4-氨基喹唑啉的“一锅法”合成及P-3A类似物的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文开发了“一锅”合成4-氨基喹唑啉的方法,并基于此方法,以博来霉素家族的成员P-3A为先导化合物,围绕其核心嘧啶环结构进行改造,设计并探索了两类P-3A类似物的合成,并对其生物活性进行了初步测试。
     第一章介绍了4-氨基喹唑啉的生物活性以及研究现状。并系统的研究了以羧酸和邻氨基苯甲腈为起始物通过“一锅”法合成4-氨基喹唑啉的反应,考察了其反应规律及适用范围。
     4-氨基喹唑啉是一类重要的含氮杂环,其衍生物具有抗菌、消炎、抗高血压等多种生物活性。这类化合物还具有高选择性酪氨酸激酶抑制活性,表现出良好的抗癌活性。因此,近年来4-氨基喹唑啉的合成受到了药物合成化学家们的广泛关注。4-氨基喹唑啉的合成通常是以邻氨基苯甲酰胺为底物,与甲酸反应形成喹唑酮,然后依次经氯代、胺的取代反应后得到。该方法步骤多,反应底物类型受到一定的限制。“一锅法”合成2-取代-4-氨基喹唑啉也有报道,其中多数是通过羧酸衍生物(如腈、原羧酸酯、酰氯、脒等)与邻氨基苯甲腈或邻氨基苯甲酰胺等关环得到。直接以便宜易得的羧酸为底物,通过“一锅法”合成4-氨基喹唑啉的反应尚未见报道。
     首先,我们对“一锅”法合成4-氨基喹唑啉的反应条件进行了考察。研究表明羧酸与邻氨基苯甲腈在3.3当量的PPh3-CCl4作用下,以吡啶作碱催化,先在乙腈条件下回流,然后再加入氨的甲醇溶液加热,能够以中等到较高产率得到4-氨基喹唑啉。该方法可适用于各种芳香酸,其中含有吸电子基的苯甲酸产率较高(对氟苯甲酸,产率81%),而带有推电子取代基的苯甲酸会降低产率(对甲氧基苯甲酸,产率30%)。此外,该方法用于脂肪酸也可以得到较好的产率(54-81%),反应规律与脂肪酸电性相关,与该脂肪酸在该反应条件下的稳定性也具有直接关系。包括扁桃酸也可以在该条件下反应,产率54%。同时以苯乙酸与邻氨基苯甲腈的反应为例考察了“一锅”反应与分步反应对产率的影响,结果表明“一锅”反应的产率较高(62%,而分步反应总产率为54%)。同时,考察了羧酸与取代的邻氨基苯甲腈的反应规律,发现带有吸电子取代基的邻氨基苯甲腈会降低反应产率。
     通过进一步条件考察,找到了应用于保护的氨基酸参与合成2-取代-4-氨基喹唑啉的方法,以较好的产率(69%)得到了N-Cbz-天冬酰胺参与的关环产物。
     第二章介绍了有关博来霉素抗癌作用的机理及P-3A的合成;尝试了以4-氨基喹唑啉为核心的构象限制P-3A类似物的合成;设计并合成了P-3A噻唑类似物,并测试了其活性。
     博来霉素(Bleomycin)是临床上广泛应用的一类抗癌药物,是一类结构复杂的糖肽类天然产物。研究表明,博来霉素是通过裂解DNA的双螺旋结构并使其不可被细胞修复来发挥其抗癌作用的。根据其功能,博来霉素分子可分为四个结构功能域:与金属离子络合的DNA裂解功能域、由双噻唑和带正电荷的锍盐组成的DNA络合功能域、增强分子细胞膜穿透性的二糖片段和由二肽构成的桥连片段。其中,DNA裂解功能域是其发挥抗癌作用的关键结构单元。
     博来霉素结构复杂,合成较为困难。合成博来霉素的关键是合成核心的嘧啶环及其侧链,来构建金属键合功能域。基于此,P-3A可以作为一个理想的最初合成目标。虽然有研究组已经完成了P-3A的全合成,并对其进行了多方面的修饰,考察了构效关系,揭示了产生DNA裂解活性的关键结构及官能团;还有的研究组主要围绕对P-3A分子中嘧啶环核心结构的改造,通过将其替换为吡啶环,研究这些P-3A类似物对金属络合作用的影响开展工作,但对于博来霉素金属健合功能域的研究还是众多研究组所关注的领域,可通过对该部分的修饰改造来寻找具有更好的裂解DNA活性的先导化合物或对其裂解DNA的作用机制进行探索。
     在已有的博来霉素类似物的研究结果中,替换其核心4-氨基嘧啶环的研究只有Ohno研究组有少量报道,关于利用构象限制策略改造核心嘧啶环的研究尚未见报道。利用4-氨基喹唑啉替换其核心4-氨基嘧啶环可以得到构象限制的博来霉素类似物。
     我们通过多方面尝试,最终以对甲基苯胺通过五步反应合成2-氨基-3-溴-5-甲基苯甲腈,并以此为原料得到了合成构象限制P-3A类似物的前体。但利用Buchwald偶联和Ullmman-Type偶联反应条件尝试了连接二肽侧链,均没有成功,无法完成构象限制P-3A类似物的合成。
     通过替换P-3A结构中的嘧啶环为噻唑环,设计并合成了一个P-3A类似物,检测了DNA裂解活性。在结构设计中,保留了博来霉素结构中完整的金属键合功能域中关键官能团,分为三个片段——丝氨酸片段、噻唑环片段、二肽片段——组装合成了P-3A噻唑类似物。在合成过程中,以丝氨酸甲酯盐酸盐为原料,通过三苯甲基保护氨基、Mistunobu反应偶联邻苯二甲酰亚胺、保护基变换、甲酯氨化、脱除邻苯二甲酰亚胺等步骤,合成了具有光学活性的丝氨酸片断——?-氨基丙氨酰胺;以硫代乙酰胺与溴代丙酮酸乙酯关环、溴代得到了噻唑环片段,并以简捷的方式与丝氨酸片断连接;最后,通过肽偶联方式连接了二肽侧链。最终通过一个单线10步反应以25%的总产率得到P-3A噻唑类似物。最后,对该P-3A类似物进行了裂解DNA活性测试,发现在200 ?M具有明显的DNA裂解活性。
In this dissertation, a useful method was developed to prepare the 4-aminoquinazoline heterocyclic nucleus, which entails a two-step one-pot procedure leading to 4-aminoquinazolines up to good yields. The application of this method to synthesis of 4-aminoquinazoline bleomycin analogs is envisioned. And a P-3A thiazole analog was designed and synthesized.
     In Chapter One, biological activity and synthesis of 4-aminequinazoline were reviewed. A new one-pot two-step procedure was developed to prepare 4-aminoquinazolines from carboxylic acids and 2-aminobenzonitriles. Various carboxylic acids, including aromatic, aliphatic, and amino acids, are suitable substrates for this new method.
     Quinazolines are a family of compounds with a variety of pharmacological properties, such as analgesic, narcotic, anti-malarial, sedative and hypoglycaemic ones. 4-Aminoquinazolines are useful as fungicides and as anti-inflammatory, anti-cancer, anti-microbial and anti-hypertensive agents. 4-Aminequinazolines have not been the object of new synthetic developments in the last few years and recent reports on their preparation use only classical methods via 4-chloroquinazolines, an important synthetic intermediate as they can be derivatised further through nucleophilic attack at the C-4 position. 4-Aminoquinazolines were prepared from 2-aminobenzonitrile with either a nitrile or an orthoester under microwave conditions. Recently, 2-aminonitrile was cyclized with formic acid at the elevated temperature of 200℃leading to 5,6-dihydro-quinazolines; 2-aminobenzamide was cyclized with anilines and orthoesters to give 4-arylaminoquinazolines. But the cyclization with 2-aminobenzonitrile and carboxylic acid were not found.
     In our study, most benzoic acid gave the desired quinazolines in good-to-high yields. However, para-methoxybenzoic gave lower yield compared to other benzoic acids, and it is possible that the strong electron-donating property of the MeO group reduces the reactivity of the benzoic acid. Heterocyclic aromatic acids were also suitable substrates for this reaction leading to desired quinazolines in moderate yields. Encouraged by the success with aromatic acids, aliphatic acids including N-Cbz-Lasparagine required for the synthesis of bleomycin analogs were studied. Aliphatic carboxylic acids are also suitable for this one-pot two-step reaction leading to 4-aminoquinazolines in good yields. To compare this new one-pot procedure against the conventional stepwise approach, phenylacetic acid was coupled with 2-aminobenzonitrile via its acyl chloride to give 2-N-(phenylacetyl) amino- benzonitrile in 72% yield; the resulting amide was subjected to the new one-pot two-step procedure and give compound in 54% yield. This indicates that preformation of the amide bond did not lead to higher yield of the desired 4-aminoquinazoline. More importantly, N-Cbz-Lasparagine reacted with 2-aminobenzonitrile to give 4-aminoquinazoline in good yield. 2-Aminobenzonitriles with halo groups reacted with either N-Cbz-L-asparagine or phenylacetic acid to give the desired products in moderate yields. The electron-withdrawing effects of the halo groups likely decreased the nucleophilicity of the aniline group, which may account for the observed lower yields.
     In chapter two, synthetic and mechanistic studies of Bleomycins were reviewed. The design of Bleomycin analogs was described. We got the starting material of Conformation-Restricted P-3A analogs with the one-pot two-step method, and tried to couple the side chain of peptide. A P-3A thiazole analog was designed and synthesized.
     Bleomycin is a clinically employed antitumor agent through the sequence-selective cleavage of DNA in a process that is both metal-iron and O2 dependent. However, dose-dependent undesired side effects, such as pulmonary toxicity, are limiting the therapeutic efficacy of bleomycins. Thus, it has been suggested that improved bleomycin analogs may have enhanced therapeutic index between anticancer activity and undesired toxicity. Each structural unit of bleomycin A2 contributes importantly to its biological activity: the N-terminal pyrimidine, the metal binding domain, demonstrated that the majority of the DNA binding affinity originates from the C-terminus with the bithiazole and the positively charged sulfonium salt. The role of the carbohydrate domain has been less extensively examined although it is known to enhance biological potency and efficacy.
     P-3A is a microbial product isolated in biosynthetic studies of the bleomycins, whose structure contains the functionalized pyrimidine core of bleomycin A2 and represents the simplest member of this class of agents. Boger detailed pioneering total syntheses of P-3A, and researched its SAR. Ohno et al. synthesized a serious of P-3A pymidine analogs and got a good biological activity.
     In medicinal chemistry, conformational restriction is commonly used to improve potency. We envisioned that the application of such a strategy to the metal-binding domain of bleomycin could lead to analogs that promote more efficient formation of the oxygen-Fe(II)-bleomycin complex. To test this concept, P-3A, the smallest member of the bleomycin family but still retaining DNA cleavage properties was selected. Therefore, the cyclization of the carbonyl group onto the 6-position of the pyrimidine nucleus was performed via a benzene ring. The quinazoline ring system should fix the–NH- group in a position that has higher propensity for metal binding compared with the relatively flexible amide group in P-3A and other bleomycins. We envisioned that 2-aminobenzonitrile could react with a carboxylic acid in an one-pot two-step procedure to produce the key intermediate required for our conformation-restricted P-3A analogs, and it can introduce the stereochemistry center with natural amino acid.
     We synthesized 2-amino-3-bromo-5-methylbenzonitrile via a five-step route, and got the key intermediate compound with it. We tried to couple the side chain of peptide via Buchwald coupling reaction and Ullmman-Type coupling reaction, but failed.
     In the design of the P-3A thiazole analog structure, the key groups of full metal binding domain in bleomycin structure was remained and P-3A thiazole analog was synthesized with three parts: serine segment, thiazole nuclear and side chain of two peptides. In synthesis routs, the ?-aminoalanine amide was synthesized via protecting amine with trityl, Mistunobu coupling with phthalimide, transforming trityl to Boc, amination of methyl, deporting the phthalimide with hydrazine. Thiazole nuclear was synthesized with ethyl bromopyruvate and ethanethioamide and then linked with serine segment. Finally, it coupled with peptide. We got the P-3A thiazole analog via a ten-step single route with a 25% total yield. And this P-3A thiazole analog can cleave supercoiled DNA at 200 ?M.
引文
[1] FRY D W, KRAKER A J, MCMICHAEL A, AMBROSO L A, NELSON J M, LEOPOLD W R, CONNERS R W, BRIDGES A J. A Specific Inhibitor of the Epidermal Growth Factor Receptor Tyrosine Kinase [J]. Science, 1994, 265(5175): 1093-1095.
    [2] TSOU H R, MAMUYA N, JOHNSON B D, REICH M F, GRUBER B C, YE F, NILAKANTAN R, SHEN R, DISCAFANI C, DEBLANC R, DAVIS R, KOEHN F E, GREENBERGER L M, WANG Y F, WISSNER A. 6-Substituted-4-(3-bromophenylamino)quinazolines as Putative Irreversible Inhibitors of the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor (HER-2) Tyrosine Kinases with Enhanced Antitumor Activity [J]. J Med Chem, 2001, 44(17): 2719-2734.
    [3] BRIDGES A J. Chemical Inhibitors of Protein Kinases [J]. Chem Rev, 2001, 101(8): 2541-2572.
    [4] BERGER M, ALBRECHT B, BERCES A, ETTMAYER P, NERUDA W, WOISETSCHLAGER M. S(+)-4-(1-Phenylethylamino)quinazolines as Inhibitors of Human Immunoglobuline E Synthesis: Potency Is Dictated by Stereochemistry and Atomic Point Charges at N-1 [J]. J Med Chem, 2001, 44(18): 3031-3038.
    [5] ROCCO S A, BARBARINI J E, RITTNER R. Syntheses of some 4-anilinoquinazoline derivatives [J]. Synthesis-Stuttgart, 2004, 3): 429-435.
    [6] KIKELJ D. Product class 13: quinazolines. [J]. Science of Synthesis, 2004, 16(1): 573-749.
    [7] BARKER A J, GIBSON K H, GRUNDY W, GODFREY A A, BARLOW J J, HEALY M P, WOODBURN J R, ASHTON S E, CURRY B J, SCARLETT L, HENTHORN L, RICHARDS L. Studies leading to the identification of ZD1839 (iressa(TM)): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer [J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11(14): 1911-1914.
    [8]侯廷军,朱丽荔,陈丽蓉,徐筱杰. EGFR和4-苯胺喹唑啉类抑制剂之间相互作用模式的研究[J].化学学报, 2002, 60(6): 1023-1028.
    [9] CIARDIELLO,F. Epidermal growth factor receptor tyrosine kinase inhJbitors as anticancer agents [J]. Drugs, 2000, 60(1): 25-32.
    [10] TSOU H-R, MAMUYA N, JOHNSON B D, REICH M F, GRUBER B C, YE F, NILAKANTAN R, SHEN R, DISCAFANI C, DEBLANC R, DAVIS R, KOEHN F E, GREENBERGER L M, WANG Y-F, WISSNER A. 6-Substituted-4-(3-bromophenylamino)quinazolines as Putative Irreversible Inhibitors of the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor (HER-2) Tyrosine Kinases with Enhanced Antitumor Activity [J]. J Med Chem, 2001, 44(17): 2719-2734.
    [11] HAGAN R L, HYNES J B, PIMSLER M, KISLIUK R L. STUDIES ON THE ANTITUMOR EFFECTS OF ANALOGUES OF 5,%DIDEAZAISOFOLIC ACID AND 5,8-DIDEAZAISOAMINOPTERIN [J]. Biochemical Pharmacology, 1995, 50(6): 803-809.
    [12] MATSUNO K, NAKAJIMA T, ICHIMURA M, GIESE N A, YU J-C, LOKKER N A, USHIKI J, IDE S-I, ODA S, NOMOTO Y. Potent and Selective Inhibitors of PDGF Receptor Phosphorylation. 2. Synthesis, Structure Activity Relationship, Improvement of Aqueous Solubility, and Biological Effects of 4-[4-(N-Substituted (thio)carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazoline Derivatives [J]. J Med Chem, 2002, 45(20): 4513-4523.
    [13] HAYAKAWA M, KAIZAWA H, MORITOMO H, KOIZUMI T, OHISHI T, OKADA M, OHTA M, TSUKAMOTO S-I, PARKER P, WORKMAN P, WATERFIELD M. Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110a inhibitors [J]. Bioorganic & Medicinal Chemistry, 2006, 14(6847-6858.
    [14] PALANKI M S S, ERDMAN P E, REN M, SUTO M, BENNETT B L, MANNING A, RANSONE L, SPOONER C, DESAI S, OW A, TOTSUKA R, TSAO P, TORIUMI W. The design and synthesis of novel orally active inhibitors of AP-1 and NF-[kappa]B mediated transcriptional activation. SAR of In vitro and In vivo studies [J]. Bioorganic & Medicinal Chemistry Letters, 2003, 13(22): 4077-4080.
    [15] BURCH H A. Nitrofuryl Heterocycles. IV1. 4-Amino-2-(5-nitro-2-furyl)quinazoline Derivatives [J]. J Med Chem, 1966, 9(3): 408-410.
    [16] YOKOYAMA K, ISHIKAWA N, IGARASHI S, KAWANO N, HATTORI K, MIYAZAKI T, OGINO S-I, MATSUMOTO Y, TAKEUCHI M, OHTA M. Discovery of potent CCR4 antagonists: Synthesis and structure-activity relationship study of 2,4-diaminoquinazolines [J]. Bioorganic & Medicinal Chemistry, 2008, 16(14): 7021-7032.
    [17] SIELECKI T M, JOHNSON T L, LIU J, MUCKELBAUER J K, GRAFSTROM R H, COX S, BOYLAN J, BURTON C R, CHEN H, SMALLWOOD A, CHANG C-H, BOISCLAIR M, BENFIELD P A, TRAINOR G L, SEITZ S P. Quinazolines as cyclin dependent kinase inhibitors [J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11(9): 1157-1160.
    [18] ANANTHAN S, SAINI S K, KHARE R, CLAYTON S D, DERSCH C M, ROTHMAN R B. Identification of a Novel Partial Inhibitor of Dopamine Transporter Among 4-Substituted 2-Phenylquinazolines [J]. Bioorganic & Medicinal Chemistry Letters, 2002, 12(12): 2225-2228.
    [19] MUIJLWIJK-KOEZEN J E V, TIMMERMAN H, LINK R, GOO H V D, IJZERMAN A P. A Novel Class of Adenosine A3 Receptor Ligands. 2.Structure Affinity Profile of a Series of Isoquinoline and Quinazoline Compounds [J]. J Med Chem, 1998, 41(7): 3994-4000.
    [20] VAN MUIJLWIJK-KOEZEN J E, TIMMERMAN H, VAN DER GOOT H, MENGE W M P B, FRIJTAG VON DRABBE KUNZEL J, DE GROOTE M, IJZERMAN A P. Isoquinoline and Quinazoline Urea Analogues as Antagonists for the Human Adenosine A3 Receptor [J]. J Med Chem, 2000, 43(11): 2227-2238.
    [21] VAN MUIJLWIJK-KOEZEN J E, TIMMERMAN H, VOLLINGA R C, FRIJTAG VON DRABBE K眉NZEL J, DE GROOTE M, VISSER S, IJZERMAN A P. Thiazole and Thiadiazole Analogues as a Novel Class of Adenosine Receptor Antagonists [J]. J Med Chem, 2001, 44(5): 749-762.
    [22] ALAIMO R J, HATTON C J. Anthelmintic 2-(5-nitro-2-thienyl)-4-(substituted amino)quinazolines [J]. J Med Chem, 1972, 15(1): 108-109.
    [23] BERGER M, ALBRECHT B, BERCES A, ETTMAYER P, NERUDA W, WOISETSCHL盲GER M. S(+)-4-(1-Phenylethylamino)quinazolines as Inhibitors of Human Immunoglobuline E Synthesis:鈥?Potency Is Dictated by Stereochemistry and Atomic Point Charges at N-1 [J]. J Med Chem, 2001, 44(18): 3031-3038.
    [24] LANGE N A, SHEIBLEY F E. QUINAZOLINES. II. THE INTERACTION OF 2,4-DICHLOROQUINAZOLINE IN ALCOHOL WITH SALTS AND BASES [J]. J Am Chem Soc, 1931, 53(10): 3867-3875.
    [25] SHREDER K R, WONG M S, NOMANBHOY T, LEVENTHAL P S, FULLER S R. Synthesis of AX7593, a Quinazoline-Derived Photoaffinity Probe for EGFR [J]. Org Lett, 2004, 6(21): 3715-3718.
    [26] LEONARD N J, CURTIN D Y. PREPARATION OF 4-MERCAPTO AND 4-AMINO QUINAZOLINES [J]. J Org Chem, 1946, 11(4): 349-352.
    [27] CONNOLLY D J, CUSACK D, O'SULLIVAN T P, GUIRY P J. Synthesis of quinazolinones and quinazolines [J]. Tetrahedron, 2005, 61(43): 10153-10202.
    [28] TAYLOR E C, KNOPF R J, BORROR A L. The Dimerization of 2-Amino-5-nitrobenzonitrile [J]. Journal of the American Chemical Society, 1960, 82(12): 3152-3157.
    [29] J.SHISHOO C, DEVANI M B, BHADTI V S, JAIN K S, ANANTHAN S. Reaction of Nitriles under Acidic Conditions. Part VI. Synthesis of Condensed 4-Chloro- and 4-Aminopyrimidines from ortho-Aminonitriles [J]. J Heterocyclic Chem, 1990, 27(2): 119-127.
    [30] SMYRL N R, III R W S. Hydroxide-Catalyzed Synthesis of Heterocyclic Aromatic Amine Derivatives from Nitriles [J]. J Heterocyclic Chem, 1982, 19(6): 493-497.
    [31] TAYLOR E C, BORROR A L. The Reaction of Nitriles with o-Aminonitriles: A Convenient Synthesis of Fused 4-Aminopyrimidines1a,b [J]. The Journal of Organic Chemistry, 1961, 26(12): 4967-4974.
    [32] VAN MUIJLWIJK-KOEZEN J E, TIMMERMAN H, LINK R, VAN DER GOOT H, IJZERMAN A P. A Novel Class of Adenosine A3 Receptor Ligands.2. Structure Affinity Profile of a Series of Isoquinoline and Quinazoline Compounds [J]. J Med Chem, 1998, 41(21): 3994-4000.
    [33] ZHANG J, HAN Y, HAN F, CHEN Z, WENG L, ZHOU X. Facile Construction of a Novel Aminoquinazolinate Anionic Ligand through Organolanthanide-Mediated Intermolecular Nucleophilic Addition/Cyclization of Anthranilonitrile [J]. Inorganic Chemistry, 2008, 47(13): 5552-5554.
    [34] KREUTZBERGER A, STEVENS M F G. J Chem Soc C, 1969, 1282.
    [35] SEIJAS J A, VAZQUEZ-TATO M P, MARTINEZ M M. Microwave enhanced synthesis of 4-aminoquinazolines [J]. Tetrahedron Letters, 2000, 41(13): 2215-2217.
    [36] RAD-MOGHADAM K, SAMAVI L. One-pot three-component synthesis of 2-substituted 4-aminoquinazolines [J]. Journal of Heterocyclic Chemistry, 2006, 43(4): 913-916.
    [37] HERAVI M M, SADJADI S, HAJ N M, OSKOOIE H A, BAMOHARRAM F F. Efficient Three-Component Synthesis of 4-Aminoquinazolines [J]. Synthetic Communications, 2010, 40(6): 861-867.
    [38] TOMIOKA Y, YAMAZAKI M. REACTION OF o-ETHOXALYLAMINONITRILES WITH CYANOMETHYLENE COMPOUNDS IN THE PRESENCE OF CYANIDE ION [J]. HETEROCYCLES, 1981, 16(12): 2115-2119.
    [39] MCKILLOP A, GOMEZ E, AVENDAFIO C. ETHYL CARBOETHOXYFORHIHIDATE IN HETEROCYCLIC CHEMISTRY [J]. Tetrahedron, 1986, 42(10): 2625-2634.
    [40] MCKILLOP A, HENDERSON A, RAY P S, AVENDANO C, MOLLNERO E G. HETEROCYCLIC SYNTHESIS USING ETHYL CARBOETHOXYFORMIMIDATE [J]. Tetrahedron Letters, 1982, 23(33): 3357-3360.
    [41] TRAXLER P M, FURET P, METT H, BUCHDUNGER E, MEYER T, LYDON N. 4-(Phenylamino)pyrrolopyrimidines: Potent and Selective, ATP Site Directed Inhibitors of the EGF-Receptor Protein Tyrosine Kinase [J]. J Med Chem, 1996, 39(12): 2285-2292.
    [42] SZCZEPANKIEWICZ W, SUWINSKI J, BUJOK R. Synthesis of 4-Arylaminoquinazolines and 2-Aryl-4-arylaminoquinazolines from 2-Aminobenzonitrile, Anilines and Formic Acid or Benzaldehydes [J]. Tetrahedron, 2000, 56(47): 9343-9349.
    [43] SZCZEPANKIEWICZ W, SUWINSKI J. Synthesis of 4-arylaminoquinazolines via 2-amino-N-arylbenzamidines [J]. Tetrahedron Letters, 1998, 39(13): 1785-1786.
    [44] STADLBAUER W. Houben–Weyl [M]. 1994.
    [45] YANG X, LIU H, FU H, QIAO R, JIANG Y, ZHAOA Y. Efficient Copper-Catalyzed Synthesis of 4-Aminoquinazoline and 2,4-Diaminoquinazoline Derivatives [J]. Synlett, 2010, 1): 101-106.
    [46] FOSTER C H, ELAM E U. Novel one-pot synthesis of 4-aminoquinazolines[J]. The Journal of Organic Chemistry, 1976, 41(15): 2646-2647.
    [47] YOON D S, HAN Y, STARK T M, HABER J C, GREGG B T, STANKOVICH S B. Efficient Synthesis of 4-Aminoquinazoline and Thieno[3,2-d]pyrimidin-4-ylamine Derivatives by Microwave Irradiation [J]. Organic Letters, 2004, 6(25): 4775-4778.
    [48] H CKER H-G, HAYE A D L, STERZ K, SCHNAKENBURG G, WIESE M, G TSCHOW M. Analogs of a 4-aminothieno[2,3-d]pyrimidine lead (QB13) as modulators of P-glycoprotein substrate specificity [J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(21): 6102-6105.
    [49] MHASKE S B, ARGADE N P. The chemistry of recently isolated naturally occurring quinazolinone alkaloids [J]. Tetrahedron, 2006, 62(42): 9787-9826.
    [50] TAMURA K, MIZUKAMI H, MAEDA K, WATANABE H, UNEYAMA K. One-pot synthesis of trifluoroacetimidoyl halides [J]. The Journal of Organic Chemistry, 1993, 58(1): 32-35.
    [51] MEKETA M L, WEINREB S M. Total Synthesis of Ageladine A, an Angiogenesis Inhibitor from the Marine Sponge Agelas nakamurai [J]. Organic Letters, 2006, 8(7): 1443-1446.
    [52] BENAZZA M, MASSOUI M, UZAN R, DEMAILLY G. Regioselective chlorination study of unprotected pentitols: syntheses of some 1,5-dichloro-1,5-dideoxypentitol derivatives [J]. Carbohydrate Research, 1995, 275(2): 421-431.
    [53] HAI-CHEN W, DA-MING D, WEN-TING H, XIANG-LIN J. Synthesis and Crystal Structure of the Novel Chiral o-Hydroxyphenyloxazoline Metal Complexes [J]. Chinese J Struct Chem, 2003, 22(2): 155-160.
    [54] AOYAGI S, WANG T C, KIBAYASHI C. Highly stereoselective total syntheses of (+)-allopumiliotoxins 267A and 339A via intramolecular nickel(II)/chromium(II)-mediated cyclization [J]. Journal of the American Chemical Society, 1993, 115(24): 11393-11409.
    [55] ANJOS T, ROBERTS-BLEMING S J, CHARLTON A, ROBERTSON N, MOUNT A R, COLES S J, HURSTHOUSE M B, KALAJI M, MURPHY P J. Nickel dithiolenes containing pendant thiophene units: precursors to dithiolene–polythiophene hybrid materials [J]. J Mater Chem, 2008, 18(475-483.
    [56] AGENO G, BANFI L, GIUSEPPE GUANTI G C, MANGHISI E, RIVA R, ROCCA V. Enantiospecific and diastereoselective synthesis of 4,4-disubstituted-3-amino-2-azetidinones, starting from D-serine [J]. Tetrahedron, 1995, 51(29): 8121-8134.
    [57] LAMBERTH C, QUERNIARD F. First synthesis and further functionalization of 7-chloro-imidazo[2,1-b][1,3]thiazin-5-ones [J]. Tetrahedron Letters, 2008, 49(14): 2286-2288.
    [58] UMEZAWA H, MAEDA K, TAKEUCHI T, OKAMI Y. J Antibiot, 1966, 19(3): 200-209.
    [59] OHNO M, OTSUKA M. Synthetic Study on Man-Made Bleomycins Based onthe Anticancer Mechanism of Natural Bleomycins [M]//LUKACS G, OHNO M. Recent Progress in the Chemical Synthesis of Antibiotics. Berlin; Springer-Verlag. 1990: 387-414.
    [60] UMEZAWA H. Natural and Artificial Bleomycins: Chemistry and Antitumour Activities [J]. Pure Appl Chem, 1971, 28(10): 665-680.
    [61] TAKITA T, MURAOKA Y, YOSHIOKA T, FUJII A, MAEDA K, UMEZAWA H. The Chemistry of Bleomycin. IX--The Structures of Bleomycin and Phleomycin [J]. J Antibiot, 1972, 25(12): 755-758.
    [62] MURAOKA Y, FUJII A, YOSHIOKA T, TAKITA T, UMEZAWA H. J Antibiot, 1977, 30(2): 178-181.
    [63] TAKITA T, MURAOKA Y, NAKATANI T, FUJII A, UMEZAWA Y, NAGANAWA H, UMEZAWA H. J Antibiot, 1978, 31(8): 801-804.
    [64] FUKUOKA T, MURAOKA Y, FUJII A, NAGANAWA H, KAKITA T, UMEZAWA H. J Antibiot, 1980, 33(1): 114-117.
    [65] BOGER D L, MENEZES R F, HONDA T. Total Synthesis of (-)-Pyrimidoblamic Acid and Deglycobleomycin A2 [J]. Angewandte Chemie-International Edition, 1993, 32(2): 273-275.
    [66] BOGER D L, HONDA T, MENEZES R F, COLLETTI S L, DANG Q, YANG W J. Total Syntheses of (+)-P-3a, Epi-(-)-P-3a, and (-)-Desacetamido P-3A [J]. Journal of the American Chemical Society, 1994, 116(1): 82-92.
    [67] BOGER D L, COLLETTI S L, HONDA T, MENEZES R F. Total Synthesis of Bleomycin-a(2) and Related Agents .1. Synthesis and DNA-Binding Properties of the Extended C-Terminus - Tripeptide-S, Tetrapeptide-S, Pentapeptide-S, and Related Agents [J]. Journal of the American Chemical Society, 1994, 116(13): 5607-5618.
    [68] BOGER D L, HONDA T, DANG Q. Total Synthesis of Bleomycin-a(2) and Related Agents .2. Synthesis of (-)-Pyrimidoblamic Acid, Epi-(+)-Pyrimidoblamic Acid, (+)-Desacetamidopyrimidoblamic Acid, and (-)-Descarboxamidopyrimidoblamic Acid [J]. Journal of the American Chemical Society, 1994, 116(13): 5619-5630.
    [69] BOGER D L, HONDA T, MENEZES R F, COLLETTI S L. Total Synthesis of Bleomycin-a(2) and Related Agents .3. Synthesis and Comparative-Evaluation of Deglycobleomycin-a(2), Epideglycobleomycin-a(2), Deglycobleomycin-a(1), and Desacetamidodeglycobleomycin, Descarboxamidodeglycobleomycin, Desmethyldeglycobleomycin, and Desimidazolyldeglycobleomycin-a(2) [J]. Journal of the American Chemical Society, 1994, 116(13): 5631-5646.
    [70] BOGER D L, HONDA T. Total Synthesis of Bleomycin a(2) and Related Agents .4. Synthesis of the Disaccharide Subunit - 2-O-(3-O-Carbamoyl-Alpha-D-Mannopyranosyl)-L-Gulopyranose and Completion of the Total Synthesis of Bleomycin a(2) [J]. Journal of the American Chemical Society, 1994, 116(13): 5647-5656.
    [71] BURGER R M, TIAN G, DRLICA K. Oxygen isotope effect on activatedbleomycin stability [J]. J Am Chem Soc, 1995, 117(3): 1167-1168.
    [72] D'ANDREA A D, HASELTINE W A. Sequence Specific Cleavage of DNA by the Antitumor Antibiotics Neocarzinostatin and Bleomycin [J]. Proceedings of the National Academy of Sciences, 1978, 75(8): 3608-3612.
    [73] TAKESHITA M, GROLLMAN A P, OHTSUBO E, OHTSUBO H. Interaction of Bleomycin with DNA [J]. Proceedings of the National Academy of Sciences, 1978, 75(12): 5983-5987.
    [74] NATRAJAN A, HECHT S M, VAN DER MAREL G A, VAN BOOM J H. A study of oxygen- versus hydrogen peroxide-supported activation of iron.cntdot.bleomycin [J]. J Am Chem Soc, 1990, 112(10): 3997-4002.
    [75] BONADONNA G, BONFANTE V, VIVIANI S, DI RUSSO A, VILLANI F, VALAGUSSA P. ABVD plus subtotal nodal versus involved-field radiotherapy in early-stage Hodgkin's disease: Long-term results [J]. Journal of Clinical Oncology, 2004, 22(14): 2835-2841.
    [76] KUWAHARA J, SUGIURA Y. Sequence-Specific Recognition and Cleavage of DNA by Metallobleomycin: Minor Groove Binding and Possible Interaction Mode [J]. Proceedings of the National Academy of Sciences, 1988, 85(8): 2459-2463.
    [77] SAM J W, TANG X-J, PEISACH J. Electrospray Mass Spectrometry of Iron Bleomycin: Demonstration That Activated Bleomycin Is a Ferric Peroxide Complex [J]. J Am Chem Soc, 1994, 116(12): 5250-5256.
    [78] WESTRE T E, LOEB K E, ZALESKI J M, HEDMAN B, HODGSON K O, SOLOMON E I. Determination of the Geometric and Electronic Structure of Activated Bleomycin Using X-ray Absorption Spectroscopy [J]. J Am Chem Soc, 1995, 117(4): 1309-1313.
    [79] SUGIYAMA H, TASHIRO T, DANNOUE Y, MIWA T, MATSUURA T, SAITO I. Metallo-Bleomycin-Mediated Degradation of Deoxytetranucleotides - Unusual C-4' Hydroxylation at Terminal Cytidine [J]. Tetrahedron Letters, 1989, 30(51): 7213-7216.
    [80] SUGIYAMA H, KAWABATA H, FUJIWARA T, DANNOUE Y, SAITO I. Specific detection of C-4' hydroxylated abasic sites generated by bleomycin and neocarzinostatin in DNA [J]. J Am Chem Soc, 1990, 112(13): 5252-5257.
    [81] SUGIYAMA H, SERA T, DANNOUE Y, MARUMOTO R, SAITO I. Bleomycin-Mediated Degradation of Aristeromycin-Containing DNA - Novel Dehydrogenation Activity of Iron(Ii) Bleomycin [J]. Journal of the American Chemical Society, 1991, 113(6): 2290-2295.
    [82] SUGIYAMA H, OHMORI K, SAITO I. Oligonucleotides Containing a Radical Trap: The Trapping of Deoxyribose C4' Radical in Bleomycin-Mediated Reactions [J]. J Am Chem Soc, 1994, 116(22): 10326-10327.
    [83] RABOW L E, STUBBE J, KOZARICH J W. Identification and quantitation of the lesion accompanying base release in bleomycin-mediated DNA degradation [J]. J Am Chem Soc, 1990, 112(8): 3196-3203.
    [84] RABOW L E, STUBBE J, KOZARICH J W, MCGALL G H. Identification of the source of oxygen in the alkaline-labile product accompanying cytosine release during bleomycin-mediated oxidative degradation of d(CGCGCG) [J]. J Am Chem Soc, 1990, 112(8): 3203-3208.
    [85] KOZARICH J W, WORTH L, JR B L F, CHRISTNER D F, VANDERWALL D E, STUBBE J. Sequence-specific isotope effects on the cleavage of DNA by bleomycin [J]. Science, 1989, 245(1396-1399.
    [86] SUGIYAMA H, KILKUSKIE R E, CHANG L H, MA L T, HECHT S M, VAN DER MAREL G A, VAN BOOM J H. DNA strand scission by bleomycin: catalytic cleavage and strand selectivity [J]. J Am Chem Soc, 1986, 108(13): 3852-3854.
    [87] BARR J R, VAN ATTA R B, NATRAJAN A, HECHT S M, VAN DER MAREL G A, VAN BOOM J H. Iron(II) bleomycin-mediated reduction of oxygen to water: an oxygen-17 NMR study [J]. J Am Chem Soc, 1990, 112(10): 4058-4060.
    [88] CARTER B J, DE VROOM E, LONG E C, VAN DER MAREL G A, VAN BOOM J H, HECHT S M. Site-Specific Cleavage of RNA by Fe(II){middle dot}Bleomycin [J]. Proceedings of the National Academy of Sciences, 1990, 87(23): 9373-9377.
    [89] MAGLIOZZO R S, PEISACH J, CIRIOLO M R. Transfer RNA is cleaved by activated bleomycin [J]. Mol Pharmacol, 1989, 35(428-432.
    [90] OPPENHEIMER N J, CHANG C, CHANG L H, EHRENFELD G, RODRIGUEZ L O, HECHT S M. Deglyco-bleomycin. Degradation of DNA and formation of a structurally unique Fe(II) . CO complex [J]. J Biol Chem, 1982, 257(4): 1606-1609.
    [91] SUGIURA Y, SUZUKI T, OTSUKA M, KOBAYASHI S, OHNO M, TAKITA T, UMEZAWA H. Synthetic analogues and biosynthetic intermediates of bleomycin. Metal- binding, dioxygen interaction, and implication for the role of functional groups in bleomycin action mechanism [J]. J Biol Chem, 1983, 258(2): 1328-1336.
    [92] KENANI A, LAMBLIN G, HENICHART J P. A Convenient Method for the Cleavage of the D-Mannosyl-L-Gulose Disaccharide from Bleomycin-a2 [J]. Carbohydrate Research, 1988, 177(1): 81-89.
    [93] BOGER D L, MENEZES R F, YANG W. A simple method for the purification and isolation of bleomycin A2 [J]. Bioorganic & Medicinal Chemistry Letters, 1992, 2(9): 959-962.
    [94] MURAOKA Y, KOBAYASHI H, FUJII A, KUNISHIMA M, FUJII T, NAKAYAMA Y, TAKITA T, H. UMEZAWA. J Antibiot, 1976, 29(8): 853-856.
    [95] UMEZAWA H, HORI S, SAWA T, YOSHIOKA T, TAKEUCHI T. J Antibiot, 1974, 27(6): 419-424.
    [96] SUGIURA Y. Bleomycin-iron complexes. Electron spin resonance study, ligand effect, and implication for action mechanism [J]. J Am Chem Soc, 1980,102(16): 5208-5215.
    [97] SUGIYAMA H, EHRENFELD G M, SHIPLEY J B, KILKUSKIE R E, CHANG L-H, HECHT S M. DNA Strand Scission by Bleomycin Group Antibiotics [J]. J Nat Prod, 1985, 48(6): 869-877.
    [98] MORII T, MATSUURA T, SAITO I, SUZUKI T, KUWAHARA J, SUGIURA Y. Phototransformed bleomycin antibiotics. Structure and DNA cleavage activity [J]. J Am Chem Soc, 1986, 108(22): 7089-7094.
    [99] MORII T, SAITO I, MATSUURA T, KUWAHARA J, SUGIURA Y. New lumibleomycin containing thiazolylisothiazole ring [J]. J Am Chem Soc, 1987, 109(3): 938-939.
    [100] WU W, VANDERWALL D E, LUI S M, TANG X J, TURNER C J, KOZARICH J W, STUBBE J. Studies of Co·Bleomycin A2 Green: Its Detailed Structural Characterization by NMR and Molecular Modeling and Its Sequence-Specific Interaction with DNA Oligonucleotides [J]. J Am Chem Soc, 1996, 118(6): 1268-1280.
    [101] WU W, VANDERWALL D E, TURNER C J, KOZARICH J W, STUBBE J. Solution Structure of Co·Bleomycin A2 Green Complexed with d(CCAGGCCTGG) [J]. J Am Chem Soc, 1996, 118(6): 1281-1294.
    [102] WU W, VANDERWALL D E, STUBBE J, KOZARICH J W, TURNER C J. Interaction of Co.cntdot.Bleomycin A2 (Green) with d(CCAGGCCTGG)2: Evidence for Intercalation Using 2D NMR [J]. J Am Chem Soc, 1994, 116(23): 10843-10844.
    [103] LUI S M, VANDERWALL D E, WU W, TANG X J, TURNER C J, KOZARICH J W, STUBBE J. Structural Characterization of Co·Bleomycin A2 Brown: Free and Bound to d(CCAGGCCTGG) [J]. J Am Chem Soc, 1997, 119(41): 9603-9613.
    [104] WU W, VANDERWALL D E, TERAMOTO S, LUI S M, HOEHN S T, TANG X J, TURNER C J, BOGER D L, KOZARICH J W, STUBBE J. NMR Studies of Co·Deglycobleomycin A2 Green and Its Complex with d(CCAGGCCTGG) [J]. J Am Chem Soc, 1998, 120(10): 2239-2250.
    [105] MANDERVILLE R A, ELLENA J F, HECHT S M. Interaction of Zn(II).cntdot.Bleomycin with d(CGCTAGCG)2. A Binding Model Based on NMR Experiments and Restrained Molecular Dynamics Calculations [J]. J Am Chem Soc, 1995, 117(30): 7891-7903.
    [106] MANDERVILLE R A, ELLENA J F, HECHT S M. Solution Structure of a Zn(II).cntdot.Bleomycin A5-d(CGCTAGCG)2 Complex [J]. J Am Chem Soc, 1994, 116(23): 10851-10852.
    [107] XU R X, ANTHOLINE W E, PETERING D H. Reaction of Co(II)bleomycin with dioxygen [J]. J Biol Chem, 1992, 267(2): 944-949.
    [108] MAO Q, FULMER P, LI W, DEROSE E F, PETERING D H. Different Conformations and Site Selectivity of HO(2)[IMAGE]-Co(III)-Bleomycin A(2) and Co(III)-Bleomycin A(2) Bound to DNA Oligomers [J]. J Biol Chem, 1996, 271(11): 6185-6191.
    [109] OTVOS J D, ANTHOLINE W E, WEHRLI S, PETERING D H. Metal Coordination Environment and Dynamics in 113Cadmium Bleomycin: Relationship to Zinc Bleomycin [J]. Biochemistry, 1996, 35(5): 1458-1465.
    [110] FULMER P, ZHAO C, LI W, DEROSE E, ANTHOLINE W E, PETERING D H. Fe- and Co-Bleomycins Bound to Site Specific and Nonspecific DNA Decamers: Comparative Binding and Reactivity of Their Metal Centers [J]. Biochemistry, 1997, 36(14): 4367-4374.
    [111] XU R X, NETTESHEIM D, OTVOS J D, PETERING D H. NMR Determination of the Structures of Peroxycobalt(III) Bleomycin and Cobalt(III) Bleomycin, Products of the Aerobic Oxidation of Cobalt(II) Bleomycin by Dioxygen [J]. Biochemistry, 1994, 33(4): 907-916.
    [112] CALAFAT A M, WON H, MARZILLI L G. A New Arrangement for the Anticancer Antibiotics Tallysomycin and Bleomycin When Bound to Zinc: An Assessment of Metal and Ligand Chirality by NMR and Molecular Dynamics [J]. J Am Chem Soc, 1997, 119(16): 3656-3664.
    [113] LEHMANN T E, MING L J, ROSEN M E, QUE L. NMR Studies of the Paramagnetic Complex Fe(II)-Bleomycin [J]. Biochemistry, 1997, 36(10): 2807-2816.
    [114] GLICKSON J D, PILLAI R P, SAKAI T T. Proton NMR studies of the Zn(II)--bleomycin-A2--poly(dA-dT) ternary complex [J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(5): 2967-2971.
    [115] AKKERMAN M A J, NEIJMAN E W J F, WIJMENGA S S, HILBERS C W, BERMEL W. Studies of the solution structure of the bleomycin A2-iron(II)-carbon monoxide complex by means of two-dimensional NMR spectroscopy and distance geometry calculations [J]. J Am Chem Soc, 1990, 112(21): 7462-7474.
    [116] OPPENHEIMER N J, RODRIGUEZ L O, HECHT S M. Structural studies of of "active complex" of bleomycin: assignment of ligands to the ferrous ion in a ferrous-bleomycin-carbon monoxide complex [J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(11): 5616-5620.
    [117] OPPENHEIMER N J, RODRIGUEZ L O, HECHT S M. Proton nuclear magnetic resonance study of the structure of bleomycin and the zinc-bleomycin complex [J]. Biochemistry, 1979, 18(16): 3439-3445.
    [118] EHRENFELD G M, RODRIGUEZ L O, HECHT S M, CHANG C, BASUS V J, OPPENHEIMER N J. Copper(I)-bleomycin: structurally unique complex that mediates oxidative DNA strand scission [J]. Biochemistry, 1985, 24(1): 81-92.
    [119] KUROSAKI H, HAYASHI K, ISHIKAWA Y, GOTO M. The First Trigonal-Bipyramidal Structure of Zinc(Ii) Complex of a Bleomycin Model [J]. Chemistry Letters, 1995, 8): 691-692.
    [120] URATA H, UEDA Y, USAMI Y, AKAGI M. Enantiospecific recognition ofDNA by bleomycin [J]. J Am Chem Soc, 1993, 115(16): 7135-7138.
    [121] CHIEN M, GROLLMAN A P, HORWITZ S B. Bleomycin-DNA interactions: fluorescence and proton magnetic resonance studies [J]. Biochemistry, 1977, 16(16): 3641-3647.
    [122] OPPENHEIMER N J, RODRIGUEZ L O, HECHT S M. Metal binding to modified bleomycins. Zinc and ferrous complexes with an acetylated bleomycin [J]. Biochemistry, 1980, 19(17): 4096-4103.
    [123] OPPENHEIMER N J, CHANG C, RODRIGUEZ L O, HECHT S M. Copper(I) . bleomycin. A structurally unique oxidation-reduction active complex [J]. J Biol Chem, 1981, 256(4): 1514-1517.
    [124] KROSS J, HENNER W D, HASELTINE W A, RODRIQUEZ L, LEVIN M D, HECHT S M. Structural basis for the DNA affinity of bleomycins [J]. Biochemistry, 1982, 21(15): 3711-3721.
    [125] BROWN S J, HUDSON S E, OLMSTEAD M M, MASCHARAK P K. Light-induced nicking of DNA by a synthetic analog of cobalt(III)-bleomycin [J]. J Am Chem Soc, 1989, 111(16): 6446-6448.
    [126] BROWN S J, OLMSTEAD M M, MASCHARAK P K. Iron(II) and iron(III) complexes of N-(2-(4-imidazolyl)ethyl)pyrimidine-4-carboxamide, a ligand resembling part of the metal-binding domain of bleomycin [J]. Inorg Chem, 1990, 29(17): 3229-3234.
    [127] TAN J D, HUDSON S E, BROWN S J, OLMSTEAD M M, MASCHARAK P K. Syntheses, structures, and reactivities of synthetic analogs of the three forms of cobalt(III)-bleomycin: proposed mode of light-induced DNA damage by the cobalt(III) chelate of the drug [J]. J Am Chem Soc, 1992, 114(10): 3841-3853.
    [128] FARINAS E, TAN J D, BAIDYA N, MASCHARAK P K. A designed synthetic analog of cobalt(III)-bleomycin with enhanced DNA-binding and photocleaving activity [J]. J Am Chem Soc, 1993, 115(7): 2996-2997.
    [129] GUAJARDO R J, HUDSON S E, BROWN S J, MASCHARAK P K. [Fe(PMA)]n+ (n = 1,2): good models of iron-bleomycins and examples of mononuclear non-heme iron complexes with significant oxygen-activation capabilities [J]. J Am Chem Soc, 1993, 115(18): 7971-7977.
    [130] GUAJARDO R J, TAN J D, MASCHARAK P K. The Secondary Amine Group of Bleomycin Is Not Involved in Intramolecular Hydrogen Bonding in "Activated Bleomycin" [J]. Inorg Chem, 1994, 33(13): 2838-2840.
    [131] GUAJARDO R J, CHAVEZ F, FARINAS E T, MASCHARAK P K. Structural Features That Control Oxygen Activation at the Non-Heme Iron Site in Fe(II)-Bleomycin: An Analog Study [J]. J Am Chem Soc, 1995, 117(13): 3883-3884.
    [132] LOEB K E, ZALESKI J M, WESTRE T E, GUAJARDO R J, MASCHARAK P K, HEDMAN B, HODGSON K O, SOLOMON E I. Spectroscopic Definition of the Geometric and Electronic Structure of the Non-Heme Iron Active Site in Iron(II) Bleomycin: Correlation with Oxygen Reactivity [J]. JAm Chem Soc, 1995, 117(16): 4545-4561.
    [133] FARINAS E T, TAN J D, MASCHARAK P K. Photoinduced DNA Cleavage Reactions by Designed Analogues of Co(III)-Bleomycin: The Metalated Core Is the Primary Determinant of Sequence Specificity [J]. Inorg Chem, 1996, 35(9): 2637-2643.
    [134] XU R X, ANTHOLINE W E, PETERING D H. Reaction of DNA-bound Co(II)bleomycin with dioxygen [J]. J Biol Chem, 1992, 267(2): 950-955.
    [135] ANTHOLINE W E, HYDE J S, SEALY R C, PETERING D H. Structure of cupric bleomycin. Nitrogen and proton couplings from EPR and electron nuclear double resonance spectroscopy [J]. J Biol Chem, 1984, 259(7): 4437-4440.
    [136] DABROWIAK J C, TSUKAYAMA M. Cobalt(III) complex of pseudotetrapeptide A of bleomycin [J]. J Am Chem Soc, 1981, 103(25): 7543-7550.
    [137] TAKAHASHI S, SAM J W, PEISACH J, ROUSSEAU D L. Structural Characterization of Iron-Bleomycin by Resonance Raman Spectroscopy [J]. J Am Chem Soc, 1994, 116(10): 4408-4413.
    [138] VESELOV A, SUN H, SIENKIEWICZ A, TAYLOR H, BURGER R M, SCHOLES C P. Iron Coordination of Activated Bleomycin Probed by Q- and X-Band ENDOR: Hyperfine Coupling to Activated 17O Oxygen, 14N, and Exchangeable 1H [J]. J Am Chem Soc, 1995, 117(28): 7508-7512.
    [139] CARTER B J, MURTY V S, REDDY K S, WANG S N, HECHT S M. A role for the metal binding domain in determining the DNA sequence selectivity of Fe-bleomycin [J]. J Biol Chem, 1990, 265(8): 4193-4196.
    [140] HAMAMICHI N, NATRAJAN A, HECHT S M. On the role of individual bleomycin thiazoles in oxygen activation and DNA cleavage [J]. J Am Chem Soc, 1992, 114(16): 6278-6291.
    [141] KANE S A, NATRAJAN A, HECHT S M. On the role of the bithiazole moiety in sequence-selective DNA cleavage by Fe.bleomycin [J]. J Biol Chem, 1994, 269(14): 10899-10904.
    [142] KITTAKA A, SUGANO Y, OTSUKA M, OHNO M. Synthetic models for the transition metal binding site of bleomycin. Remarkable improvement of dioxygen activating capability [J]. Tetrahedron, 1988, 44(10): 2811-2820.
    [143] OTSUKA M, MASUDA T, HAUPT A, OHNO M, SHIRAKI T, SUGIURA Y, MAEDA K. Synthetic studies on antitumor antibiotic, bleomycin. 27. Man-designed bleomycin with altered sequence specificity in DNA cleavage [J]. J Am Chem Soc, 1990, 112(2): 838-845.
    [144] OWA T, SUGIYAMA T, OTSUKA M, OHNO M, MAEDA K. A model study on the mechanism of the autoxidation of bleomycin [J]. Tetrahedron Letters, 1990, 31(42): 6063-6066.
    [145] OWA T, HAUPT A, OTSUKA M, KOBAYASHI S, TOMIOKA N, ITAI A, OHNO M, SHIRAKI T, UESUGI M, SUGIURA Y, MAEDA K. Man-Designed Bleomycins - Significance of the Binding-Sites as EnzymeModels and of the Stereochemistry of the Linker Moiety [J]. Tetrahedron, 1992, 48(7): 1193-1208.
    [146] SUGIYAMA T, OHNO M, SHIBASAKI M, OTSUKA M, SUGIURA Y, KOBAYASHI S, MAEDA K. Transition-Metal Binding-Site of Bleomycin - Significance of the Beta-Aminoalaninamide Appendage in Regulating Oxygen Activation [J]. Heterocycles, 1994, 37(1): 275-282.
    [147] KITTAKA A, SUGANO Y, OTSUKA M, OHNO M. Man-designed bleomycins. synthesis of dioxygen activating molecules and a DNA cleaving molecule based on bleomycin-Fe(II)-02 complex [J]. Tetrahedron, 1988, 44(10): 2821-2833.
    [148] SHINOZUKA K, MORISHITA H, YAMAZAKI T, SUGIURA Y, SAWAI H. Enantiomeric bleomycin model compounds bearing long alkyl-chain [J]. Tetrahedron Letters, 1991, 32(47): 6869-6872.
    [149] KOHDA J, SHINOZUKA K, SAWAI H. A novel bleomycin model compound bearing hydrophilic steric factor exhibited high oxygen activating capacity [J]. Tetrahedron Letters, 1995, 36(31): 5575-5578.
    [150] ARAI T, SHINOZUKA K, SAWAI H. Bleomyclin model complex bearing a carbamoyl derived substituent capable of coordination to the chelated metal ion as a sixth ligand [J]. Bioorganic & Medicinal Chemistry Letters, 1997, 7(1): 15-18.
    [151] HUANG L R, QUADA J C, LOWN J W. Design and Synthesis of DNA-Cleaving Bleomycin Models - 1,2-Trans-Disubstituted Cyclopropane Units as Novel Linkers [J]. Tetrahedron Letters, 1994, 35(30): 5323-5326.
    [152] HUANG L, LOWN J W. Synthesis of Designed Functional Models of Bleomycin Incorporating Imidazole-Containing Lexitropsins as Novel DNA Recognition Sites [J]. Heterocycles, 1995, 41(6): 1181-1196.
    [153] TOSHIMA K, OHTA K, OHASHI A, NAKAMURA T, NAKATA M, TATSUTA K, MATSUMURA S. Molecular Design, Chemical Synthesis, and Study of Novel Enediyne-Sulfide Systems Related to the Neocarzinostatin Chromophore [J]. J Am Chem Soc, 1995, 117(17): 4822-4831.
    [154] BAILLY C, WARING M J. The Purine 2-Amino Group as a Critical Recognition Element for Specific DNA Cleavage by Bleomycin and Calicheamicin [J]. J Am Chem Soc, 1995, 117(28): 7311-7316.
    [155] POVIRK L F, HOGAN M, DATTAGUPTA N. Binding of bleomycin to DNA: intercalation of the bithiazole rings [J]. Biochemistry, 1979, 18(1): 96-101.
    [156] POVIRK L F, HOGAN M, DATTAGUPTA N, BUECHNER M. Copper(II).bleomycin, iron(III).bleomycin, and copper(II).phleomycin: comparative study of deoxyribonucleic acid binding [J]. Biochemistry, 1981, 20(3): 665-670.
    [157] SUH D, POVIRK L F. Mapping of the Cleavage-Associated Bleomycin Binding Site on DNA with a New Method Based on Site-Specific Blockage of the Minor Groove with N2-Isobutyrylguanine [J]. Biochemistry, 1997, 36(14): 4248-4257.
    [158] KENANI A, BAILLY C, HELBECQUE N, CATTEAU J-P, HOUSSIN R, BERNIER J-L, HENICHART J-P. Biochem J, 1988, 253(2): 497-504.
    [159] KENANI A, BAILLY C, HOUSSIN R, HENICHART J P. Anticancer Drugs, 1994, 5(1): 199-201.
    [160] TAKITA T, UMEZAWA Y, SAITO S-I, MORISHIMA H, NAGANAWA H, UMEZAWA H, TSUCHIYA T, MIYAKE T, KAGEYAMA S, UMEZAWA S, MURAOKA Y, SUZUKI M, OTSUKA M, NARITA M, KOBAYASHI S, OHNO M. Total synthesis of bleomycin A21) [J]. Tetrahedron Letters, 1982, 23(5): 521-524.
    [161] TAKITA T, UMEZAWA Y, SAITO S-I, MORISHIMA H, UMEZAWA H, MURAOKA Y, SUZUKI M, OTSUKA M, KOBAYASHI S, OHNO M. Total synthesis of deglyco-bleomycin A2 [J]. Tetrahedron Letters, 1981, 22(7): 671-674.
    [162] SAITO S-I, UMEZAWA Y, MORISHIMA H, TAKITA T, UMEZAWA H, NARITA M, OTSUKA M, KOBAYASHI S, OHNO M. A new synthesis of deglyco-bleomycin A2 aiming at the total synthesis of bleomycin [J]. Tetrahedron Letters, 1982, 23(5): 529-532.
    [163] TSUCHIYA T, MIYAKE T, KAGEYAMA S, UMEZAWA S, UMEZAWA H, TAKITA T. Total synthesis of the disaccharide of bleomycin, 2-0-([alpha]--mannopyranosyl)--gulopyranose [J]. Tetrahedron Letters, 1981, 22(15): 1413-1416.
    [164] OTSUKA M, KITTAKA A, IIMORI T, YAMASHITA H, KOBAYASHI S. Synthetic Studies on an Antitumor Antibiotic, Bleomycin. XII. Preparation of L-2,3-Diaminopionic Acid Derivative as a Synthetic Intermediate [J]. Chem Pharm Bull, 1985, 33(2): 509-514.
    [165] MIYAKE T, TSUCHIYA T, UMEZAWA S, SAITO S, UMEZAWA H. Studies on Glycosylation of Erythro-Beta-Hydroxy-L-Histidine - a Key Step of Bleomycin Total Synthesis [J]. Bulletin of the Chemical Society of Japan, 1986, 59(5): 1387-1395.
    [166] AOYAGI Y, KATANO K, SUGUNA H, PRIMEAU J, CHANG L H, HECHT S M. Total synthesis of bleomycin [J]. J Am Chem Soc, 1982, 104(20): 5537-5538.
    [167] AOYAGI Y, SUGUNA H, MURUGESAN N, EHRENFELD G M, CHANG L H, OHGI T, SHEKHANI M S, KIRKUP M P, HECHT S M. Deglycobleomycin: total synthesis and oxygen transfer properties of an active bleomycin analog [J]. Journal of the American Chemical Society, 1982, 104(19): 5237-5239.
    [168] POZSGAY V, OHGI T, HECHT S M. Synthesis of the carbohydrate moiety of bleomycin [J]. The Journal of Organic Chemistry, 1981, 46(18): 3761-3763.
    [169] KATANO K, CHANG P I, MILLAR A, POZSGAY V, MINSTER D K, OHGI T, HECHT S M. Synthesis of the carbohydrate moiety of bleomycin. 1,3,4,6-Tetra-O-substituted L-gulose derivatives [J]. The Journal of Organic Chemistry, 1985, 50(26): 5807-5815.
    [170] BOGER D L, DANG Q. Synthesis of Desacetamido P-3a - 1,3,5-Triazine-]Pyrimidine Heteroaromatic Azadiene Diels-Alder Reaction [J]. Journal of Organic Chemistry, 1992, 57(6): 1631-1633.
    [171] BOGER D L, YANG W. P-3A and (-)-desacetamido P-3A: demonstration and Study of their effective functional cleavage of duplex DNA [J]. Bioorganic & Medicinal Chemistry Letters, 1992, 2(12): 1649-1654.
    [172] IITAKA Y, NAKAMURA H, NAKATANI T, MURAOKA Y, FUJII A, TAKITA T, UMEZAWA H. CHEMISTRY OF BLEOMYCIN. XX THE X-RAY STRUCTURE DETERMINATION OF P-3A Cu(II)-COMPLEX, A BIOSYNTHETIC INTERMEDIATE OF BLEOMYCIN [J]. The Journal of Antibiotics 1978, 31(10): 1070-1072.
    [173] TAKITA T, MURAOKA Y, NAKATANI T, FUJII A, IITAKA Y, UMEZAWA H. CHEMISTRY OF BLEOMYCIN. XXI METAL-COMPLEX OF BLEOMYCIN AND ITS IMPLICATION FOR THE MECHANISM OF BLEOMYCIN ACTION [J]. The Journal of Antibiotics 1978, 31(10): 1073-1077.
    [174] BOGER D L. Diels-alder reactions of azadienes [J]. Tetrahedron, 1983, 39(18): 2869-2939.
    [175] BOGER D L. Diels-Alder reactions of heterocyclic aza dienes. Scope and applications [J]. Chemical Reviews, 2002, 86(5): 781-793.
    [176] BOGER D L, DANG Q. Inverse Electron Demand Diels-Alder Reactions of 2,4,6-(ethoxycarbonyl)-l,3,5-triazine and 2,4,6-(methylthio)-1,3,5-triazine: Pyrimidine Introduction [J]. Tetrahedron, 1988, 44(11): 3379-3390.
    [177] BOGER D L, KOCHANNY M J. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes: [4 + 2] Cycloaddition Reaction of Amidines with 1,3,5-Triazines [J]. The Journal of Organic Chemistry, 1994, 59(17): 4950-4955.
    [178] BOGER D L, HONDA T. Studies on the Synthesis of Bleomycin-a(2) - Observations on a Diastereoselective Imine Addition-Reaction for C2-Acetamido Side-Chain Introduction [J]. Tetrahedron Letters, 1993, 34(10): 1567-1570.
    [179] OTSUKA M, KOBAYASHI S, OHNO M, UMEZAWA Y, MORISHIMA H, UMEZAWA H. Chem Pharm Bull, 1985, 33(515.
    [180] OTSUKA M, KITTAKA A, IIMORI T, YAMASHITA H, KOBAYASHI S, OHNO M. Chem Pharm Bull, 1985, 33(509):
    [181] OTSUKA M, YAKAIAH M, KOBAYASHI S, OHNO M, UMEZAWA Y, MORISHIMA H. tetrahedron Lett, 1981, 22(2109.
    [182] OTSUKA M, NARITA M, YOSHIDA T, KOBAYASHI S, OHNO M, UMEZAWA Y, MORISHIMA H, SAITO S, TAKITA T, UMEZAWA H. Chem Pharm Bull, 1985, 33(520.
    [183] BOGER D L, TERAMOTO S, ZHOU J C. Key Synthetic Analogs of Bleomycin a(2) That Directly Address the Effect and Role of the Disaccharide - Demannosylbleomycin a(2) and Alpha-D-Mannopyranosyldeglycobleomycina(2) [J]. Journal of the American Chemical Society, 1995, 117(28): 7344-7356.
    [184] KANE S A, HECHT S M. Prog Nucleic Acids Res Mol Biol, 1994, 49(313-352.
    [185] BOGER D L, MENEZES R F, DANG Q. Synthesis of desacetamidopyrimidoblamic acid and deglyco desacetamidobleomycin A2 [J]. J Org Chem, 1992, 57(16): 4333-4336.
    [186] BOGER D L, CAI H. Bleomycin: Synthetic and mechanistic studies [J]. Angewandte Chemie-International Edition, 1999, 38(4): 448-476.
    [187] BOGER D L, RAMSEY T M, CAI H. Synthesis and evaluation of potential N pi and N sigma metal chelation sites within the beta-hydroxy-L-histidine subunit of bleomycin A2: functional characterization of imidazole N pi metal complexation [J]. Bioorg Med Chem, 1996, 4(2): 195-207.
    [188] BOGER D L, TERAMOTO S, CAI H. Synthesis and evaluation of deglycobleomycin A2 analogues containing a tertiary N-methyl amide and simple ester replacement for the L-histidine secondary amide: direct functional characterization of the requirement for secondary amide metal complexation [J]. Bioorg Med Chem, 1996, 4(2): 179-193.
    [189] BOGER D L, RAMSEY T M, CAI H, HOEHN S T, KOZARICH J W, STUBBE J. Assessment of the role of the bleomycin A(2) pyrimidoblamic acid C4 amino group [J]. Journal of the American Chemical Society, 1998, 120(1): 53-65.
    [190] OTSUKA M, YOSHIDA M, KOBAYASHI S, OHNO M, SUGIURA Y, TAKITA T, UMEZAWA H. J Am Chem Soc, 1981, 103(6986.
    [191] UMEZAWA H, TAKITA T, SUGIURA Y, OTSUKA M, KOBAYASHI S, OHNO M. Tetrahedron, 1984, 40(501.
    [192] SUGIURA Y, SUZUKI T, OTSUKA M, KOBAYASHI S, OHNO M, TAKITA T, UMEZAWA H. J Biol Chem, 1983, 258(1328.
    [193] KITTAKA A. University of TOkyo, 1987.
    [194] SUGANO Y, KITTAKA A, OTSUKA M, OHNO M, SUGIURA Y, UMEZAWA H. Transition-metal binding site of bleomycin. A synthetic analogue equivalent to bleomycin in activating molecular oxygen [J]. Tetrahedron Letters, 1986, 27(31): 3635-3638.
    [195] SUGA A, SUGIYAMA Y, SUGANO Y, KITTAKA A, OTSUKA M, OHNO M, SUGIYAMA H, MAEDA K. Synlett, 1989, 70.
    [196] TONIOLO C. Conformationally restricted peptides through short-range cyclizations [J]. International Journal of Peptide and Protein Research, 1990, 35(4): 287-300.
    [197] MATH C, P RIGAUD C. Recent Approaches in the Synthesis of Conformationally Restricted Nucleoside Analogues [J]. European Journal of Organic Chemistry, 2008, 2008(9): 1489-1505.
    [198] KULKARNI S J, RAGHAVAN K V, MOHAN K V V K, NARENDER N, SRINIVASU P. Novel Bromination Method for Anilines and Anisoles Using NH4Br/H2O2 in CH3COOH# [J]. Synthetic Communications, 2004, 34(12):2143-2152.
    [199] ZANKA A, KUBOTA A. Practical and Efficient Chlorination of Deactivated Anilines and Anilides with NCS in 2-Propanol [J]. Synlett, 1999, 11(12): 1984-1986.
    [200] NICKSON T E, ROCHE-DOLSON C A. A Convenient Procedure for Chlorination of Deactivated Anilines [J]. Synthesis, 1985, 669-670.
    [201] MARVEL C S, HIERS. G S. ISATIN [J]. Organic Syntheses, 1925, 5(71-75.
    [202] SILVA J F M D, GARDEN S J, PINTO A C. The chemistry of isatins: a review from 1975 to 1999 [J]. Journal of the Brazilian Chemical Society, 2001, 12(273-324.
    [203] ABELE E, ABELE R, DZENITIS O, LUKEVICS E. Indole and Isatin Oximes: Synthesis, Reactions, and Biological Activity. (Review) [J]. Chemistry of Heterocyclic Compounds, 2003, 39(1): 3-35.
    [204]操锋,任勇,华维一.应用不同催化剂合成邻氨基苯甲腈的研究[J].药物化学, 2002, 19(3):
    [205]李加荣,周馨我,陈鹏.邻氨基苯甲腈的一锅合成[J].化学世界, 1998, 635-636.
    [206] CAMPBELL J B, DAVENPORT T V. Synthesis of Anthranilonitriles by Fragmentation of Isatin Oxime Triflates [J]. Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 1989, 19(13): 2255 - 2263.
    [207]李加荣,韩方斌,杨新华,李文婷,马淑玲.他克林及其衍生物的合成与表征[J].合成化学, 2005, 13(2): 160-162.
    [208] SURRY D, BUCHWALD S. Biaryl Phosphane Ligands in Palladium-Catalyzed Amination [J]. Angewandte Chemie International Edition, 2008, 47(34): 6338-6361.
    [209] BISCOE M, BARDER T, BUCHWALD S. Electronic Effects on the Selectivity of Pd-Catalyzed C N Bond-Forming Reactions Using Biarylphosphine Ligands: The Competitive Roles of Amine Binding and Acidity [J]. Angewandte Chemie International Edition, 2007, 46(38): 7232-7235.
    [210] STRIETER E R, BUCHWALD S L. Evidence for the Formation and Structure of Palladacycles during Pd-Catalyzed C N Bond Formation with Catalysts Derived from Bulky Monophosphinobiaryl Ligands [J]. Angewandte Chemie, 2006, 118(6): 939-942.
    [211] STRIETER E R, BLACKMOND D G, BUCHWALD S L. Insights into the Origin of High Activity and Stability of Catalysts Derived from Bulky, Electron-Rich Monophosphinobiaryl Ligands in the Pd-Catalyzed C?N Bond Formation [J]. Journal of the American Chemical Society, 2003, 125(46): 13978-13980.
    [212] GAERTZEN O, BUCHWALD S L. Palladium-Catalyzed Intramolecularα-Arylation ofα-Amino Acid Esters [J]. The Journal of Organic Chemistry, 2001, 67(2): 465-475.
    [213] WOLFE J P, TOMORI H, SADIGHI J P, YIN J, BUCHWALD S L. Simple, Efficient Catalyst System for the Palladium-Catalyzed Amination of Aryl Chlorides, Bromides, and Triflates [J]. The Journal of Organic Chemistry, 2000, 65(4): 1158-1174.
    [214] WOLFE J P, BUCHWALD S L. Scope and Limitations of the Pd/BINAP-Catalyzed Amination of Aryl Bromides [J]. The Journal of Organic Chemistry, 2000, 65(4): 1144-1157.
    [215] ANDERSON K W, TUNDEL R E, IKAWA T, ALTMAN R A, BUCHWALD S L. Monodentate Phosphines Provide Highly Active Catalysts for Pd-Catalyzed C N Bond-Forming Reactions of Heteroaromatic Halides/Amines and (H)N-Heterocycles [J]. Angewandte Chemie International Edition, 2006, 45(39): 6523-6527.
    [216] WOLFE J P, WAGAW S, MARCOUX J-F, BUCHWALD S L. Rational Development of Practical Catalysts for Aromatic Carbon?Nitrogen Bond Formation [J]. Accounts of Chemical Research, 1998, 31(12): 805-818.
    [217] SHEKHAR S, RYBERG P, HARTWIG J F, MATHEW J S, BLACKMOND D G, STRIETER E R, BUCHWALD S L. Reevaluation of the Mechanism of the Amination of Aryl Halides Catalyzed by BINAP-Ligated Palladium Complexes [J]. Journal of the American Chemical Society, 2006, 128(11): 3584-3591.
    [218] ZHANG H, CAI Q, MA D. Amino Acid Promoted CuI-Catalyzed C?N Bond Formation between Aryl Halides and Amines or N-Containing Heterocycles [J]. The Journal of Organic Chemistry, 2005, 70(13): 5164-5173.
    [219] MA D, CAI Q. Copper/Amino Acid Catalyzed Cross-Couplings of Aryl and Vinyl Halides with Nucleophiles? [J]. Accounts of Chemical Research, 2008, 41(11): 1450-1460.
    [220] MA D, ZHANG Y, YAO J, WU S, TAO F. Accelerating Effect Induced by the Structure ofα-Amino Acid in the Copper-Catalyzed Coupling Reaction of Aryl Halides withα-Amino Acids. Synthesis of Benzolactam-V8 [J]. Journal of the American Chemical Society, 1998, 120(48): 12459-12467.
    [221] MA D, XIA C. CuI-Catalyzed Coupling Reaction ofβ-Amino Acids or Esters with Aryl Halides at Temperature Lower Than That Employed in the Normal Ullmann Reaction. Facile Synthesis of SB-214857 [J]. Organic Letters, 2001, 3(16): 2583-2586.
    [222] MA D, CAI Q, ZHANG H. Mild Method for Ullmann Coupling Reaction of Amines and Aryl Halides [J]. Organic Letters, 2003, 5(14): 2453-2455.
    [223] SHAFIR A, BUCHWALD S L. Highly Selective Room-Temperature Copper-Catalyzed C?N Coupling Reactions [J]. Journal of the American Chemical Society, 2006, 128(27): 8742-8743.
    [224] SHAFIR A, LICHTOR P A, BUCHWALD S L. N- versus O-Arylation of Aminoalcohols:? Orthogonal Selectivity in Copper-Based Catalysts [J]. Journal of the American Chemical Society, 2007, 129(12): 3490-3491.
    [225] KWONG F Y, BUCHWALD S L. Mild and Efficient Copper-CatalyzedAmination of Aryl Bromides with Primary Alkylamines [J]. Organic Letters, 2003, 5(6): 793-796.
    [226] LEY S V, THOMAS A W. Modern Synthetic Methods for Copper-Mediated C(aryl) O , C(aryl) N , and C(aryl) S Bond Formation [J]. Angewandte Chemie International Edition, 2003, 42(44): 5400-5449.
    [227] XU L-W, XIA C-G, LI J-W, LI F-W, ZHOU S-L. Efficient palladium/copper cocatalyzed C-N coupling reaction of unactivated aryl bromide or iodide with amino acid under microwave heating [J]. Catalysis Communications, 2004, 5(3): 121-123.
    [228] WANG D, DING K. 2-Pyridinyl -ketones as new ligands for room-temperature CuI-catalysed C-N coupling reactions [J]. Chemical Communications, 2009, 14): 1891-1893.
    [229] R TTGER S, SJ BERG P J R, LARHED M. Microwave-Enhanced Copper-Catalyzed N-Arylation of Free and Protected Amino Acids in Water [J]. Journal of Combinatorial Chemistry, 2007, 9(2): 204-209.
    [230] CEYLAN S, FRIESE C, LAMMEL C, MAZAC K, KIRSCHNING A. Inductive heating for organic synthesis by using functionalized magnetic nanoparticles inside microreactors. [J]. Angewandte Chemie, International Edition, 2008, 47(46): 8950-8953.
    [231] OKONYA J F, AL-OBEIDI F. Synthesis of 2,5-dihalothiazole-4-carboxylates [J]. Tetrahedron Letters, 2002, 43(39): 7051-7053.
    [232] OTSUKA M, YOSHIDA M, KOBAYASHI S, OHNO M, SUGIURA Y, TAKITA T, UMEZAWA H. Transition-metal binding site of bleomycin. A synthetic analog capable of binding iron(II) to yield an oxygen-sensitive complex [J]. Journal of the American Chemical Society, 1981, 103(23): 6986-6988.
    [233] UMEZAWA Y, MORISHIMA H, SAITO S, TAKITA T, UMEZAWA H, KOBAYASHI S, OTSUKA M, NARITA M, OHNO M. Synthesis of the pyrimidine moiety of bleomycin [J]. J Am Chem Soc, 1980, 102(21): 6630-6631.
    [234] CHERNEY R J, WANG L. Efficient Mitsunobu Reactions with N-Phenylfluorenyl or N-Trityl Serine Esters [J]. The Journal of Organic Chemistry, 1996, 61(7): 2544-2546.
    [235] GAGNON D, LAUZON S, GODBOUT C, SPINO C. Sterically Biased 3,3-Sigmatropic Rearrangement of Azides:? Efficient Preparation of Nonracemicα-Amino Acids and Heterocycles [J]. Organic Letters, 2005, 7(21): 4769-4771.
    [236] KATANO K, AN H Y, AOYAGI Y, OVERHAND M, SUCHECK S J, STEVENS W C, HESS C D, ZHOU X, HECHT S M. Total synthesis of bleomycin group antibiotics. Total syntheses of bleomycin demethyl A(2), bleomycin A(2), and decarbamoyl bleomycin demethyl A(2) [J]. Journal of the American Chemical Society, 1998, 120(44): 11285-11296.
    [237] BOGER D L, MENEZES R F, DANG Q, YANG W. DeglycoGABA-Gly-desacetamidobleomycin A2: a simplified synthetic model for bleomycin A2 [J]. Bioorganic & Medicinal Chemistry Letters, 1992, 2(3): 261-266.
    [238] BOGER D L, COLLETTI S L, TERAMOTO S, RAMSEY T M, ZHOU J. Synthesis of key analogs of bleomycin A2 that permit a systematic evaluation of the linker region: Identification of an exceptionally prominent role for the -threonine substituent [J]. Bioorganic & Medicinal Chemistry, 1995, 3(9): 1281-1295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700