湿法炼锌过程中锌铁分离与铁资源利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为有效利用硫化锌精矿中的铁资源,避免铁渣堆存对生态环境的污染,并进-步提高铟、锌回收率,本论文提出了“湿法炼锌过程中锌铁分离与铁资源利用”的新工艺,采用“浸出-锌精矿还原-置换除铜-中和沉铟-深度净化-水热法沉铁-铁氧体制备”的流程处理来宾冶炼厂现有炼锌工艺产出的高酸浸出渣,并进行了系统研究,得出了一些有意义的结果:
     高浸渣浸出前采用硫酸化焙烧预处理可提高金属浸出率,Zn、Fe、In的浸出率均达96%以上,各金属平衡较好,Ag、Sn、Pb等有价金属在浸出渣中富集;浸出液用锌精矿还原,Fe3+还原率可达96.25%以上;还原后液用铁粉置换除铜,除铜率达99.7%以上,Fe3+含量降至小于0.2g·L-1;除铜后液用碱式碳酸锌中和沉铟,In沉淀率为96.55%,铟渣品位达3%以上;将沉铟后液进行深度净化,经硫化与中和除杂后,硅含量降至0.008g·L-1;以净化液为原料进行水热法沉铁,沉铁率达90.73%以上,与Fe2+结合的硫酸根可再生为硫酸返回浸出工序使用;所得赤铁矿粉经水洗与煅烧预处理脱杂后符合YHT3级软磁铁氧体用铁红标准,所制备的低功耗软磁铁氧体的平均初始磁导率达到TDK公司PC40和PC30产品质量标准。
Aimed at value-added utilization of iron resource in sphalerite concentrate and complete elimination of environmental pollution caused by waste ferric residue heaping, a new process for iron-zinc separation and iron resource utilization was proposed in present dissertation. Using the process of "leaching--reduction by zinc concentrate--cementation for copper removal--neutralizing for precipitation of indium--deep cleaning-separate zinc and iron with hydrothermal method--prepare Mn-Zn soft magnetic ferrite" to deal with the high-leaching residue produced by Laibin smelter. Theoretical and technical studies were carried out in detail and some meaningful conclusions were obtained.
     The experimental results show that the leaching ratio of Zn, Fe and In is higher than 96% by pretreat the high-leaching residue with sulfation roasting befor leaching. Using sphalerite concentrate as reductive reagent, the reduction ratio of Fe3+is 96.25%. The removing ratio of Cu2+ is 99.7% in the process of iron powder cementation. And the content of Fe3+ reduced to less than 0.2g·L-1. When neutralization precipitating indium using basic zinc carbonate as neutralizer, the average precipitation ratio of indium is about 96.55%.The average content of indium in In-enriched residue was more than 3%. After deep purification, the content of Si reduced to 0.008g·L-1. The precipitation ratio of iron can reach 90.73% by hydrothermal method. Sulfuric acid is vegenerated simultaneously and recycled back to acid leaching operation. After water washing and calcinations, hematite powder obtained meets the requirement of YHT3 level of ferric oxide used as soft magnetic ferrite raw materials. It can be used to prepare lower losses Mn-Zn soft magnetic ferrite. The average initial permeability of the lower losses Mn-Zn soft magnetic ferrite meets PC40 and PC30 product quality standards of the TDK Company.
引文
[1]彭容秋.锌冶金[M].长沙:中南大学出版社,2005
    [2]徐采栋,林蓉,王大成.锌冶金物理化学[M].上海:上海科学技术出版社,1979
    [3]《铅锌冶金学》编委会.铅锌冶金学[M].北京:科学出版社,2003
    [4]梅光贵,王德润,周敬元,等.湿法炼锌学[M].长沙:中南大学出版社,2001
    [5]彭容秋.重金属冶金学[M].长沙:中南大学出版社,2004
    [6]黄佩丽,田荷珍.基础元素化学[M].北京:北京师范大学出版社,1994
    [7]高保军.锌冶炼技术现状及发展探讨[J].中国有色冶金,2008(3):12-16
    [8]孙德垫.国内外锌冶炼技术的新进展[J].中国有色冶金,2004,33(3):1-4
    [9]刘志宏.国内外锌冶炼技术的现状及发展动向[J].世界有色金属,2000(1):23-26
    [10]蒋继穆.我国锌冶炼现状及近年来的技术进展[J].中国有色冶金,2006(5):19-23
    [11]周敬元.铅锌冶炼技术现状及发展方向[J].有色金属工业,2001(5):42-45
    [12]张乐如.现代铅锌冶炼技术的应用与特点[J].世界有色金属,2007(4):20-22
    [13]高良宾.葫芦岛锌厂竖罐炼锌70年回望[J].中国有色冶金,2007,36(1):1-4
    [14]郭天立,高良宾.当代竖罐炼锌技术述评[J].中国有色冶金,2007,36(1):5-6
    [15]王振岭.电炉炼锌[M].北京:冶金工业出版社,2001
    [16]陈德喜,段力强.我国电炉炼锌工艺的技术进步与发展[J].有色金属(冶炼部分),2003(2):20-23
    [17]汤文俚.ISP工艺在韶冶的发展与实践[J].湖南有色金属,2006,22(6):21-23
    [18]李夏林.韶冶铅锌密闭鼓风炉Ⅰ系统技术改造实践[J].有色冶炼,2001(5):12-15
    [19]Sasaoka Hideo, Tatsuta Norio, Kadoya Hiroki. Recent operational improvements in the ISP plant[J]. Metallurgical Review of Mining and Metallurgical Institute of Japan,1996,13(1):154-165
    [20]张金成.西北铅锌冶炼厂锌浸出工艺的研究[J].甘肃有色金属,1998,3:2-8
    [21]Kaskiala Toni. Determination of mass transfer between gas and liquid in atmospheric leaching of sulphidic zinc concentrates[J]. Minerals Engineering, 2005,18(12):1200-1207
    [22]Filippou Dimitrios. Innovative hydrometallurgical processes for the primary processing of zinc[J]. Mineral Processing and Extractive Metallurgy Review,
    2004,25(3):205-252
    [23]Buban K R, Collins M J, Masters I M, et al. Comparison of direct pressure leaching with atmospheric leaching of zinc concentrates[C]. Proceedings of the TMS Fall Extraction and Processing Conference. Warrendale PA,2000.727-738
    [24]董巧龙.锌精矿常压浸出与加压浸出工艺比较[J].中国有色冶金,2007,4:24-26
    [25]高良宾,赫冀成,徐红江.硫化锌精矿高温高压浸出技术[J].有色矿冶,2007,23(4):33-36
    [26]王海北,蒋开喜,施友富.硫化锌精矿加压酸浸新工艺研究[J].有色金属(冶炼部分),2004,5:2-4
    [27]胡云,朱云.难选氧化锌矿氨浸的热力学[J].云南冶金,2004,33(1):28-31
    [28]朱云,胡汉,苏云生,等.难选氧化锌矿氨浸动力学[J].过程工程学报,2002,2(1):81-85
    [29]张保平,唐谟堂,杨声海.锌氨配合体系电积锌研究[J].湿法冶金,2001,20(4):175-178
    [36]杨声海,唐谟堂,何静,等.锌焙砂氨法生产高纯锌[J].中国有色冶金,2004(2):14-17
    [37]杨声海,唐谟堂.Zn(Ⅱ)-NH3-NH4Cl-H2O体系生产金属锌[J].有色金属(冶炼部分),2001(1):7-9
    [30]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报,2003,34(6):619-623
    [31]张保平,唐谟堂.NH4Cl-NH3-H2O体系浸出氧化锌矿[J].中南工业大学学报,2001,32(5):483-486
    [32]YANG Sheng-hai, TANG Mo-tang. Thermodynamics of Zn(Ⅱ)-NH3-NH4Cl-H2O system[J]. Transaction of Nonferrous Metal Science of China, 2000,10(6):830-832
    [35]杨声海,唐谟堂,邓昌雄,等.由氧化锌烟灰氨法制取高纯锌.中国有色金属学报[J],2001,11(6):1110-1114
    [33]Ju Shaohua, Motang Tang, Shenghai Yang, Yingnian Li. Dissolution kinetics of smithsonite ore in ammonium chloride solution[J]. Hydrometallurgy, 2005,80(1-2):67-74
    [34]唐谟堂,张鹏,何静,等.Zn(Ⅱ)-(NH4)2SO4-H2O体系浸出锌烟尘[J].中南大学学报,2007,18(5):867-871
    [38]YANG Sheng-hai, TANG Mo-tang, CHEN Yi-feng, et al. Anodic reaction
    kinetics of electrowinning zinc in system of Zn(Ⅱ)-NH3-NH4Cl-H2O[J]. Transactions of Nonferrous Metals Society of China,2004,14(3):626-630
    [39]Moustafa Samia Abd. Extraction of zinc from Egyptian zinc Ore with (NH4)2SO4[J]. World of Metallurgy-ERZMETALL,2005,58(1):21-26.
    [40]Saleh Hesham I, Hassan Kamaleldin M. Extraction of zinc from blast-furnace dust using ammonium sulfate[J]. Journal of Chemical Technology and Biotechnology,2004,79(4):397-402
    [41]马荣骏.湿法冶金原理[M].北京:冶金工业出版社,2007
    [42]陈家镛,于淑秋,伍志春.湿法冶金中铁的分离与应用[M].北京:冶金工业出版社,1991
    [43]陈阳.湿法炼锌中铁的行为、作用及控制[J].湖南有色金属,2006,22(3):30-32
    [44]王顺才,张豫.热酸浸出黄钾铁矾工艺的生产实践[J].有色冶炼,2007,(2):19-22
    [45]Elgersma F, Witkamp G J, Van Rosmalen G. Simultaneous dissolution of zinc ferrite and precipitation of ammonium jarosite[J]. Hydrometallurgy, 1993,34(1):23-47
    [46]J E Dutrizac. Effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite[J]. Hydrometallurgy,1996,42(3):293-312
    [47]Elgersma, F, Witkamp G J, Van Rosmalen G M. Incorporation of zinc in continuous jarosite precipitation[J]. Hydrometallurgy,1993,33(3):313-339
    [48]赵永,蒋开喜,王德全,等.用针铁矿法从锌焙烧烟尘的热酸浸出液中除铁[J].有色金属(冶炼部分),2005,5:13-15
    [49]Cheng Terry C, Demopoulos George P, Shibachi Yutaka, et al. The precipitation chemistry and performance of the Akita Hematite Process-An integrated laboratory and industrial scale study[C]. Proceedings of the TMS Fall Extraction and Processing Conference. Vancouver BC,2003.1657-1674
    [50]Claassen Johann O, Meyer E H O, Rennie J, et al. Iron precipitation from zinc-rich solutions:Defining the Zincor Process[J]. Hydrometallurgy, 2002,67(1-3):87-108
    [51]Loan M, Newman O M G, Cooper R M G, et al. Defining the Paragoethite process for iron removal in zinc hydro metallurgy [J]. Hydrometallurgy, 2006,81(2):104-129
    [52]钟竹前,梅光贵,李云瑶,等.高温锌焙砂热酸浸出-亚硫酸锌还原-针铁 矿法试验研究[J].有色金属,1981(1):82-87
    [53]Van Niekerk, Christoffel Johannes. Thermal precipitation of iron from sulphate solutions[J]. Mining & Metallurgical Inst of Japan,1985,33(10):691-706
    [54]曹异生.国际锌工业进展及前景[J].中国金属通报,2009(21):34-37
    [55]Pappu Asokan, Mohini Saxena, Shyam R Asoleker. Hazardous jarosite use in developing non-hazardous product for engineering application[J]. Journal Hazardous Materials,2006,137(3):1589-1599
    [56]M J Collins, E J McConaghy, R F Stauffer, et al. Starting up the Sherritt zinc pressure leach process at Hudson Bay[J]. JOM,1994,46(4):51-58
    [57]Pappu Asokan, Saxena Mohini, Asolekar Shyam. Jarosite characteristics and its utilization potentials [J]. Science of the Total Environment, 2006,359(2):232-243
    [58]K R Buban, M J Collins, I M Masters, et al. Comparison of direct pressure leaching with atmospheric leaching of zinc concentrates [J]. Dutrizac J E Lead-Zinc 2000, Pittsburg, USA:TMS,2000:727-738
    [59]Montanaro L, Bianchini N, Rincon J Ma., et al. Sintering behaviour of pressed red mud wastes from zinc hydrometallurgy[J]. Ceramics International, 2001,27(1):29-37
    [60]Pelino Mario, Cantalini Carlo, Abbruzzese Carlo, et al. Treatment and recycling of goethite waste arising from the hydrometallurgy of zinc [J]. Hydrometallurgy, 1996,40(1-2):25-35
    [61]Kendall Douglas S. Toxicity Characteristic Leaching Procedure and iron treatment of brass foundry waste[J]. Environmental Science and Technology, 2003,37(2):367-371
    [62]刘动.今年我国进口铁矿石的现状与分析[J].金属矿山,2009(1):12-15
    [63]韩志全.软磁铁氧体生产国内外近期动态[J].磁性材料及器件2010,441(1):1-11
    [64]彭龙,张怀武.我国软磁铁氧体产业发展与未来[J].新材料产业,2007,1:38-41
    [65]马达.中国磁材工业现状及四川磁材发展建议[J].四川稀土,2007(2):2-6
    [66]关小蓉,张剑光,朱春城,等.锰锌、镍锌铁氧体的研究现状及最新进展[J].材料导报,2006,20(12):109-112
    [67]刁春丽,娄广辉.铁氧体磁性材料的研究现状与展望[J].山东陶瓷,2006,29(1):18-21
    [68]刘亚丕,何时金,包大新.软磁材料的发展趋势[J].磁性材料及器件,
    2003,34(3):26-29
    [69]刘志勇,刘九皋,包大新.高磁导率锰锌铁氧体材料新进展[J].新材料产业,2005,(12):12-16
    [70]翁兴园.前景广阔的中国软磁铁氧体产业[J].新材料产业,2003,133(4):27-33
    [71]李永庆.国内氧化铁行业现状及发展趋势[J].化工科技市场,2004(10):27-31
    [72]周志刚.铁氧体磁性材料[M].北京:科学出版社,1981
    [73]于文广,张同来,魏雨,等.纳米Mn-Zn铁氧体的制备研究进展[J].材料导报,2006,20(5):33-36
    [74]翁兴园.Ni-Zn软磁铁氧体材料应用与市场发展[J].新材料产业,2002,101(4):23-24
    [75]李东风,贾振斌,魏雨.软磁铁氧体的发展历程及展望[J].化工时刊,2002(8):12-14
    [76]陈国华.21世纪软磁铁氧体材料和元件的发展趋势[J].磁性材料及器件,2001,32(4):31-34
    [77]唐谟堂,李仕庆,杨声海,等.一种无铁渣湿法炼锌方法[P].中国专利:ZL03118199.6,2006-4-26
    [78]何静,杨声海,唐朝波,等.一种铁-锌和锰-锌的分离方法[P].中国专利:ZL200510032417.7,2008-2-13
    [79]张保平,张金龙,唐谟堂,等.共沉法制备锰锌软磁铁氧体前躯体的热力学分析[J].江西有色金属,2005,19(2):35-37
    [80]欧平,徐刚,倪利红,等.α-氧化铁的水热法合成及其相形成机理[J].稀有金属材料与工程,2008,37(增刊2):453-455
    [81]郑雅杰,符丽纯.硫铁矿烧渣水热法制备氧化铁[J].中南大学学报,2007,38(4):674-680

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700