罗丹明类衍生物的合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高罗丹明荧光染料的荧光强度、发射波长、增大斯托克斯位移、扩大荧光对pH值的敏感范围、增加对一些过渡或重金属离子的识别响应,本文设计并合成了一系列底环修饰,N端基固定,不对称,双发色团以及离子识别型罗丹明衍生物,并通过紫外-可见光谱和荧光光谱对所得罗丹明衍生物进行荧光性能检测,总结出其结构特点与其光学性能之间的关系。主要包括以下内容:
     合成了硝基和氨基罗丹明,并通过氨基的重氮化,桑德迈尔反应得到了一系列5(6)位卤代罗丹明衍生物;合成并分离出底环不同位置单氯代、全氟(或氯)代罗丹明衍生物以及底环上无羧基的“Rhosamine”类衍生物。光谱性能研究表明,与母体罗丹明B相比,硝基的罗丹明荧光强度明显减弱,氨基罗丹明荧光强度增强,λmax-ex和λmax-em红移;罗丹明B底环上引入不同的卤原子使λmax-ex和λmax-em有所增长,随着卤代基个数的增加,λmax-ex和λmax-em红移,斯托克斯位移降低;底环上的的羧基对荧光性能几乎没有影响。
     合成了氧杂蒽母环末端N固定的五个罗丹明衍生物,经紫外-可见光谱及荧光光谱检测,五个罗丹明衍生物的λmax-ex和λmax-em明显向长波偏移20nm以上,由所处的可见光区红移至近红外光区,斯托克斯位移明显增大,荧光量子产率增加,成为近红外荧光标记试剂,结果证明N端基固定可以增加分子共平面性和刚性,对荧光的产生有利,可使荧光增强。
     设计合成了氧杂蒽母环端基氨不对称的罗丹明衍生物bdc-1~bdc-11,与对称结构罗丹明相比较,不对称罗丹明衍生物的激发光谱和发射光谱的重叠变少,斯托克斯位移明显增大,顶环结构不对称性越明显,斯托克斯位移增大就越显著。其中bdc-4、bdc-5的λmax-em明显向长波发生迁移,是很好的近红外荧光染料试剂。bdc-10改变了对pH值的敏感范围,在酸性和碱性环境下具有不同的吸收、发射波长。
     通过桥链将在不同pH值条件下进行荧光检测的罗丹明、荧光素结构连接在一起,合成了具有双发色团的两种罗丹明衍生物,不同pH值时两种罗丹明衍生物荧光光谱有明显差别,拓宽了pH的适用范围,可以作为检测细胞内部的pH值的荧光探针。
     为增加对一些过渡或重金属离子的识别响应,本文将罗丹明衍生物键合到杯[4]芳烃骨架上,合成了两种罗丹明杯[4]芳烃衍生物,对产物结构、光谱性能和对一些金属离子的识别进行了研究,两个衍生物与Cu2+、Zn2+混合溶液的紫外吸收发生明显变化,最大吸收峰强度降低,λmax-ex红移,与铜离子、锌离子在甲醇溶液中存在明显的络合现象。
In this thesis, 5 series of rhodamine derivatives were designed and synthesized including bottom ring modified, N-stabilized, asymmetrical, consisted of double fluorescence groups and ion binding rhodamine derivatives in order to improve the fluorescence intensity and quantum yield, longer-wavelengths, pH-sensitive range, the large Stokes shift and ion binding specificity. The fluorescence properities of the obtained compounds were investigated by UV-vis spectra and fluorescence spectra. The relationship between their structures and photophysical properties were summarized. The details were described below:
     Nitro-rhodamine and amino-rhodamine were synthesized. A series of 5 (6)-halo-rhodamine were obtain from amino-rhodamine through diazotization, Sandmeyer reaction. Synthesis and isolation of mono and full substituted chlororhodamines, full-fluoro substituted rhodamines and rhosamine without carboxyl group on the bottom ring were investigated in this paper. Comparing with rhodamine B, although the fluorescence intensity of aminorhodamine was improved, this property of nitrorhodamine had weakened,λex andλem were red shift. The introduction of halo element to rhodamine structure enlargedλmax-ex andλmax-em As the number of halo-atom increasing,λmax-ex andλmax-em were red shift, Stokes shift had decreased. Carboxyl group on the bottom ring had almost no influence to fluorescence properties.
     Five N stabilized rhodamine derivatives at xanthene were synthesized and their fluorescence properties were tested by UV-vis spectra and fluorescence spectra. It was found thatλmax-ex andλmax-em were red shift more than 20nm from visible light area to IR area. N-stablization increased in co-planar and rigidity which lead to the enlargement of Stokes shift and intensity of fluorescence intensity.
     Asymmetric rhodamines bdc-1~bdc-11 was designed and synthesized.the overlap betweenλmax-ex andλmax-em for these compounds decreased, at same time Stokes shift increased. The greater asymmetric degree, the larger of the Stokes shift. Theλmax-em of bdc-4 and bdc-5 were red shift. Bdc-10 showed different absorption and emission wavelengths in acid and base solution.
     Rhodamine and fluorescein were linked to obtain double fluorescence group by chemical bond. The fluorescence spectrum of the compounds showed obvious variety in different pH solution.
     Rhodamine-calix[4]arene was linked together by amide group. Its fluorescence and metal ion bind ability were tested. The UV-vis absorption changed when the addition of this compound into the methanolic solution containing Cu2+ and Zn2+.
引文
[1]夏之宁, 光分析化学,重庆: 重庆大学出版社,2004,112~128
    [2]Chen C A, Yeh R H, Lawren D S, Design and synthesis of a fluorescent reporter of protein kinase activity, J. Am. Chem. Soc, 2002, 124 (15): 3840~3841
    [3]杨冰,李瑛,徐创霞等,有机荧光材料研究进展,化学研究与应用,2003,15(1):11~16
    [4]赵瑜,李隆弟,罗丹明和荧光素类染料的固体基质室温磷光研究,分析化学,1996,24(7):745~749
    [5]Gao J X, Wang P, Giese R W, Xanthamide fluorescent dyes, Anal.Chem, 2002, 74: 6397~6401
    [6]Gordon G W, Berry G, Liang X H, et al., Fluorescence resonance energy transfer as a relative measure of molecular interaction, Biophys. J, 1998, 74: A36~A36
    [7]何立芳,林丹丽,李耀群,同步荧光分析法的应用及其新进展,化学进展,2004,16(68):79~885
    [8]Sadamoto R, Nitkura K, Sears P S, et al., Cell-wall engineering of living bacteria, J. Am. Chem. Soc, 2002, 124: 9018~9019
    [9]Pearce D A, Jotterand N, Carrico I S, et al., Derivatives of 8-Hydroxy-2-methyl quinoline are powerful prototypes for zinc sensors in biological systems, J. Am. Chem. Soc, 2001, 123 (21): 5160~5161
    [10]Weber G, Fluorescence in biophysics: accomplishments and deficiencies, Methods enzymol, 1997, 278: 1~15
    [11]Sigmund H, Pfleiderer W, A new type of labeling of nucleosides and nucleotides, Helv Chim Acta, 2003, 86 (7): 2299~2334
    [12]Walkup G K, Burdette S C, Lippard S J, et al., A new cell-permeable fluorescent probe for Zn2+, J. Am. Chem. Soc, 2000, 122 (23): 5644~5645
    [13]Adamczyk M, Chan C, Fino J, et al., Synthesis of 5-and 6-hydroxymethyl fluoresce in phosphoramidites, J. Org. Chem, 2000, 65 (2): 596~601
    [14]彭采尔,分子发光分析法(祝大昌译),上海:复旦大学出版社,1985,38~40
    [15]刘欣,王红,张华山,生物分析中近红外荧光探针进展,分析科学学报,2001,17(4):346~351
    [16]Sheakay D B, Lipowskav M, Spetrial chromatographic separation and characterization of near-infrared-labeled DNA oligomers for use in DNA sequencing, Anal Chem, 1995, 67: 247
    [17]杨祥宇,宋健,冯荣秀,荧光标记染料,化学通报,2003,9:615~622
    [18]张华山,王红,赵媛媛,分子探针与检测试剂,北京:科学出版社,2002,163
    [19]郭尧君,荧光实验技术,北京:科学出版社,1983,2~7
    [20]陈国珍,荧光分析法,北京:科学出版社,1975,16~28
    [21]黄晓峰,张远强,张英起,荧光探针技术,北京:人民军医出版社,2004:4~10
    [22]Florin S; Uwe C; Gunther B, et al., Heterocyclic compounds, ep101897, 1984
    [23]赵德丰,赵同丰,李卓舒,新型香豆素类荧光染料的合成研究,染料工业,1998,35(2):8~11
    [24]Lecher H Z, Mario S, Willard J A, et al.,, Method of preparing 4-amino-1, 8-naphthalic acid imides, Us.Patent, 2474185, 1949
    [25]Chang S C, Utecht R E, Lewis D E, Synthesis and bromination of 4-alkylamino-N-alkyl-1,8-naphthalimides, Dyes and Pigments, 1999, 43: 83~94
    [26]赵同丰,赵德丰,常玉威等,X-型 1,8 萘酰亚胺类活性荧光染料的研究,染料工业,1998,35(3):1~3
    [27]Amaresh Mishra, Rajani K Behera, Pradiptak Behera, et al, Cyanines during the 1990s: A review, Chem Rev, 2000, 100: 1973
    [28]Yue S T, Johnson L D, Huang Z, et al., Unsymmertic cyanine dyes with a cationic side chain. US.Patent, 5322130, 1994
    [29]Yarmoluk S M, Kryvorotenko D B, Kovalska V B, et al., Interaction of cyanine dyes with nucleic acids, XX: new methods for the preparation of fluorescent probes based on benzotiazol-4-[2,6-dimethylpyridinium]cyanine dyes, Dyes and Pigments, 2001, 48: 165~172
    [30]Haugland R P, Yue S T, Millurd P J, Cyclic-substituted unsymmetrical cyanine dyes , US.Patent, 5436134, 1995
    [31]沈永嘉,酞菁的合成与应用,北京:化学工业出版社,2000,42~57
    [32]David Bickar, Philp D Reid, A high~affinity protein strain for western blots, tissue prints, and electrophoretic Gels, Anal Biochem, 1992, 203: 109~115
    [33]田禾,苏建华,孟凡顺,功能性色素在高新技术中的应用,北京:化学工业出版社,2000,280~287
    [34]Yang J H, Wang M, Jin B M, Synthesis of new-infrared fluorescent dyes, Chinese Chemical Letter, 1999, 10 (8): 659~660
    [35]Haugland R P, Handbook of fluorescent probes and research chemicals. 9thed. Molecular Probes, Eugene, OR, USA, 2002, 1.6: 6~18
    [36]Huang X F, Zhang Y Q, Zhang Y Q, Fluorescence probe technology, Beijing: People`s Military Medical Press, 2004, 49~53
    [37]Lefevre C, Kang H C, Haugland R P, et al., Texas red-x and rhodamine red-x, new derivatives of sulforhodamine 101 and lissamine rhodamine b with improved labeling and fluorescence properties, Bioconjugate Chem, 1996, 7 (4): 482~489
    [38]吴世康,荧光探针技术在高分子科学中的应用,化学进展,1996,8(2):118~128
    [39]杨丙成,关亚风,谭峰,超痕量分析中的激光诱导荧光检测,化学进展,2004,16(6):871~878
    [40]Dela Cruz J L, Blanchard G J. The influence of chromophore structure on intermolecular interaction. A study of selected Rhodamines in polar protic and aprotic solvents, J. Phys. Chem. A., 2002, 106 (44): 10718~10724
    [41]Stavrianopoulos J G; Elazar R, Labeling reagents comprising aphenylic analogs of rhodamine dyes, US.Patent, 2004254355, 2004
    [42]Zhang Y Z, Haugland R P, Xanthylium dyes that are well retained in mitochondria, US.Patent, 5686261, 1997
    [43]Ghanadzadeh A, Zanjanchi M A, Self-association of rhodamine dyes in different host materials, Spectrochimica Acta Part A, 2001, 57 (9): 1865~1871
    [44]Ghanadzadeh A, Sariri R, Bahrpaima K, Aggregate formation of Rhodamine 6G in anisotropic solvents, Spectrochimica Acta Part A, 2001, 57 (1): 155~161
    [45]Meallier P, Moullet M, Chabaud F, et al., Phototchemistry of rhodamine 610, Dyes & Pigm, 1998, 36 (2): 161~167
    [46]Ferguson M W, Beaumont P C, Jones S E, et al., Excited state and free radical properties of rhodamine 123: a laser flash photolysis and radiolysis study, Phys. Chem. Chem. Phys, 1999, 1 (2): 261~268
    [47]Hee C K. Conjugates of sulforhodamine fluorophores with enhanced fluorescence, US.Panent, 5846737, 1998
    [48]Trung N, Francis M B, Practical synthetic route to functionalized rhodamine dyes, Organic Letters, 2003, 5 (18): 3245~3248
    [49]Haugland R P, Singer V L, Yue S T, Xanthene dyes and their application as luminescence quenching compounds, US.Panent, 6399392, 2002
    [50]Waggoner A S, “Fluorescent probes for cytometry” in Flow Cytometry and Sorting. 2nd. Wiley-Liss, 1990, 209~225
    [51]Ravi V. A convenient, solide-phase coupling of rhodamine dye acids to 5` amine-oligonucleotide, Tetrahedron Lett, 1999, 40 (43): 7611~7613
    [52]Rigler R, Widengren J, Mets U, Fluorescence Spectroscopy, Berlin: Springer, 1992: 13
    [53]Keller R A, Ambrose W P, Goodwin P M, et al., Single-molecule fluorescence analysis in solution, Appl Spectrosc, 1996, 50 (7): 12A~32A
    [54]Kohn F, Hofkens J, Schryver D, Transient photokinetics of rhodamine 3B+ClO4/- in water : toluene mixtures, Chem Phys, 2000, 262 (2-3): 453~465
    [55]Renge I, A model of inhomogeneous broadening and pressure induced hole shifts in the optical spectra of organic chromophores in glasses, J Phys Chem A, 2001, 105 (40): 9094~9103
    [56]Pevenage D, Auveraer M, Schryver D, Influence of the molecular structure on the lateral distribution of xanthene dyes in Langmuir-Blodgett films, Langmuir, 1999, 15 (24): 8465~8473
    [57]Houghten R A, Dooly C T, Appel J R, De novo identification of highly active fluorescent kappa opioid ligands from a rhodamine labeled tetrapeptide positional scanning library, Bioorganic & Medicinal Chemistry Lett, 2004, 14 (8): 1947~1951
    [58]Gee K R, Weinberg E S, Kozlowski D J, Caged q-rhodamine dextran: a new photoactivated fluorescent tracer, Bioorganic & Medicinal Chemistry Lett, 2001, 11 (16): 2181~2183
    [59]Rucker V C, Shane F, Christian, et al., Sequence Specific Fluorescence Detection of Double Strand DNA, J Am Chem Soc, 2003, 125, 1195~1202
    [60]Rucker V C, Dunn A R, Shantanu S, et al., Mechanism of sequence-specific fluorescent detection of dna by n-methyl-imidazole, n-methyl-pyrrole, and β-alanine linked polyamides, J Phys Chem B, 2004, 108: 7490~7494
    [61]Kurt B, Todd E, Novel polymer capsules from amphiphilic graft copolymers and cross-metathesis, J Am Chem Soc, 2003, 125: 12070~12071
    [62]Rao T S, Zhang W, Xiao H, et al., Synthesis of novel tyrosinyl fret cassettes, terminators, and their potential use in dna sequencing, nucleosides, Nucleotides & Nucleic Acid, 2003, 22 (5~8): 1443~1445
    [63]Sando S, Hiroshi A, Kool. E T, Quenched auto-ligating dnas: multicolor identification of nucleic acids at single nucleotide resolution, J Am Chem Soc, 2004, 126: 1081~1087
    [64]Smith G. A, James C, Clarke S D, The design and properties of a series of calcium indicators which shift from rhodamine-like to fluorescein-like fluorescence on binding calcium, J Chem Soc, Perkin Trans II, 1993, 1195
    [65]Berman E M, Hollis Showalter H D, Trimethylsilyl polyphosphate for intramolecular Friedel-Crafts cyclizations, J Org Chem, 1989, 54 (23): 5642~5644
    [66]Claudine S V, Doizi D, Gerald G, Synthesis of isomers of rhodamine 575 and rhodamine 6g as new laser dyes, Tetrahedron Lett, 1999, 40 (26): 4803~4806
    [67]Mao F, Leung W Y, Haugland R P, Sulfonated xanthene derivatives, US. Pantent, 6130101, 2000
    [68]Denis G, Abdelkrim H, Halogenated rhodamine derivatives and applications thereof, US.patent, 0212126, 2003
    [69]Louis G, Villeneuve L, Glasson R, et al., Rhodamine derivatives for photodynamic therapy of cancer and in vitro purging of the leukemias, US.patent, 5773460, 1998
    [70]吴世康,具有荧光发射能力有机化合物的光物理和光化学问题研究,化学进展,2005,17(1):15~39
    [71]Bell K H, McCaffery L F, Use of menthyl 2-methoxynaphthalene-1-sulfinates in the Andersen synthesis of optically active sulfoxides, facile cleavage by Grignard reagents of some aromatic methyl ethers, Australian J Chem, 1994, 47 (10): 1925~1933
    [72]Benson S C, Lam J Y L, Upadhya K G, et al., Dibenzorhodamine fluorescent labels and energy transfer dyes, US.Panten, 5936087, 1999
    [73]Lam Y L, Benson S C, Menchen S M. Extended rhodamine compounds useful as fluorescent labels, US.Patent, 6248884, 2001
    [74]Sauer M, Han K T, Drexhage K H, et al., New fluorescence dyes in the red region for biodiagnostics, J Fluoresc, 1995, 5 (3): 247~261
    [75]Drexhage K H, Martin G, What's ahead in laser dyes, Laser Focus, 1973, 9 (3): 35~39
    [76]Panchuk V N, Haugland R P, Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates, J Histochem & Cytochem, 1999, 47 (9): 1179~1188
    [77]Herrmann R, Josel H P, Drexhage K H, et al., Pentacyclic compounds and their use as absorption or fluorescent dyes, US.Patent, 5750409, 1998
    [78] Lee L G, Graham R J, Werner W E, et al., Water-soluble rhodamine dye peptide conjugates, US.Patent, 6372907B1, 2002
    [79]Hammond P R, Preparation of certain m-Aminophenols and the use thereof for preparation of laser dyes, US.Patent, 4622400, 1986
    [80]Liu J X, Diwu Z J, Haugland R P, et al., Derivatives of 1,2-dihydro-7- hydroxyquinolines containing fused rings, WO.Patent, 0212195, 2002
    [81]Liu J X, Diwu Z J, Haugland R P, et al., Rational design and synthesis of a novel class of highly fluorescent rhodamine dyes that have strong absorption at long wavelengths, Tetrahedron Lett, 2003, 44 (23): 4355~4359
    [82]Hammond P R, Feeman J F, Field G F, et al., Water soluble laser dyes, US.Patent, 5792389, 1998
    [83]Hammond P R, Feeman J F, Fluorinated laser dyes, US.Patent, 4945176, 1990
    [84]Liu J, Bhalgat M, Zhang C, et al., Fluorescent molecular probes V: A sensitive caspase-3 substrate for fluorometric assays, Bioorganic & Medicinal Chemistry Lett, 1999, 9 (22): 3231~3236
    [85]Cai S X, Zhang H Z, Guastella J, et al., Design and synthesis of rhodamine 110 derivative and Caspase-3 substrate for enzyme and cell-based fluorescent assy, Bioorganic & Medicinal Chemistry Lett, 2001, 11 (1): 39~42
    [86]Alder A, Mark B S, Beckelmann, et al., Polymer-bound fluorophores as optical ion sensors, Wo.Patent, 9711067, 1997
    [87]Alder A, Barnard S, Optischer sensor zur bestimmiung von kationen, EP, 0623599, 1994
    [88]Corries J E T, Trentham D R, Photo-Lable compounds, their synthesis and use as fluorophores, US.Patent, 5434272, 1995
    [89]Kyle R G, Sun W C, Haugland R P, et al., Novel derivatization of protein thiols with fluorinated fluoresceins, Tetrahedron Lett, 1996, 37 (44): 7905~7908
    [90]Josel H P, Herrmann R, Drexhage K H, Rhodamine derivatives and the use thereof, US.Patent, 6184379, 2001
    [91]Lee L G, Benson S C, Rosenblum B B, 4,7-Dichlororhodamine Dyes, US.Patent, 5847162, 1998
    [92]Burgess K, Burghart A, Chen J, et al., New chemistry of BODIPY dye, and BODIPY dye casettes featuring through-bond energy transfer, Proc SPIE Int Soc Opt Eng, 2000, 3926: 95~105
    [93]Burghart A, Thoresen L H, Chen J, et al., Energy transfer cassettes based on BODIPY? dyes, Chem Commun, 2000, 6 (22): 2203~2204
    [94]Zhang Y Z, Haugland R P, Xanthylium Dyes That Are Well Retained In Mitochondria, US.Patent, 5686261, 1997
    [95]Jiao G S, Castro J C, Kevin B, Mircowave-assisted syntheses of regioisomerically pure bromorhodamine derivatives, Organic Lett, 2003, 5 (20): 3675~3677
    [97]Corrie J E T, Craik J S. Chemical systhesis of rhodamine derivatives, Wo.Patent, 9509170, 1995
    [98]Ikeda H, kawamura H, Mizogami S, et al., Rhodamine derivative, coloring matter, collor conversion film and organic electroluminescent element, JP.Patent, 2000103975 (A), 2000
    [99]Tetsuo N, Hirotatsu K, Diaminorhodamine derivatives, US.Patent, 6201134, 2001
    [100]Hirotatsu K, Miki H, Tetsuo N, et al., Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore, Anal chem, 2001, 73 (9): 1967~1973
    [101]Tetsuo N, H K, Kazuya K, Diaminorhodamine derivatives, US.Patent, 0147035, 2004
    [102]Hoekstra D, Boer T De, Klappe K, et al., Fluorescence method for measuring the kinetics of fusion between biological membranes, Biochem, 1984, 23 (24): 5675~5681
    [103]Macdonald R I, Characteristics of self-quenching of the fluorescence of lipid- conjugated rhodamine in membranes, J Biol Chem, 1990, 265 (23): 13533~13539
    [104]Pozzi D, Lisi A, Ros I De, et al., Use of octadecylrhodamine fluorescence dequenching to study vesicular stomatitis virus fusion with human aged red blood cells, Photochem & Photobiol, 1993, 57 (3):426~430
    [105]Ramos S S, Vihena A F, Santos L, et al., 1H And 13C NMR spectra of commercial rhodamine ester derivaties, Magn Reson in Chem, 2000, 38 (6): 475~478
    [106]Louis G, Luv V, Giasson R, et al., Novel rhodamine derivatives for photodynamic there of cancer and in vitro purging of the leukemias, US.Patent, 5556992, 1996
    [107]Louis G, Luv V, Giasson R, et al., Method of in vitro purging of leukemias, US.Patent, 5773460, 1996
    [108]顾新华,戴光松,吴世康,罗丹明-B及其烷基衍生物在表面活性剂溶液中探针功能的研究,感光科学与光化学,1995,13(1):78~82
    [109]Costela A, Arbeloa T L, Moreno I G, et al., Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylicmonomer, J Appl Phys, 1996, 80 (6): 3167~3173
    [110]Arbeloa T L, Costela A, Garcia I, et al., Photophysical and lasing properties of a new ester derivative of rhodamine 6G, J Lumin, 1997, 75 (4): 309~317
    [111]Arbeloa F L, Arbeloa T L, Costela A, Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices, Applied physics B: Lasers and Optics, 1998, 64 (6): 651~657
    [112]Sne?ana M, Zvjezdana C, Leo F, et al., Lipophilic derivative of rhodamine 19: characterization and spectroscopic properties, Analytica Chimica Acta, 2002, 468 (1): 13~25
    [113]Mayer U, Andreas O, Rhodamine Dyes, US.Patent, 4647675, 1978
    [114]Chiarello R H, Liu W, Yokabata K E, Rhodamine-based fluorophores useful ac labeling reagents, US.Patent, 6750357B1, 2004
    [115]Drexhage K H, Jutta A J, Monika H S, Carboxamide-substituted dyes for analytical applications, Wo.Patent, 055117A2, 2002
    [116]Virginie D, Francis F, Czarnik A W, A long-wavelength fluorescent chemodosimeter selective for Cu (ii)ion in water, J Am Chem Soc, 1997, 119 (31), 7386~7387
    [117]Thomas R, Kazumi S, Detection of nitric oxide and nitrite by using a rhodamine-type fluorescent indicator, Anal Commun, 1998, 35 (6), 195~197
    [118]Yang X F, Guo X Q, Zhao Y B, Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite, Talanta, 2002, 57 (5): 883~890
    [119]Arnost M J, Meneghinl F A, Palumbo P S, et al., Fluorescent conjugates and biological diagnostic assay, EP.Patent, 0285179, 1988
    [120]Morrison L E, Wang Y, Ju J, et al., Rapid sizing of short tandem repeat alleles using capillary array electrophoresis and energy-transfer fluorescent primers, Anal Chem, 1995, 67 (7): 1197~1203
    [121]Haugland R P, Wojciech S, Reactive derivatives of sulforhodamine 101 with enhanced hydrolytic stability, US.Patent, 5798276, 1998
    [122]Tian H, The influence on the triplet state in antenna rhodamine dyes of intramolecular energy transfer and charge transfer, J Photochem Photobiol A Chem, 1995, 91: 125~130
    [123]Tian H, He Y, Chang C P, Synthesis and spectral properties of novel laser copolymers based on modified rhodamine 6G and 1,8-naphthalimide, J Mate Chem, 2000, 10 (9): 2049~2055
    [124]Drexhage K H, Arden J, Deltau G, Fluorescence and Lasing Properties of Rhodamine Dyes, J Lumi, 1991, 48&49 (1): 352~358
    [125]Tian H, Tang Y F, Chen K C, Bichromophoric rhodamine dyes and their fluorescence properties, Dyes & Pigm, 1994, 26 (3): 159~165
    [126]Tian H, Su J H, Chen K C, et al., Fluorescence Spectra and Lifetime on Novel Bichromophoric Dyes, Photographic Science & Photochem, 1996, 14 (4): 355~359
    [127]Su J H, Tian H, Chen K C, Novel Trichromophoric rhodamine dyes and their fluorescence properties, Dyes & Pigm, 1996, 31 (1): 69~77
    [128]Dimitri P, Auweraer V M, Frans C D S, Intramolecular photo-induced electron transfer between pyrene and a xanthene dye, Chem Phys Lett, 2000, 319 (5~6): 512~520
    [129]Huglin D, Seiffert W, Zimmermann H W, Time-resolved microfluorometric study of the binding sites of lipophilic cationic pyrene probes in mitochondria of living HeLa cells, J Photochem Photobiol B: Biology, 1995, 31 (3): 145~158
    [130]Ribou A C, Vigo J, Salmon J M, Synthesis and characterization of (1``-pyrene butyl)-2-rhodamine ester: a new probe for oxygen measurement ih the mitochondria of living cells, J Photochem Photobiol A Chem, 2002, 151 (1~3): 49~55
    [131]Adam G C, Vanderwal C D, Sorensen E J, et al., (-)-FR182877 is a potent and selective inhibitor of carboxylesterase-1, Angew Chem Int Ed, 2003, 42 (44): 5480~5484
    [132]Jiao G S, Thoresen L H, Burgess K, Fluorescent, Through-bond energy transfer cassettes for labeling multiple biological molecules in one experiment, J Am Chem Soc, 2003, 125: 14668~14669
    [133]Jin Wook Han, Castro J C, Burgess K, Microwave-assisted functionalization of bromo-fluorescein and bromorhodamine derivatives, Tetrahedron Letters, 2003, 44 (52): 9359~9362
    [134]Urano Y, Kamiya M, Kanda K, et al., Evolution of fluorescein as a platform for finely tunable fluorescence probes, J. Am. Chem. Soc, 2005, 127: 4888~4894
    [135]Meng X M, Zhu M Z, Liu L, Novel highly selective fluorescent chemosensors for Zn (II), Tetrahedron Lett, 2006, 47: 1559~1562
    [136]宋宝驹,若丹明 110 的合成,2,7-二氯荧光素的纯制及它们激光特性的研究,光电子与激光,1990,Vol.1(4):223~229
    [137]Shen M, Shi Y, Tao Q, Synthesis of fluoran dyes with improves properties, Dyes and Pigments, 1995, 29: 45~55.
    [138]罗惠萍,潘建林,陆问礼,压、热敏染料中间体二苯甲酮衍生物的合成,精细化工,1992,9:47~48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700