有机串联反应合成含氮杂环化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含氮杂环化合物是一大类非常重要的有机小分子化合物,它们广泛存在于自然界,很多具有生物活性,已成为医药、农药和有机功能材料等的核心骨架。因此,发展含氮杂环化合物合成的新反应、新方法和新策略一直是有机化学研究的热点。本文在综述了有机小分子促进的含氮杂环化合物合成基础上,重点研究了有机串联反应合成吡咯、中氮茚、喹啉等含氮杂环化合物的新反应和新方法。主要研究内容如下:
     1.发现了一种吡啶促进伯胺、乙醛酸乙酯和cc-溴代芳香酮的四组份ABC2型串联反应,可快速高效地合成新颖的多取代吡咯衍生物。我们提出了一种无需金属促进的合成吡咯的可能反应机理。该串联反应具有反应步骤和过程经济性,反应条件温和,操作方法简单,为合成多取代吡咯衍生物提供了一种新的有效的途径。利用该方法,我们结合钯催化脱酸偶联反应,成功地合成了多取代的苯并[g]吲哚衍生物。
     2.发现了一种一锅法四组份ABC2型串联反应合成中氮茚的新反应。它是以各种简单易得的吡啶、乙醛酸乙酯和α-溴代芳香酮为原料,在碳酸钠存在下,可高效温和地合成一系列多取代的中氮茚衍生物,我们提出了一种空气氛围下吡啶叶立德促进的制备中氮茚的反应新机理。用喹啉代替吡啶,也能实现该多组份串联反应,获得相应的吡咯并喹啉衍生物。通过继续调控该反应,我们又发现,吡啶和α-溴代芳香酮在哌啶促进下也能发生又一种一锅法四组份AB3型串联反应合成另一类中氮茚衍生物的新反应。喹啉或异喹啉代替吡啶,也能实现该多组份反应,获得相应的吡咯并喹啉或吡咯并异喹啉衍生物。我们提出上述2种四组份合成中氮茚的可能反应机理都是涉及原位生成的吡啶叶立德和不饱和酮之间的1,3-偶极环加成以及随后的空气氧化芳构化过程。这些串联反应条件温和,无需金属促进或催化,合成效率高,具有反应步骤和过程经济性。
     3.发现了DBU促进的环丙烷基化反应及其应用于喹啉衍生物的合成。在有机碱DBU促进下,α-氨基酮和烯基锍盐能串联迈克尔加成、质子迁移和分子内取代反应获得1,1-环丙烷氨基酮衍生物,并有专一的立体选择性。该法提供了一种环丙烷合成的新途径,揭示了α-氨基酮能作为一种新类型的烯醇化试剂。1,1-环丙烷氨基酮衍生物再经过硼氢化钠还原可得到1,1-环丙烷-1,3-氨基醇,后者能与另一分子的烯基锍盐反应得到新颖的7-氧杂-4-氮杂-螺[2.5]辛烷衍生物。我们还发现1,1-环丙烷氨基酮衍生物能被偶氮二甲酸二乙酯氧化得到2-芳基喹啉衍生物。我们提出了一种基于环丙烷氧化、环丙烯开环、氮杂二烯分子内电环合、氢喹啉脱氢等串联反应过程的可能机理。
The nitrogen-containing heterocyclic compounds are a very important class of small organic molecules that are widely in nature, many of them have the biological activity and become the core skeleton such as pharmaceuticals, pesticides and organic functional materials. Therefore, the development of new reactions, new methods and new strategies for the synthesis of nitrogen-containing heterocyclic compounds has been a research hotspot in the field of organic chemistry. In this dissertation, we summarized the development for the synthesis of nitrogen-containing heterocyclic compounds promoted by small organic molecules, and described the new reactions and new methods for the synthesis of pyrroles, indolizines, and quinolines via organic tandem reaction. The main contents are as following:
     Firstly, we described the pyridine-promoted one-pot multicomponent tandem reaction (ABC2type) of primary amine, ethyl glyoxylate and a-bromo aromatic ketone to provide novel polysubstituted pyrrole derivatives. The reaction involves the assembling of [2+1+1+1] atom fragments and the formation of four new bonds. The reaction conditions are mild and easily operated, and this methodology provides a new and effective way for the synthesis of polysubstituted pyrrole derivatives. Furthermore, by combining with a palladium-catalyzed oxidative decarboxylative coupling reaction, this chemistry provides a rapid access to a highly substituted benz[g]indole.
     Secondly, we described the one-pot multicomponent tandem reaction of pyridine, glyoxylate and a-bromo aromatic ketone to give novel indolizine derivatives. The piperidine-promoted AB3type four-component tandem reaction of a-bromo aromatic ketone and pyridine for the synthesis of indolizine derivatives was also developed. The mechanism of the novel reactions was proposed involving the formation of pyridinium ylides and α,β-unsaturated ketones with subsequent1,3-dipolar cycloaddition and aromatization reaction.
     Finally, we described the DBU-promoted tandem reaction of a-amino ketones and vinyl sulfonium salts for the synthesis of1,1-cyclopropane amino ketone derivatives, and the latter were oxidated by diethyl azodicarboxylate to give the synthesis of quinoline derivatives. The methodology provides a general access to1,1-cyclopropane aminoketones and their conversion into2-benzoyl quinolines. We proposed a plausible reaction mechanism.
引文
[1]Trost, B. M. The atom economy-a search for synthesic efficiency. Science,1991, 254,1471-1477.
    [2](a) Sardina, F. J.; Rapoport, H. Enantiospecific Synthesis of Heterocycles from r-Amino Acids. Chem. Rev.,1996,96,1825-1872;(b) Nicolaou, K. C.; Namoto, K. Synthesis of N-heterocycles via lactam-derived ketene aminal phosphates. Asymmetric synthesis of cyclic amino acids. Chem. Commun.,1998,1757-1758;(c) Lichtenthaler, F.W. Unsaturated O-and N-heterocycles from carbohydrate feedstocks. Acc. Chem. Res.,2002,35,728-737.
    [3](a) Simoni, D.; Roberti, M.; Invidiata, F.P.; Rondanin, R.; Baruchello, R.; Malagutti, C. Mazzali, A.; Rossi, M.; Grimaudo, S.; Capone, F.; Dusonchet, L.; Meli, M.Raimondi, M.V.; Landino, M.; D'Alessandro, N.; Tolomeo, M.; Arindam, D.; Lu, S.; Benbrook,D.M. Heterocycle-containing retinoids. Discovery of a novel isoxazole arotinoid possessing potent apoptotic activity in multidrug and drug-induced apoptosis-resistant cells.J. Med. Chem.,2001,44,2308-2318; (b) Guo, C.-C.; Li, H.-P.; Zhang, X.-B. Study on synthesis, characterization and biological activity of some new nitrogen heterocycle porphyrins. Bioorg. Med. Chem.2003,11,1745-1751; (c) Malley, D. P. O.; Li, K.; Maue, M.; Zografos, A. L.; Baran, P. S. Total Synthesis of Dimeric Pyrrole-Imidazole Alkaloids:Sceptrin, Ageliferin, Nagelamide E, Oxysceptrin, Nakamuric Acid, and the Axinellamine Carbon Skeleton.J. Am. Chem. Soc.,2007,129,4762-4765; (d) Hughes, C. C.; Prieto-Davo, A.; Jensen, P. R.;Fenical, W. The Marinopyrroles, Antibiotics of an Unprecedented Structure Class from a Marine Streptomyces sp. Org.Lelt.,2008,10,629-631.
    [4](a) Facchetti, A.; Abbotto, A.; Beverina, L.; van der Boom, M.E.; Dutta, P.; Evmenenko, G.; Marks, T. J.; Pagani, G. A. Azinium-(pi-bridge)-pyrrole NLO-phores:Influence of heterocycle acceptors on chromophoric and self-assembled thin-film properties. Chem.Mater.,2002,14,4996-5005; (b) Ai, W.; Zhou, W.-W.; Du, Z.-Z.; Du, Y.-P.; Zhang, H.; Jia, X.-T. Xie, L.-G.; Yi, M.-D.; Yu, T.; Huang, W. Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes. J. Mater. Chem.,2012,22,23439-23446; (c) Abbotto, A.; Beverina, L.; Bozio, R.; Facchetti, A.; Ferrante, C.; Pagani, G. A.;Pedron, D.; Signorini, R. Novel heterocycle-based two-photon absorbing dyes. Org. Lett.,2002,4, 1495-1498.
    [5]Ho, T. Tactics of Organic Synthesis. Weinheim:Wiley,1994.
    [6](a) Gabriel, S. Chem. Ber.,1888,21,1056; (b) Wenker, H. The Preparation of Ethylene Imine from Monoethanolamine. J.Am. Chem. Soc.,1935,57,2328-2328.
    [7]Ho, M.; Chung, J. K. K.; Tang, N. A convenient synthesis of chiral N-Boc-amino ethers as potential peptide bond surrogate units. Tetrahedron Lett.,1993,34, 6513-6516.
    [8]Wipf, P.; Fritch, P. C. SN2-Reactions of Peptide Aziridines. A Cuprate-Based Approach to (E)-Alkene Isosterests.J. Org. Chem.,1994,59,4875-4886.
    [9]Liu, X.-G.; Wei, Y.; Shi, M. Phosphite-mediated annulation:an efficient protocol for the synthesis of multi-substituted cyclopropanes and aziridines. Tetrahedron,2010, 66,304-313.
    [10]Williams, A. L.; Johnston, J. N. The Br(?)nsted Acid-Catalyzed Direct Aza-Darzens Synthesis of N-Alkyl cis-Aziridines. J. Am. Chem. Soc.,2004,126, 1612-1613.
    [11]Akiyama, T.; Suzuki, K..; Mori, T. Enantioselective Aza-Darzens Reaction Catalyzed by A Chiral Phosphoric Acid. Org. Lett.,2009,11,2445-2447.
    [12]Zhao, G.-L.; Huang, J.-W.; Shi, M. Abnormal Aza-Baylis-Hillman Reaction of N-Tosylated Imines with Ethyl 2,3-Butadienoate and Penta-3,4-dien-2-one. Org. Lett., 2003,5,4737-4739.
    [13]Martin-Zamora, E.; Ferrete, A.; Llera, J. M.; Munoz, J. M.; Pappalardo, R. R.; Fernandez, R.; Lassaletta,J.M. Studies on Stereoselective [2+2] Cycloadditions between N,N-Dialkylhydrazones and Ketenes. Chem. Eur. J.,2004,10,9111-6129.
    [14]Coantic, S.; Mouysset, D.; Mignani, S.; Tabartb, M.; Stella; L. The use of N-sulfenylimines in the beta-lactam synthon method:Staudinger reaction, oxidation of the cycloadducts and ring opening of beta-lactams. Tetrahedron,2007,63, 3205-3216.
    [15]D'hooghe, M.; Mollet, K.; Dekeukeleire, S.; Norbert De Kimpe. Stereoselective synthesis of trans-and cis-2-aryl-3-(hydroxymethyl)aziridines. through transformation of 4-aryl-3-chloro-b-lactams and study of their ring opening. Org. Biomol. Chem.,2010,8,607-615.
    [16]Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. N-Heterocyclic carbene catalysed β-lactam synthesis. Org. Biomol. Chem.,2008,6,1108-1113.
    [17]Nair, V.; Biju, A. T.; Vinod, A. U.; Suresh, E. Reaction of Huisgen Zwitterion with 1,2-Benzoquinones and Isatins:Expeditious Synthesis of Dihydro-1,2,3-benzoxadiazoles and Spirooxadiazolines. Org.Lelt.,2005,7, 5139-5142.
    [18]Nair, V.; Biju, A. T.; Mohanan, K.; Suresh, E. Novel Synthesis of Highly Functionalized Pyrazolines and Pyrazoles by Triphenylphosphine-Mediated Reaction of Dialkyl Azodicarboxylate with Allenic Esters. Org. Lett.,2006,8,2213-2216.
    [19]Nair, V.; Mathew, S, C,; Biju, A. T.; Suresh, E. A Novel Reaction of the "Huisgen Zwitterion" with Chalcones and Dienones:An Efficient Strategy for the Synthesis of Pyrazoline and Pyrazolopyridazine Derivatives. Angew. Chem., Int. Ed., 2007,46,2070-2073.
    [20]Zhao, G.-L.; Shi, M. Aza-Baylis-Hillman Reactions of N-Tosylated Aldimines with Activated Allenes and Alkynes in the Presence of Various Lewis Base Promoters. J. Org. Chem.,2005,70,9975-9984.
    [21]Ramesh, K.; Narayana Murthy, S.; Karnakar, K.; Nageswar, Y. V. D. DABCO-promoted three-component reaction between amines, dialkyl acetylenedicarboxylates, and glyoxal. Tetrahedron Lett.,2011,52,3937-3941.
    [22]Cyr, D. J. S.; Martin, N.; Arndtsen, B. A. Direct Synthesis of Pyrroles from Imines, Alkynes, and Acid Chlorides:An Isocyanide-Mediated Reaction. Org.Lett., 2007,9,449-452.
    [23]Yoshida, M.; Komatsuzaki, Y.; Ihara, M. Synthesis of 5-vinylideneoxazolidin-2-ones by DBU-mediated CO(2)-fixation reaction of 4-(benzylamino)-2-butynyl carbonates and benzoates. Org.Lett.,2008,10,2083-2086.
    [24]Wang, F.; Cai, S. J.; Wang, Z. P.; Xi, C. J. Synthesis of 2-Mercaptobenzothiazoles via DBU-Promoted Tandem Reaction of o-Haloanilines and Carbon Disulfide. Org.Lett.,2011,13,3202-3205.
    [25]Fang, Y.-Q.; Jacobsen, E. N. Cooperative, Highly Enantioselective Phosphinothiourea Catalysis of Imine-Allene [3+2] Cycloadditions. J. Am. Chem. Soc.,2008,130,5660-5661.
    [26]Zhu, X.-F., Lan, J.; Kwon, O. An Expedient Phosphine-Catalyzed [4+2] Annulation Synthesis of Highly Funetionalized Tetrahydropyridines. J. Am. Chem. Soc.,2003,125,4716-4717.
    [27]Tran, Y. S.; Kwon, O. An Application of the Phosphine-Catalyzed [4+2] Annulation in Indole Alkaloid Synthesis:Formal Syntheses of (±)-Alstonerine and (±)-Macroline. Org. Lett.,2005,7,4289-4291.
    [28]Guo, H.; Xu, Q.; Kwon, O. Phosphine-Promoted [3+3] Annulations of Aziridines With Allenoates Facile Entry Into Highly Functionalized Tetrahydropyridines. J. Am. Chem. Soc.,2009,131,6318-6319.
    [29]Wurz, R. P.; Fu, G. C. Catalytic Asymmetric Synthesis of Piperidine Derivatives through the [4+2] Annulation of Imines with Allenes. J. Am. Chem. Soc., 2005,127,12234-12235.
    [30]Nair, V.; Jose, A.; Seetha Lakshmi, K. C.; Rajana, R.; Suresh, E. A facile four component protocol for the synthesis of dihydropyridine. Org. Biomol. Chem.,2012, 10,7747-7752.
    [31]Jiang, H.; Mai, R.; Cao, H.; Zhu, Q.; Liu; X. L-Proline-catalyzed synthesis of highly functionalized multisubstituted 1,4-dihydropyridines. Org. Biomol.Chem.2009, 7,4943-4953.
    [32]Samai, S.; Nandi, G. C.; Chowdhury, S.; Singh, M. S. L-Proline catalyzed synthesis of densely functionalized pyrido[2,3-d]pyrimidines via three-component one-pot domino Knoevenagel aza-Diels-Alder reaction. Tetrahedron,2011,67, 5935-5941.
    [33]Rajesh, S. M.; Bala, B. D.; Perumal, S.; Menendez, J. C. L-Proline-catalysed sequential four-component "on water" protocol for the synthesis of structurally complex heterocyclic ortho-quinones. Green. Chem.,2011,13,3248-3254.
    [34]Duong, H. A.; Cross, M. J.; Louie, J. N-Heterocyclic Carbenes as Highly Efficient Catalysts for the Cyclotrimerization of Isocyanates. Org.Lett.,2004,6, 4679-4681.
    [35]Rachakonda, S.; Pratap, P. S.; Rao, M. V. B. DDQ/TBHP-Induced Oxidative Cyclization Process:A Metal-Free Approach for the Synthesis of 2-Phenylquinazolines. Synthesis,2012,44,2065-2069.
    [36]Eguchi, S.; Yamashita, K.; Matsushita, Y. Facile Synthesis of 1,4-benzodiazepin-5-ones via Intramolecular Aza-Wittig Reaction. Synlell,1992, 295-296.
    [37]Fujioka, H.; Murai, K.; Kubo, O.; Ohba, Y.; Kita, A. New Three-Component Reaction:Novel Formation of a Seven-Membered Ring by the Unexpected Reaction at the y-Position of the β-Keto Ester. Org.Lett.,2007,9,1687-1690.
    [38]Murai, K.; Nakatani, R.; Kita, Y; Fujioka, H. One-pot three-component reaction providing 1,5-benzodiazepine derivatives. Tetrahedron,2008,64, 11034-11040.
    [39]Ma, C.; Ding, H.-F.; Zhang, Y.-P.; Bian, M. A Ring-Expansion Methodology InvolvingMulticomponent Reactions:Highly EfficientAccess to Poly substituted Furan-Fused 1,4-Thiazepine Derivatives. Angew. Chem. Int.,2006,45,7793-7797.
    [40]Shaabani, A.; Maleki, A.; Mofakham, H.; Moghimi-Rad, J. A Novel One-Pot Pseudo-Five-Component Synthesis of 4,5,6,7-Tetrahydro-1H-1,4-diazepine-5-carboxamide Derivatives.J. Org. Chem.,2008,73,3925-3927.
    [41]Zhou, R.; Wang, J.-F.; Duan, C.; He, Z.-J. Phosphine-Triggered Tandem Annulation between Morita_Baylis_HillmanCarbonates and Dinucleophiles:Facile Syntheses of Oxazepanes,Thiazepanes, and Diazepanes. Org.Lett.,2012,14, 6134-6137.
    [1](a) Pyrroles, Part Ⅱ; Jones, R. A., Ed.;Wiley:New York,1992; (b) Walsh, C. T.; Garneau-Tsodikova, S.; Howard-Jones, A. R. Biological formation of pyrroles: Nature's logic and enzymatic machinery. Nat. Prod. Rep.2006,23,517-531.
    [2](a) Muchowski, J. M. Adv. Med. Chem.1992,1,109-135; (b) Cozzi, P.;Mongelli, N. Cytotoxics Derived from Distamycin A and Congeners. Curr. Pharm. Des.1998,4, 181-201; (c) Furstner, A. Chemistry and Biology of Roseophilin and the Prodigiosin Alkaloids:A Survey of the Last 2500 Years. Angew.Chem., Int. Ed.,2003,42, 3582-3603; (d) Balme, G. Pyrrole Syntheses by Multicomponent Coupling Reactions. Angew. Chem., Int. Ed.,2004,43,6238-6241; (e) Andreani, A.; Cavalli, A.; Granaiola, M.; Guardigli, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Recanatini, M.;Roda, A. Synthesis and Screening for Antiacetylcholinesterase Activity of (1-Benzyl-4-oxopiperidin-3-ylidene)methylindoles and-pyrroles Related to Donepezil. J. Med. Chem.2001,44,4011-4014; (f) Baraldi, P. G.; Nunez, M. C.;Tabrizi, M. A.; De Clercq, E.; Balzarini, J.; Bermejo, J.; Esterez, F.;Romagnodi, R. Design, Synthesis, and Biological Evaluation of Hybrid Molecules Containing a-Methylene-y-butyrolactones and Polypyrrole Minor Groove Binders.J. Med. Chem. 2004,47,2877-2886; (g) Srivastava, S. K.;Shefali Miller, C. N.; Aceto, M. D.; Traynor, J. R.; Lewis, J. W.;Husbands, S. M. Effects of Substitution on the Pyrrole N Atom in Derivatives of Tetrahydronaltrindole, Tetrahydrooxymorphindole, and a Related 4,5-Epoxyphenylpyrrolomorphinan. J. Med. Chem.2004,47,6645-6648.
    [3](a) Electronic Materials:The Oligomer Approach; Mullen, K.,Wegner, G., Eds.; Wiley-VCH:Weinheim, Germany,1998; (b) Novak, P.;Muller, K.; Santhanam, K. S. V.; Haas, O. Electrochemically Active Polymers for Rechargeable Batteries. Chem. Rev.1997,97,207-282; (c)Gale, P. A. Structural and Molecular Recognition Studies with Acyclic Anion Receptors. Ace. Chem. Res.2006,39,465-475; (d) Sessler, J. L.; Camiolo, S.;Gale, P. A. Pyrrolic and polypyrrolic anion binding agents. Coord. Chem. Rev.2003,240,17-55.
    [4]Boger, D. L.; Boyce, C. W.; Labroli, M. A.; Sehon C. A.; Jin, Q. Total Syntheses of Ningalin A, Lamellarin O, Lukianol A, and Permethyl Storniamide A Utilizing Heterocyclic Azadiene Diels-Alder Reactions. J.Am. Chem. Soc.,1999,121,54-62.
    [5]Thompson, R. B. FASEB. J.2001,15,1671-1676.
    [6]Lazerges, M.; Chane-Ching, K. I.; Aeiyach, S.; Chelli, S.; Peppin-Donnat,B.; Billon, M.; Lombard, L.; Maurel, F.; Jouini, M. Paramagnetic pyrrole-based semiconductor molecular material.J. Solid Stale Electrochem.,2009,13,231-238.
    [7]For reviews, see:(a) Gossauer, A. In Methoden der Organischcn Chemic (Houben-Weyl); Kreher, R. P., Ed.; Georg Thieme Verlag:Stuttgart,1994; E6a, pp 556-798; (b) Gilchrist, T. L.J. Chem. Soc., Perkin Trans.1999,1,2849-2866; (c) Tarasova, O. A.; Nedolya, N. A.; Vvedensky, V. Yu.; Brandsma, L.; Trofimov, B. A. Synthesis of 2,5-bis(N,N-dialkylamino)thiophenes or 1-alkyl-2-N,N-dialkylamino-5-methylthiopyrroles from propargylic amines and isothiocyanates. Tetrahedron Lett.1997,38,7241-7242; (d) Ferreira, V. F.; de Souza, M. C. B. V.; Cunha, A. C.; Pereira, L. O. R.; Ferreira, M. L. G. Org. Prep. Proced. Int. 2001,33,411-454.
    [8]Knorr, L. Ber.,1884,17,1635.
    19] Paal, C. Ber.,1885,18,367-371.
    [10]Hantzsch, A. Ber.,1890,23,1474-1476.
    [11]Zav'yalov, S. I.; Mustafaeva, I. F.; Aronova, N. I.; Makhova, N. N.Izv.Akad. Nauk SSSR, Ser. Khim. (Engl. Transl.),1973,2505.
    [12]Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. A useful synthesis of pyrroles from nitroolefins. Tetrahedron,1990,46,7587-7598.
    [13]Multicomponent Reactions:(a) Zhu J.; Bienayme, H. Wiley-VCH:Weinheim, Germany 2005; (b) Domling, A Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev.,2006,106,17-89; (c) Tejedor, D.; Garcia-Tellado, F. Chemo-differentiating ABB'multicomponent reactions. Privileged building blocks. Chem. Soc. Rev.,2007,36,484-491; (d) Ramon, D. J.; Miguel, Y. Asymmetric multicomponent reactions (AMCRs):the new frontier. Angew. Chem., Int. Ed.,2005,44,1602-1634; (e) Jiang, B.; Rajale, T.; Wever, W.; Tu, S.-J.; Li, G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J.2010,5,2318-2335; (f) Bello, D.; Ramon, R.; Lavilla, R. Mechanistic Variations of the Povarov Multicomponent Reaction and Related Processes. Curr. Org. Chem.,2010,14,332-356; (g) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Maximizing Synthetic Efficiency:Multi-Component Transformations Lead The Way. Chem.Eur. J.,2000,6,3321-3329; (h) Tietze, L. F.; Modi, A. Multicomponent Domino Reactions for the Synthesis of Biologically Active Natural products and Drugs. Med. Res. Rev,2000,20,304-322; (i) Bremner, S.; Organ, M. G. "Multi-Component Reactions (MCR) to Form Heterocycles by Microwave-Assisted Continuous Flow Organic Synthesis (MACOS). J. Comb. Chem.,2007,9,14-16;(j) James, E.; Biggs-Houck, A. Y.; Jared, T. S. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol.,2010,14,371-382.
    [14]Murthy, S. N.; Madhav, B.; Kumar, A. V.; Rao; K. R. Nageswar, Y. V. D. Multicomponent Approach Towards the Synthesis of Substituted Pyrroles under Supramolecular Catalysis Using b-Cyclodextrin as a Catalyst in Water Under Neutral Conditions. Helv. Chim. Acta.,2009,92,2118-2124.
    [15]Cyr, D. J. S.; Arndtsen, B. A. A New Use of Wittig-Type Reagents as 1,3-Dipolar Cycloaddition Precursors and in Pyrrole Synthesis.J. Am. Chem. Soc.,2007,129, 12366-12367.
    [16]Hong, D.; Zhu, Y.; Li, Y.; Lin, X.-F. Lu, P.; Wang, Y.-G. Three-Component Synthesis of Polysubstituted Pyrroles from α-Diazoketone, Nitroalkene and Amine. Org. Lett.,2011,13,4668-4671.
    [17]Chen, X.; Hou, L.; Li, X. An Easy One-Pot Synthesis of Tetrasubstituted 3-Alkynylpyrroles via Multicomponent Coupling Reaction. Synlett,2009, 5,828-832.
    [18]吴萍,王琦芳,蔡习美,颜朝国.吡啶季铵盐在有机合成中的应用.有机化学,2008,28,1889-191().
    [19]Yan, C.-G.; Song, X.-K.; Wang, Q.-F.; Sun, J.; Siemeling, U.; Bruhnb,C. One-step synthesis of polysubstituted benzene derivatives by multi-component cyclization of a-bromoacetate, malononitrile and aromatic aldehydes. Chem. Commun.,2008,1440-1442.
    [20]Kakeshi, A.; Ito, S.; Suga,11.; Yasuraoka, K. Preparation of New Nitrogen-bridged Heterocycles.50.1 Syntheses of Some Heterocyclic Compounds Starting from Pyridinium 1-(Ethoxycarbonylacetyl)methylides. Helerocycles,2001, 54,185-200.
    [21](a) Tanaka, D.; Romeril, A. S. P.; Myers, A. G. On the Mechanism of the Palladium(II)-Catalyzed Decarboxylative Olefination of Arene Carboxylic Acids. Crystallographic Characterization of Non-Phosphine Palladium(Ⅱ) Intermediates and Observation of Their Stepwise Transformation in Heck-like Processes.J. Am. Chem. Soc.2005,127,10323; (b) Hu, P.; Kan, J.; Su, W.-P.; Hong, M.-H. Pd(O2CCF3)2/Benzoquinone:A Versatile Catalyst System for the Decarboxylative Olefination of Arene Carboxylic Acids. Org. Lett.2009,11,2341-2344.
    [22](a) Wang, C.-Y.; Rakshit, S.; Glorius, F. Palladium-Catalyzed Intermolecular Decarboxylative Coupling of 2-Phenylbenzoic Acids with Alkynes via C-H and C-C Bond Activation.J. Am. Chem. Soc.2010,132,14006-14008; (b) Bilodeau, F.; Brochu, M. C.; Guimond, N.; Thesen, K. H.; Forgione, P. Palladium-Catalyzed Decarboxylative Cross-Coupling Reaction Between Heleroaromatic Carboxylic Acids and Aryl Halides.J. Org. Chem.,2010,75,1550-1560.
    [23](a) Maehara, A.; Tsurugi, H.; Satoh, T.; Miura, M. Regioselective C-H Functionalization Directed by a Removable Carboxyl Group:Palladium-Catalyzed Vinylation at the Unusual Position of Indole and Related Heteroaromatic Rings. Org. Lett.2008,10,1159-1162.
    [24]Yamashita, M.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of Condensed Heteroaromatic Compounds by Palladium-Catalyzed Oxidative Coupling of Heteroarene Carboxylic Acids with Alkynes. Org. Lett.,2009,11,2337-2340.
    [25]Kumar, T. B.; Sumanth, C.; Vaishaly, S.; Rao, M. S.; Chandra Sckhar, K. B.; Meda, C. L. T.; Kandale, A.; Rambabu, D.; Krishna, G. R.; Kapavarapu, R.; Reddy, C. M.; Kumar, K. S.; Parsa, K. V. L.; Pal, M. Pd-mediated functionalization of polysubstiluted pyrroles:Their evaluationas potential inhibitors of PDE4, Bioorg. Med. Chem. Lett.2012,22,5639-5647.
    [26]彭安顺,王立斌.用溴化铜代替液溴合成对甲氧基-α-溴代苯乙酮.辽宁化工,2003,32,17-18.
    [1]Angeli, A. Gazz.Chim.Ital.,1890,26,1973.
    [2](a) Humphires,M. J.; Matsumoto,K.; White, S. L.;Olden, K. Cancer Res.,1986,46, 5215-5222; (b) Bols, M.; Lillelund, V. H.; Jensen, H. H.; Liang, X. Recent Developments of Transition-State Analogue Glycosidase Inhibitors of Non-Natural Product Origin. Chem. Rev,2002,102,515-554; (c) Pearson, W. H.; Guo,L Synthesis and mannosidase inhibitory activity of 3-benzyloxymethyl analogs of swainsonine. Tetrahedron Lett.,2001,42,8267-8271.
    [3](a) Matuszak, N.; Muccioli, G. G.; Labar, G.; Lambert, D. M. Synthesis and in Vitro Evaluation of N-Substituted Maleimide Derivatives as Selective Monoglyceride Lipase Inhibitors J. Med. Chem.,2009,52,7410-7420; (b) Jensen, L. H.; Renodon-Corniere, A.; Wessel, I.; Langer, S. W.; Sokilde, B.; Carstensen, E. V.; Sehested, M. Jensen, P. B. Mol. Pharmacol.,2002,61,1235; (c) Sortino, M.; Garibotto, F.; Filho, V. C.; Gupta, M.; Enriz, R.; Zacchino, S. Antifungal, cytotoxic and SAR studies of a series of N-alkyl, N-aryl and N-alkylphenyl-1,4-pyrrolediones and related compounds. Bioorg. Med. Chem.,2011,19,2823-2834.
    [4](a) Gubin,J.; de Vogelaer, II.; Inion, H.; Houben, C.; Lucchetti, J.; Mahaux, J.; Rosseels, G.; Peiren, M.; Clinet, M.; Polster, P.; Chatelain, P. Novel heterocyclic analogs of the new potent class of calcium entry blockers:-[[4-(aminoalkoxy)phenyl]sulfonyl]indolizines. J. Med. Chem.,1993,36,1425-1433; (b) Clive, D. L. J.; Coltart, D. M.; Zhou, Y. Synthesis of the Angiotensin-Converting Enzyme Inhibitors (-)-A58365A and (-)-A58365B from a Common Intermediate. J. Org. Chem.,1999,64,1447-1454.
    [5]Ishibashi, F.; Miyazaki, Y.; Iwao, M. Total syntheses of lamellarin D and H. The first synthesis of lamellarin-class marine alkaloids. Tetrahedron,1997,53, 5951-5962.
    [6]Gubin, J.; Lucchetti, J.; Mahaux, J.; Nisato, D.; Rosseels, G.; Clinet, M.; Polster, P.; Chatelain, P. A novel class of calcium-entry blockers:the 1[[4-(aminoalkoxy)phenyl]sulfonyl]indolizines.J. Med. Chem.,1992,35,981-988.
    [7]Scholtz, M. Die Einwirkung von Essigsaureanhydrid auf α-Picolin. Ber.Dlsch. Chem. Ges.,1912,45,734-746.
    [8]Basavaiah, D.; Rao, A. J. First example of electrophile induced Baylis-Hillman reaction:a novel facile one-pot synthesis of indolizine derivatives. Chem. Commun.,2003,604-605.
    [9]Zhang, L.-D.; Liang, F.; Sun, L.; Hu, Y.-F.; Hu, H.-W. A Novel and Practical Synthesis of 3-Unsubstituted Indolizines. Synthesis,2000,1733-1737.
    [10]Kakehi, A.; Ito, S.; Hirata, K.; Zuo, P. Preparation of New Nitrogen-Bridged Heterocycles.49. A New Access to Thieno[3,4-b]indolizine Derivatives.Chem. Pharm. Bull.,2000,48,865-869.
    [11]Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. A Novel Cu-Assisted Cycloisomerization of Alkynyl Imines:Efficient Synthesis of Pyrroles and Pyrrole-Containing Heterocycles. J.Am. Chem.Soc.,2001,123,2074-2075.
    [12]Wei,X.-D.; Hu,Y.-F.; Li, T.-S.; Hu, H.-W. A FACILE PREPARATION OF 1,2,3-TRIAROYLINDOLIZINES. Syn. Comm.,1992,22,2103-2109.
    [13]彭安顺,王立斌.用溴化铜代替液溴合成对甲氧基-α-溴代苯乙酮.辽宁化工,2003,32,17-18.
    [1](a) Michael, J. P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 2005,22,627-646; (b) Fostel, J. M.; Lartey, P. A. Emerging novel antifungal agents.Drug. Discov. Today.,2000,5,25-32; (c) Jampilek, J.; Dolezal, M.; Kunes, J. et al. Quinaldine derivatives:preparation and biological activity.J. Med. Chem.,2005, 1,591-599; (d) Chen, Y.-L.; Fang, K.-C.; Sheu, J.-Y. et al. Synthesis and antibacterial evaluation of certain quinolone derivatives.J. Med. Chem.,2001,44,2374-2377; (e) ain, R.; Vaitilingam, B.; Nayyar, A.; et al. Substituted 4-methylquinolines as a new class of anti-tuberculosis agents. Bioorg.Med. Chem. Lett.,2003,13,1051-1054; (f) Valko K. Application of high-performance liquid chromatography based easurements of lipophilicity to model biological distribution.J. Chromatogr. A.,2004,1037, 299-310.
    [2]Faiz, M.-A.; Bin Yunus, E; Rahman, M. R. et al. Artesunate versus quinine for treatment of severe falciparum malaria:a randomised trial. lancel.2005,366,717-725
    [3]Wall,M. E.; Wani,M. C.; Cook,C. E.; Palmer,K. H.; McPhail,A. T.; Sim, G. A.Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camplotheca acuminata.J. Am. Chem. Soc.,1966,88,3888-3890.
    [4]Collier, A.C.; Coombs, R.W.; Schoenfeld, D.A. et al. Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. N. Engl. J. Med.,1996,334,1011-1017.
    [5]Grossmann, K. Quinclorac belongs to a new class of highly selective auxin herbicides. Weed Sci.,1998,46,707-716.
    [6]Brinkmann, M.; Gadret,G.; Muccini,M.; Taliani,C.; Masciocchi,N.; Sironi, A. Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(Ⅲ).J. Am. Chem. Soc.,2000,122, 5147-5157.
    [7]Skraup, C. H. synthesis of quinolines. Ber. Dtsch. Chem. Ges.1880,13, 2086-2087
    [8]Camps, R.; Synthesis of 2-and 4-hydroxyquinolines. Berichte der Deutschen Chemischen Gesellschaft.1899,32,3228-3234.
    [9]Cheng, C.-C.; Yan, S.-J. THE FRIEDLANDER SYNTHESIS OF QUINOLINES Org. React.1982,28,37-201.
    [10]Matsugi, M.; Tabusa, F.; Minamikawa, J. Debner-Miller synthesis in a two-phase system:practical preparation of quinolines. Tetrahedron Lett.,2000,41,8523-8525.
    [11]Brouet, J. C.; Gu, S.; Peet, N. P.; Williams, J. D. Survey of Solvents for the Conrad-Limpach Synthesis of 4-Hydroxyquinolones. Syn. Comm.,2009,39, 1563-1569.
    [12]Buu-Hoi, N. P.; Royer, R.;; Xuong, N. D.; Jacquignon, P. The Pfitzinger Reaction in the Synthesis of Quinoline Derivatives. J. Org. Chem.,1953,18, 1209-1224.
    [13]McNaughton, B. R.; Miller, B. L. A Mild and Efficient One-Step Synthesis of Quinolines. Org. Lett.,2003,5,4257-4259.
    [14]Sangu, K.; Fuchibe, K.; Akiyama, T. A Novel Approach to 2-Arylated Quinolines: Electrocyclization of Alkynyl Imines via Vinylidene Complexes. Org. Lett.,2004,6, 353-355.
    [15]Zhang, X.-X.; Campo, M. A.; Yao, T.-L.; Larock, R. C. Synthesis of Substituted Quinolines by Electrophilic Cyclization of N-(2-Alkynyl)anilines. Org. Lett.,2005,7, 763-766.
    [16]Li, X.-J.; Mao, Z.-J.; Wang, Y.-G.; Chen, W.-X.; Lin, X.-F. Molecular iodine-catalyzed and air-mediated tandem synthesis of quinolines via three-component reaction of amines, aldehydes, and alkynes. Tetrahedron,2011,67, 3858-3862.
    [17]For examples, see:(a) Sarel, S.; Yovell, J.; Sarel-Imber, M. Recent Developments in the Stereochemistry of Cyclopropane Ring Opening. Angew. Chem., Int. Ed.,1968, 7,577-588; (b) Reissig, H. U.; Zimmer, R. Donor-Acceptor-Substituted Cyclopropane Derivatives and Their Application in Organic Synthesis. Chem. Rev.2003,103, 1151-1196; (c) Xie, H.-X.; Zu, L.-S.; Li, H.; Wang, J.; Wang, W. Organocatalytic enantioselective cascade Michael-alkylation reactions:Synthesis of chiral cyclopropanes and investigation of unexpected organocatalyzcd stereoselective ring opening of cyclopropanes.J.Am. Chem. Soc.,2007,129,10886-10894; (d) Pohlhaus, P.D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. Scope and mechanism for Lewis acid-catalyzed cycloadditions of aldehydes and donor-acceptor cyclopropanes:Evidence for a stereospecific intimate ion pair pathway.J. Am. Chem. Soc.,2008,130,8642-8650.
    [18]Hanzlik, R.P. The oxidative metabolism of cyclopropylamines:fate of the three carbons and other interesting observations.Synthesis and Applications of Isolopically Labelled Compounds, Proceedings of the International Symposium, 8th, Boston, MA, United States,2003,111-114.
    [19]Rousseaux, S.; Liegault, B.;Fagnou,K. Palladium(0)-catalyzcd cyclopropane C-H bond functionalization:synthesis of quinoline and tetrahydroquinoline derivatives Chem. Sci.,2012,3,244-248.
    [20]Shao, L-X.; Shi, M. Ring-Expansion of MCPs in the Presence of DIAD or DEAD and Lewis Acids. Eur. J. Org. Chem.2004,426-430.
    [21]Otohiko, T.; Hiroyuki, W. Studies of highly strained heterocycles. Part 1. Acidic alumina and boron trifluoride-diethyl ether (BF3.OEt2)-induced reactions of 1,2-diphenyl-1-azaspiro[2.2]pentane.Helerocycles,1976,4,1905-1908.
    [22]Yar, M.; McGarrigle, E. M.; Aggarwal, V. K. An Annulalion Reaction for the Synthesis of Morpholines, Thiomorpholines, and Piperazines from bcta-Heteroatom Amino Compounds and Vinyl Sulfonium Salts. Angew. Chem., Int. Ed.,2008,47, 3784-3786.
    [23]An, J.; Chang, N.-J.; Song, L.-D.; Jin, Y.-Q.; Ma, Y; Chen J.-R.; Xiao, W.-J. Efficient and general synthesis of oxazino[4,3-a]indoles by cascade addition-cyclization reactions of (1H-indol-2-yl)methanols and vinyl sulfonium salts. Chem. Commun.,2011,47,1869-1871.
    [24]Reux, B.; Nevalainen, T.; Raitio, K. H.; Koskinen, A. M. P. Synthesis of quinolinyl and isoquinolinyl phenyl ketones as novel agonists for the cannabinoid CB2 receptor. Bioorg. Med. Chem.,2009,17,4441-4447.
    [25]Pal, M.; Swamy, N.K.; Hameed, P. S.; Padakanti,S.; Yeleswarapu, K. R. A rapid and direct access to symmetrical/unsymmetrical 3,4-diarylmaleimides and pyrrolin-2-ones.Tetrahedron,2004,60,3987-3997.
    [26]Matsuo,J.1.; Yamanaka, H.; Kawana,A.; Mukaiyama,T. A Convenient Method for the Synthesis of 2-Arylaziridines from Styrene Derivatives via 2-Arylethenyl(diphenyl)sulfonium Salts. Chem. Lett.,2003,32,392-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700