纳米ZnO的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别对均匀沉淀法和在超声振荡下用直接沉淀法合成纳米氧化锌进行了详细地研究,并研究了表面活性剂对氧化锌粒径的影响以及纳米氧化锌对紫外光的吸收。
     首先对纳米氧化锌的制备方法进行探索,研究表明:均匀沉淀法以及在超声振荡下用直接沉淀法在液相制备纳米氧化锌中有明显的优势。
     均匀沉淀法制备纳米氧化锌过程中原料的起始浓度、反应温度、反应时间、终点pH值、搅拌速度、洗涤方式以及焙烧温度和时间对纳米氧化锌的粒径有较大的影响。研究表明最佳工艺条件控制为:硝酸锌的浓度0.6~0.9mol/L,尿素的浓度2.6~2.8mol/L,反应温度95℃,反应时间2~3小时,反应过程伴随机械搅拌,且搅拌速度300r.min~(-1),过滤时用低浓度的氨水洗涤数次,在60~80℃的干燥箱中干燥3~4h,然后放入500~550℃的马弗炉中焙烧3小时,能得到大部分颗粒粒径分布在60~150nm之间的纳米氧化锌。
     不同的表面活性剂对纳米氧化锌的粒径影响差别较大,表面活性剂的浓度也是影响纳米氧化锌粒径的关键因素。研究表明:在液相法制备纳米氧化锌时,复合型表面活性剂以及阴离子型表面活性剂的分散性能优于非离子表面活性剂。添加浓度为3.2×10~(-3)mol/L的表面活性剂十二烷基苯磺酸钠时,沉淀物的分散活性好,能够较好的控制氧化锌的粒度;油酸钠和聚乙二醇1000复合型表面活性剂浓度分别为1.0×10~(-4)mol/L和1.6×10~(-3)mol/L时分散效果最好,能制得粒径为40-70nm的纳米ZnO。
     直接沉淀法中用氨水为沉淀剂,氨水易和锌生成络合物,根据同时平衡原理和质量平衡原理对Zn-NH_3-H_2O体系进行了详细的热力学分析和计算,并在此基础上绘制了Zn-NH_3-H_2O在25℃下的锌的平衡总浓度对数—pH图,研究了沉淀物的稳定存在区,为超声振荡直接沉淀法提供了重要的理论依据。
     在超声振荡下直接沉淀法制备纳米氧化锌的关键是控制硝酸锌的浓度、氨水的浓度以及滴加速度、表面活性剂加入时间。实验结果表明:用超声振荡直接沉淀法制备纳米氧化锌,当硝酸锌的初始浓度在0.7~1.0 mol/L,氨水和硝酸锌的摩尔比为1.0~1.2,在反应10分钟后加入油酸钠,15分钟后加入聚乙二醇1000能得到30~60nm的纳米氧化锌。
     将制得的纳米氧化锌制成浓度为0.01%~0.05%的水溶胶,在可见光区的透光率能达到90%以上,而在紫外区的吸光度能达到1.0~2.0,纳米氧化锌在可见光区优良的透光性以及紫外光区强的吸光率能用于制备防晒化妆品。
In this thesis, the methods of homogeneous precipitation and ultrasonic surge precipitation in preparation of nanoparticle ZnO and the influence of surfactants on the sizes of ZnO were studied in detail.
    Exploratory experiments for nano-ZnO preparation indicated the homogeneous precipitation and ultrasonic surge precipitation have obvious preponderance in preparation of nanometer ZnO.
    In the process of preparation of nano-ZnO by the homogeneous precipitation method, the average size of ZnO is mainly influenced by concentration of reactants, temperature, time, pH, stirring speed in the reaction process. Washing mode, calcining temperature and calcining time have effect to the average size of ZnO.
    The optimum conditions were obtained by experiments as follows: Zn(NO)2 0.6-0.8 mol/L, CO(NH2)2 2.6-2.8 mol/L, reaction temperature 95 C, reaction time 2-3 hours and stirring speed about 300 r.min-1. Zn(OH)2 was washed with low concentration ammonia, then dried for 3-4 hour at 60-80癈, and finally calcined for 3 hours at 500~550'C. ZnO with a size of 60 - 140 nm was obtained.
    Different surfactants and their concentrations have different influence on the size of ZnO prepared. The experiments with the optimum conditions showed that: compound surfactants and anion surfactants were better than non-ion surfactant for nanoparticle ZnO preparation by liquid precipitation method. Precipitate of good decentralization and nanoparticle ZnO of narrow distribution were obtained by controlling the sodium dodecyl benzene sulfonate 3.2 10-3 mol/L or sodium oleate 1.0 10-4 mol/L and PEG-1000 1.6 10-3 mol/L.
    Used as precipitator at ultrasonic surge precipitation, aqueous ammonia can increase the dissolvability of Zn(OH)2 in the form of complex. The concentration equilibrium and mass equilibrium were applied to thermodynamics analysis and calculation of the system of Zn-NH3-H2O. The diagrams of the logarithm of equilibrium concentration of the Zn-NH3-H2O system were drawn at 25 C, and the stable existing regions were studied,
    
    
    which provided and important theory basis for the process of the preparation nanoparticle ZnO by ultrasonic surge precipitation.
    The key factors of ultrasonic surge precipitation for nanoparticle ZnO preparation were the concentration of Zn(NO3)2, the concentration and dropping time of aqueous ammonia, the adding time of surfactants. The results showed that: Zn(NO3)20.7~1.0 mol/L, the mole rate of ammonia to Zn(NO3)2 is 1.0-1.2 to 1, by adding sodium oleate after reacting 10 minutes and adding PEG 1000 after 15 minutes, ZnO with a size of 30~60nm was obtained.
    0.01%~0.05% nano-ZnO was dispensed in water and its properties of ultraviolet and visible light absorbing were studied. The transmittance of nano-ZnO in visible zone was more than 90% and its absorbance in ultraviolet zone was 1.0-2.0. The nano-ZnO can be used to screen ultraviolet in cosmetic because the excellent properties of transmittance in visible zone and absorbance in ultraviolet zone.
引文
[1] 曹茂盛著.超微颗粒的制备科学与技术.哈尔滨:哈尔滨工业大学出版社,1995
    [2] 田春霞.纳米技术的进展.现代材料动态,2001,9:1-2
    [3] 钱军民,李旭痒,黄海燕.纳米材料的性质及其制备方法.化工新型材料,2001,29(7):41~43
    [4] 张立德,牟季美.纳米材料和纳米结构(第一版).北京:科学出版社,2001
    [5] 苏品书.超微粒子材料技术.北京:复汗出版社,1989:48~49
    [6] 刘忠范,朱涛,张锦.纳米化学.大学化学,2001,16(5):1~10
    [7] 易求实,吴新明,谭志城.纳米ZnO的制备及低温热容研究.无机材料学报,2001,16(4):600~624
    [8] 刘雪宁,扬治中.表面改性的纳米氧化锌的制备及其吸收特性.物理化学学报,2000,16(8):746~748
    [9] 李泽群,徐信兰,唐康态等.多形态ZnO纳米粒子的制备及其紫外-可见吸收性能研究.广州化学,1998,3:41~43
    [10] 石刚,牟季美,蔡维理.纳米氧化锌在阳极氧化铝模板中的强制发光研究.化学物理学报,2001,14(1):95~98
    [11] 日本的科学与技术编辑部编.日本的科学与技术,长春:长春日报社第二印刷厂,1985:21~25
    [12] Yu Baolong, Zou Bingsuo, Wu xiaochun etc. Preparation of ZnO nanometer powder and their ESR properties. Chinese journal of semiconductors, 1995, 16 (7): 70~73
    [13] 祖庸,刘超峰,李晓娥等.均匀沉淀法合成纳米氧化锌.现代化工,1997,(9):33-35
    [14] 沈茹娟,贾殿赠,乔永民等.纳米氧化锌的固相合成及其气敏特性.无机材料学报,2001,16(4):625~629
    [15] 货北平,王占生,张锡辉.半导体光催化有机物的研究现状及发展趋势.环境科学,1994,16(3):83~85
    [16] 吴海宝,董小耒.太阳能-TiO_2非均相光催化氧化染料污水脱色研究.中国环境科学,1997,17(1):93~96
    [17] 丁士文,瞿永清,王静.纳米钛酸钡基介电材料的水热合成、结构与性能.中国科学,2001,31(6):525~529
    
    
    [18] Wang Y, Horron. Nanometer—sized semiconductor clusters metal synthesis, quantum size active and photophsical properties. J. phy. Chem., 1991, 95(5): 52
    [19] Wang Y. Local field in small semiconductor dusters and particles. J. phy. chem 1991.95(5): 119
    [20] 刘建本,陈上,吴竹青等.纳米氧化锌水溶胶的紫外-可见光特性.精细化工,2002,19(2):93-94
    [21] 祖庸,雷闫盈,王训等.纳米氧化锌的奇妙用途.化工新型材料,1997,27(3):14~16
    [22] 马正先,韩跃新,郑龙熙等.纳米氧化锌的应用研究.化工进展,2002,21(1):60~63
    [23] Koudelka L, Horak J. Morphology of polycrystalline ZnO and its physical properties. J. Mater. Sci, 1994, 29:1497~1499
    [24] Chittofrati A, Matijevic E. Uniform particles of Zinc oxide of different morphologies. Colloids and surfaces, 1990, 48: 65~67
    [25] 竺玉书.纳米材料在涂料中的应用.涂料工业,2000,11:24~27
    [26] 周榨万,楚笼懿,张再昌.纳米氧化锌在橡胶复合材料中的初步应用.橡胶工业,2002,49:403~406
    [27] 伍永军,鲍慈光,林建国.压敏电阻复合粉体用氧化锌的制备方法简介.云南化工,1995,4:14~17
    [28] 董立峰,崔作林.电弧等离子体制备纳米氧化锌的气敏特性.材料研究学报,1998,12(4):407~410
    [29] 沈茹娟,贾殿赠,乔永民.纳米氧化锌的固相合成及其气敏特性.无机材料学报,2001,16(4):625~629
    [30] 丁士文,张绍岩,柳数娟等.水热合成纳米氧化锌及其光催化性能研究.河北大学学报,2002,22(3):246~249
    [31] 石刚,牟季美,蔡维理.纳米氧化锌在阳极氧化铝模板中的强制发光研究.化学物理学报,2001,14(1):95~98
    [32] 张卫东,吴伶芝等,纳米雷达隐身材料研究进展.宇航材料工艺,2001,3:19~21
    [33] 王海.雷达吸波材料的研究现状和发展方向.上海航天,1999,1:55~57
    [34] 杨秀键,施朝淑,许小亮.纳米ZnO研究及其进展.无机材料学报,2003,18(1):1~8
    [35] 游文南.化工进展,1992,(5):21
    [36] L. F. Dong, Z. L. Cui, Z. K. Zhang. Gas sensing properties of nano -ZnO prepared by ARC plasma method. Scdpta mater, 1997. 10: 815~818
    [37] Gleiteer H. Progress in Mater. Sci, 1989, N33: 223
    
    
    [38] Vollater D. Aerosol methods advanced techniques for nanoparticle science and nanopowder Technology in: Fiβan H, Karow H V, Kauffeldt Th. Proc. of the ESF Esploratory Workshop. Duisburg, Germany, 1993: 15
    [39] 祖庸,刘超峰,李晓娥.超细氧化锌的合成与技术进展.化工新型材料,1997,8:11~14
    [40] 刘超峰,祖庸.纳米氧化锌的制备与研究.化工新型材料,1995,11:13~15
    [41] 王文亮,李东升,侯向阳等.超声辐射沉淀法纳米氧化锌的制备与表征.化学研究与应用,2001,13(112):157~159
    [42] Ju C. S., Lee M. G., Honn S. Hwahak Konahak, 1997, 35(5): 655~650
    [43] 刘超峰,胡行方,祖庸.以尿素为沉淀剂制备纳米氧化锌粉体.无机材料学报,1999,14(3):391~396
    [44] Ding-shiwen, Zhang -shaoyang, Liu-shujuan. Hydrothermal Synthesis and Photocatalytic Property of Nano—ZnO. Journal of Hebei University, 2002, 22(3): 246~249
    [45] Daring Chen, Xiuling Jiao, Gang Cheng. Solid State Communications, 2000, 113: 363~366
    [46] 张德尧.纳米氧化锌的新水热法的制备技术.稀有金属快报,2002,6:21~22
    [47] 张海平,谈定生,韩月香等.微乳液法制取ZnO超细粉末.上海大学学报,2001,7(2):128~132
    [48] Ki Chang Song. Preparation of nanosize tin oxide particles from water-in-oil micro emulsions. J Colloid Interface Sci., 1999, 212: 193~196
    [49] 何天平,彭子飞.微乳法制备纳米级WO_3粉体.合成化学,1997,5(1):4~6
    [50] Yingying Gu, Shangbin Sang, Kelong Huang et al. Synthesis o Mn-Zn-ferrite annoscale particles by hydrothermal method. Joural of Central South University of Technology, 2000, 7(1): 37~39
    [51] 崔若梅,庞海龙,张文理等.微乳液中制备ZnO—CuO超微粒子.西北师范大学学报,2000,36(4):46~49
    [52] 王金,吴谨光,徐光宪.反胶团或微乳液法制备超微粒子的研究进展.化学通报,1995,9:1~4
    [53] Boutonnet M, Kizling J, Stenins P. Collids and Surfaces, 1982, 5: 209
    [54] 陈忠.溶胶—凝胶法制备纳米TiO_2-Al_2O_3复合粉体.深圳大学学报,1998,15(1):81~85
    [55] 张国昌,陈运法,吴镇江.溶胶-凝胶法制备硅系有机.无机杂化分离膜.高等学校化学学报,2001,22:713~716
    [56] 郁平,房鼎业.纳米氧化锌的制备.化学世界,2000,6:291~293
    [57] Elghal M S, Slack W, Vann W et al. J Phys Chem, 1994, 98(12): 3067~3070
    
    
    [58] 朱勇,沈辉,刘配田等.无机材料学报,1993,8(1):111~113
    [59] Yuanhua Lin, Zilong Tang, Zhangtai Zhang. Preparation of nanometer zinc oxide powders by Plasma pyrolysis technology and their applications. J. Am. Ceram. Soc, 2000, 83(11): 2869~2871
    [60] A. Dierstein, H.Natter, F. Stephan et al. Electrochemical deposition under oxidizing conditions (EDOC): A new synthesis for nanocrystalline metal oxides. Sciptamater, 2001, 44: 2209~2212
    [61] Takuya Tsuzuki, Paul G. Mclormick. ZnO nanoparticles synthesised by mechanochemical procession. Scriptamater, 2001, V44: 1731~1734
    [62] L. Fdong, Z. L. Cui, Z. K. Zhang. Gas section properties of nano-ZnO prepared by ArC Plasma method. Scripta mater, 2000, 18: 815~819
    [63] Xintong Zhang, Jiaqi Zhuang et al. preparation of nanoparticle zinc oxide. Acta Physico-chimica Sinica, 2000, 16(7): 636-642
    [64] Li Dongsheng, Shi Zhenmin, Qin Zhenpin. Preparation of nanometer zinc oxide by sol-gel precursor method. Jishou daxue xuebao, 2001, 22(1): 75~77.
    [65] 黄焱球,刘梅东,曾亦可等.ZnO超微粉的溶胶—凝胶法制备及晶体生长.硅酸盐学报,2001,29(6):580~583
    [66] 徐克强,潘庆宜,孙雨安.纳米氧化锌的乳液合成.无机材料学报,1998,14(3):354~359
    [67] Li wei-Jun, Shi Ee-Wei, Qin ZhenPing et al. Hydrothermal praration of nanoparticle ZnO powders. Journal of materials science letters, 2001, 20(15): 1381~1383
    [68] 辛显双,周百斌,刘双全等.均匀沉淀法制备纳米氧化锌的工艺条件.化学与粘合,2002,5:203~209
    [69] 王加龙,田杰漠,戴遐明.等离子体法制备纳米ZnO粉末.材料导报,2000,14:352~353
    [70] Dong Lifeng, Cui ZuoLin. Gas sensing properties of nano-ZnO prepared by arc plasma. Cailiao yanjiu xuebao, 2000, 12(4): 407~410
    [71] Lin Yuanhua, Li Dongsheng, Hou Xiangyang et al. Preparation of nanometer zinc oxide powders by plasma pyrolysis and their applications. American Ceramic Society, 2000, 83(11): 2869~2871
    [72] 刘雪宁,杨治中.表面改性的纳米氧化锌的制备及其吸收特性.物理化学学报,2000,16(8):746~748
    [73] 王文亮,李东升,候向阳等.超声辐射沉淀法纳米ZnO的制备与表征.化学研究与应用,2001,13(2):157~159
    
    
    [74] 高艳阳,王金霞,胡辉.纳米氧化锌的固相合成.应用化工,2002,31(5):13~14
    [75] 刘建伟,刘有智,张艳辉.超重力技术制备纳米氧化锌的工艺研究.化学工程师,2001,21(5):21~23
    [76] 印永嘉.物理化学简明手册第一版.北京:高等教育出版社,1988
    [77] Bard A. J. , Parsons R. , Jordan. Standard potentials in aqueous solution. New York: Marcel Deader Inc, 1985:249~253
    [78] 傅献彩,沈文霞,姚天扬.物理化学(第四版).北京:高等教育出版社,1997,7:1004
    [79] 仲维卓,华素坤,晶体生长形态学(第一版).北京:科学出版社,1999,10:15~19
    [80] 李武,高世扬.晶体生长机理.盐湖研究,1994,3(2):27~31
    [81] 吴树森.应用物理化学.第一分册—界面化学与胶体化学.北京:高等教育出版社,1983:36~42
    [82] 孙静,高濂,郭景坤.无机材料学报,1997,12(1):35~40
    [83] 孙静,高濂,郭景坤.现代技术陶瓷,1998,19(3):898~902
    [84] Himenz Paul C. Principles of Colloid and Surface Chemistry. New York: Marcel Dekker.Inc.1986:710~730
    [85] 李强,高濂,严东生等.纳米ZnO制备工艺中毛电位与分散性的关系.无机材料学报,1999,14(5):813~817
    [86] 张乐从,张乐惠.晶体生长.北京:科学出版社,1981:137~161,64~72
    [87] J. Calenderer. Sol Energy Mater. 1981, (5): 337
    [88] 卢寿慈.粉体加工技术第一版.北京:中国轻工业出版社,1999,4:51~62
    [89] 戚文彬.表面活性剂与分析化学(上册)第一版.北京:中国计量出版社,1986
    [90] 段世择,王万心.非离子表面活性剂第一版.北京:中国铁道出版社,1990
    [91] 刘程主编.表面活性剂应用大全(修订版).北京:北京工业大学出版社,1994
    [92] 李春喜,王子镐.超声技术在纳米材料制备中的应用.化学通报,2001,5:268~271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700