(24): 6328-6330.
    [22] Zheng S L, Tong M L, Tan S D, et al. Syntheses, Structures, and Properties of Three Novel Coordination Polymers of Silver(I) Aromatic Carboxylates with Hexamethylenetetramine Exhibiting Unique Metal?πInteraction[J]. Organometallics, 2001, 20(25): 5319-5325.
    [23] Haiper S R, Cohen S M. Self-Assembly of Two Distinct Supramolecular Motifs in a Single Crystalline Framework[J]. Angew. Chem. Int. Ed., 2004, 43: 2385-2388.
    [24] Cui Y, Lee J S, Lin W B. Interlocked Chiral Nanotubes Assembled from Quintuple Helices[J]. J. Am. Chem. Soc., 2003, 125: 6014-6418.
    [25]陈丽华,王展旭,林希伟.镉(II)与对苯二甲酸和2 ,2′-联吡啶配合物光谱性质的理论研究[J].分子科学学报., 2007, 23: 143-145.
    [26] Steed J W, Atwood J L. Supramolecular Chemistry[M]. Wiley and Sons, New York, 2000, 582-620.
    [27] Lehn J M. Supramolecular Chemistry: Concepts and Perspectives[D]. VCH, New York, 1995.
    [28] Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement[J]. Angew. Chem. Int. Ed., 1998, 37: 1460-494.
    [29] Zhou Y F, Wang R H. Synthese, structures and luminescent properties of chain-like Zn (II) andCd(II) complexes of 1,3-phenylenediacetate ligand[J]. J. Mol. Struct., 2004, 697: 73-79.
    [30] Canales E, Corey E J. Highly Enantioselective [2+2]-Cycloaddition Reactions Catalyzed by a Chiral Aluminum Bromide Complex[J]. J. Am. Chem. Soc., 2007, 129: 12686-12687.
    [31] Chen Z L, Zhang Y Z, Liang F P. A novel nickel(II) coordinationpolymer incorporating 1,4-phenylene-diacetic acid and 1,10-phenanthroline[J]. Acta Cryst. A., 2006, 62(2): 47-60.
    [32] Long P, Kristie M A, Hayden E. Hernandez.Porous Lanthanide-Organic Frameworks: Synthesis, Characterization, and Unprecedented Gas Adsorption Properties[J]. J. Am. Chem. Soc., 2003, 125(10): 3062-3067.
    [33] Cotton F A, Lin C, Murillo C A. Connecting Pairs of Dimetal Units To Form Molecular Loops[J]. Inorg. Chem., 2001, 40(3): 472-477.
    [34] Zhou J, Sun C Y, Jin L P. Metal-dependent assembly and structure of metal 1,4-phenyle-nediacetate complexes with 1,10-phenanthroline[J]. J. Mol. Struct., 2007, 832: 55-62.
    [35] Bruker A., SMART and SAINT-NT, Programs for data collection and data reducetion, Madison, WI, 1996.
    [36] Sheldrick G.-M., SHELXL Version 5.0, A system for structure solution and refinement[D]. bruker-axs, madison, WI, 1997.
    [37] Lu W G, Su C Y, Lu T B, Jiang L, Chen J M. Two Stable 3D Metal?Organic Frameworks Constructed by Nanoscale Cages via Sharing the Single-Layer Walls[J]. J. Am. Chem. Soc., 2006, 128(1): 34-35.
    [38] Ye B H, Tong M L, Chen X M. Metal-organic molecular architectures with 2,2'-bipyridyl-like and carboxylate ligands[J]. Coord Chem Rev., 2005, 249: 545-565.
    [39] Zou R Q, Zhang R Q, Du M, et al. Highly-thermostable metal–organic frameworks (MOFs) of zinc and cadmium 4,4 -(hexafluoroisopropylidene) diphthalates with a unique fluorite topology[J]. Chem. Commun., 2007, 24: 2467.
    [41] Du M, Jiang X J, Xiao X J. Controllable assembly of a 3-D metal–organic supramolecular framework with the inclusion of a well-resolved 1-D water morph[J]. Inorg. Chem. Commun., 2006, 12(9): 1199-1230.
    [42] Sommerfeld T, Jordan K D. Electron Binding Motifs of (H2O)n- Clusters[J]. J. Am. Chem. Soc., 2006, 128(17): 5828-5833.
    [43] Zang S Q, Su Y, Duan C Y, et al. Coexistence of chiral hydrophilic and achiral hydrophobic channels in one multi-helical-array metal–organic framework incorporating helical water cluster chains[J]. Chem. Commun., 2006, 48: 4997-4999.
    [44] Pascu G I, Hotze A C G, Sanchez C C, et al. Dinuclear Ruthenium(II) Triple-Stranded Helicates: Luminescent Supramolecular Cylinders That Bind and Coil DNA and Exhibit Activity against Cancer Cell Lines[J]. Angew. Chem. Int. Ed., 2007, 46: 4374-4378.
    [45]李东升,王尧宇,史启祯.新型一维链状配位聚合物{[Cu2(dhbd)(bipy)2]?10H2O}n研究[J].化学学报, 2005, 639 (17) : 1633-1637.
    [46] Montney M R, Supkowski R M, Laduca R L. Five-fold interpenetrated strongly hydrogen bonded rhomboid grid layers constructed from the aggregation of neutral coordination complexes with long pendant aromatic dicarboxylate and organodiimine ligands[J]. Cryst. Eng. Comm., 2008, 10: 111–116.
    [47] Hu T L, Zou R Q, Li J R, et al. d10 Metal complexes assembled from isomeric benzenedicarboxylates and 3-(2-pyridyl)pyrazole showing 1D chain structures: syntheses, structures and luminescent properties[J]. Dalton. Trans., 2008, 12: 1302–1311.
    [48] Zhang J, Xie Y, Ye R Q, et al. Blue to Red Fluorescent Emission Tuning of a Cadmium Coordination Polymer by Conjugated Ligands[J]. Eur. J. Inorg. Chem., 2003, 14: 2572-2577.
    [49] Kitagawa S, Kitaura R, Noro S I. Functional Porous Coordination Polymers [J]. Angew. Chem. Int. Ed., 2004, 43: 2334-2375.
    [50] Zhang X M, Tong M L, Gong M L, et al. Supramolecular organisation of polymeric coordination chains into a three-dimensional network with nanosized channels that clathrate large organic molecules[J]. Eur. J. Inorg. Chem., 2003, 1: 138-142.
    [51] Kondo M, Okubo T, Asami A, et al. Rational Synthesis of Stable Channel-Like Cavities with Methane Gas Adsorption Properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine-2,3-dicarboxylate; L=a Pillar Ligand)[J]. Angew. Chem. Int. Ed., 1999, 38: 140-143.
    [52] Kennard C H L. The crystal structure of (hydrogen ethylenediaminete-traacetato) aquoferrate(III) and gallate(III)[J]. Inorg. Chim. Acta., 1967, 1: 347-354.
    [53] Liu Y, Peng C D, Ni X W, et al. Population pharmacokinetics of valproate in Chinese children with epilepsy[J]. Acta Photonica Sinica. 2007, 28(10): 1677-1684.
    [54] Wang C C, Yang C H, Lee C H, et al. Hydrothermal synthesis and structural characteri-zation of a two-dimensional polymeric copper(II) complex containing an unusual bridged H2edta2- ligand[J]. Inorg.Chem., 2002, 41: 429-432.
    [55] Ma L F, Wang Y Y, Wang L Y, et al. Two Novel Flexible Multidentate Ligands for Crystal Engineering: Syntheses, Structures, and Properties of CuII, MnII Complexes with N-[(3-Carboxyphenyl)sulfonyl]glycine and N,N -(1,3-Phenylenedisulfonyl)bis(glycine)[J]. Eur. J. Inorg. Chem., 2008, 5: 693-703.
    [56] Liu Y, Liu C, Ni X W, et al. Phorbol-induced surface expression of NR2A subunit homologues in HEK293 cells1[J]. Acta Photonica Sinica., 2006, 27(12): 1580-1583 (in Chinese).
    [57] Chen X L, Wang J J, Hu H M, et al. Hydrothermal Syntheses, Crystal Structures and Luminescence of Two Novel Metal-organic Frameworks[J]. Z. Anorg, Allg. Chem., 2007, 633: 2053-3058.
    [1]吴洪达,黄映恒.过氧化氢的分解反应[J].河池师专学报, 2002, 22 (2): 45-47.
    [2]韦友欢,李艳丽,陈小华等.略谈影响H2O2分解的因素[J].南京师范高等专科学校学报, 2004, 21 (1) : 85- 86.
    [3]辛剑,孟长功.基础化学实验[M].大连理工大学,北京:高等教育出版社, 2004, 298.
    [4]罗澄源.物理化学实验(第三版)[M].北京:高等教育出版社, 1992, 589.
    [5]吕希伦.无机过氧化合物化学[M].北京:科学出版社, 1986, 423.
    [6] Hiscao H, Zhao Jincai. Pho todegradation of surfactants: 8 comparison of photocatalytic p recesses between anionic sodium dodecylbenzenesulfonate and cationic benzyldodecyldimethy lammonium chloride on the TiO2 surface [J]. J Phys Chem. , 1992, 96 (5) : 2226- 2228.
    [7]谷宁,武树兰,李春梅. H2O2的反应级数随温度变化的实验[J].河北师范大学学报(自然科学版). 1994, 18(4): 51-54.
    [8]石双群,周红敏.碱, Fe3+, Mg2+对过氧化氢稳定性的影响[J].化学世界, 1999, 3: 128-130.
    [9]朱伟长.乙二胺四酸铁催化分解过氧化氢的反应机理[J].催化学报, 1997, 18: 83-86.
    [10] Fujishima A, Honda K. Electrochemica roteolysis of water at a semiconductor [J]. Nature., 1972, 238: 37-38.
    [11]陈德明,王亭杰,雨山江,金涌.纳米T iO2的性能、应用及制备方法[J].材料工程, 2002,11: 42- 47.
    [12]姚超,朱毅青,成庆堂,顾立新.纳米级二氧化钛粉体的制备方法和发展趋势[J].现代化工, 2000, 20: 20-23.
    [13]徐群华,杨绪杰,陆路德,汪信.纳米T iO2对UP树脂的改性研究[J].塑料工业, 2000, 28: 43-44.
    [14] Hoffmann M R, Martin S T. Environmental application of semiconductor photo-catalysis[J]. J. Chem. Rev., 1995, 95: 69- 96.
    [15] Benamor S, baud G, Besse J P, et al. Structural and optical properties of sputtered titania films[J]. Mater. Sci.& Eng., 1997, 47: 110-112.
    [16] Watanabea T, Nakajimaa A, Wanga R. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass[J]. Thin Solid Films, 1999, 351: 260- 263.
    [17] Feitz A J, Waite T D, Jones G, et al. Photocatalytic degradation of the blue green algal toxin microcystin-LR in a natural organicaqueous matrix[J]. Environ.Sci. Technol., 1999, 33: 243-249.
    [18] Fujishima A, Rao T N , Trykournal D A. Titanium dioxide photocatalysis[J]. Journal of Photochem. Photobiol., 2000, 1: 1-21.
    [19] Bessekhouad Y, Robert D, Weber J V. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions[J]. J.Photochem. Photobiol A. Chem., 2003, 157: 47–53.
    [20] Inagaki M, Nakazawa Y, Hirano M, et al. Preparation of stable anatase-type TiO2 and itsphotocatalytic performance[J]. Int.J.Inorg.Mater., 2001, 3: 809–811.
    [21] Uchihara T, Matsumura M, Ono J, et al. Effect of ethylene diamine tetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium sulfide and cadmium selenide [J]. J.Phys.Chem., 1990, 94: 415–418.
    [22] Moser J, Punchihewa S, Pierre P, et al. Surface complexation of colloidal semiconductors strongly enhances interfacial electron- transfer rates[J]. Langmuir., 1991, 7: 3012–3018.
    [23] Choiw, Termina A, Hoffmann M R. The role of metal-ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge-carrier recombination dynamics[J]. J. Phys.Chem., 1994, 98: 13669–13679.
    [24]周武艺,唐绍裘,张世英等.制备不同掺杂稀土纳米TiO2光催化剂及其光催化活性比较研究[J].硅酸盐学报, 2004, 32: 1203–1208.
    [25] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269– 271.
    [26] Umebayashi T, Yamaki T, Itoh H. Band gap narrowing of titanium dioxide by sulfur doping[J]. Appl.Phys. Lett., 2002, 81: 454–546.
    [27] Jimmy C, Yu J G, Ho W K, et al. Effects of Fdoping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chem. Mater., 2002, 14: 3803–3816.
    [28] Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx–TiO2 under visible light irradation[J]. J Photochem Photobiol A: Chem, 2001, 141: 209–217.
    [29] Solbrand A, Henningsson A. Charge transport properties in dye-sensitized nanostructured TiO2 thin film electrodes studied by photoinduced current transients[J]. J.Phys.Chem.B., 1999, 103: 1078–1083.
    [30]郭莉.系列二氧化钛基纳米粉体的合成与催化性能研究[D]:延安,延安大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700