新型荧光介孔纳米微粒的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能化介孔二氧化硅材料由于在药物缓释体系,光学应用,染料掺杂能量传递等许多方面具有潜在的应用而成为研究热点。特别是荧光功能介孔材料由于在作为药物传递的载体,诊断分析和荧光标签等生物医学领域的潜在应用而受到广泛关注。不同的荧光发射中心,包括染料分子、共轭聚合物、稀土配合物、8-羟基喹啉接枝的金属配合物和CdSe/ZnS量子点(QDs)等已经被引入到介孔二氧化硅中,制备出了具有荧光发射特性的介孔材料。
     本文选择介孔二氧化硅纳米粒子作为主体材料,分别通过原位生成和离子交换原位聚合的方法将8-羟基喹啉锌配合物(Znqx)和聚对苯撑乙烯(PPV)引入到介孔SiO_2纳米微粒中制备出具有不同荧光发射特性和稳定发光的介孔二氧化硅纳米微粒(MSNs)。此外,三(2,2-联吡啶)氯化钌和罗丹明6G染料还通过简单吸附法被成功引入到介孔SiO_2中。我们对这些不同荧光MSNs的结构和光物理性质进行了详细研究。研究结果表明:(1)在具有不同内环境的孔道中原位合成的8-羟基喹啉锌配合物(Znq_x)都以单配位(Znq)形式存在。这种原位生成方法得到的样品(MSNs-Znq)与通过简单的化学吸附法在孔中引入Znq_2的样品相比具有更好的荧光发射,并且在不同pH值下具有突出的光学稳定性。得到的荧光MSNs还可用于缓释布洛芬药物。(2) MSNs孔道内原位生成的PPV含量和介孔二氧化硅微粒的大小都对PPV@MSNs复合纳米微粒的发光性质有影响。我们所制备的这些不同荧光介孔二氧化硅纳米微粒均可分散在水中,这使它们在药物缓释、生物标记及基因载体等生物学方面具有重要的应用价值。
Functionalized mesoporous silica materials have received much attention because of their potential applications in areas such as drug-delivery systems, optical and dye-doped energy-transfer schemes. Fluorescent mesoporous silica nanoparticles have received considerable attention, since the materials hold great promise for biomedical applications such as drug delivery carriers, diagnostic analysis and ?uorescent labeling. Different emission centers, including dye molecules, conjugated polymers, rare earth complexes, 8-hydroxyquinoline grafting metal complexes and CdSe/ZnS quantum dots (QDs) have already been introduced into the mesoporous silica to prepare high fluorescence mesoporous materials.
     In this study, we choose the mesoporous silica as host material, incorporated 8-hydroxyquinolinate zinc complexes (Znqx) and poly(p-phenylenevinylene) (PPV) into the channels of mesoporous silica nanoparticles by in situ formation and in situ polymerization method. Tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate and Rhodamine 6G have also been successfully introduced into the mesoporous silica by direct chemical adsorption. Thus, through this way, we prepared different fluorescence mesoporous silica nanoparticles (MSNs) with stable emission. At the same time, the structures and photophysical properties of the different fluorescent MSNs were studied in detail. The results show that: (1) the 8-hydroxyquinolinate zinc complexes (Znqx) in situ synthesized in the channels of MSNs with different inner surroundings were determined as a single coordination mode (Znq). The MSNs-Znq obtained by in situ generation procedure possess highly ?uorescence emission, outstanding optical stability at different pH values as compared with that obtained by direct chemical adsorption of Znq2. The obtained ?uorescent MSNs were used in the controlled release of ibuprofen. (2) The fluorescence properties of PPV@MSNs composite materials depend on the concentration of PPV in MSNs and the size of mesoporous silica particles. The different fluorescent mesoporous silica nanoparticles can be dispersed in water, which makes them have the potential applications in biomedical fields such as drug delivery, biological markers and gene carriers.
引文
[1] Lai C Y, Trewyn B G, Jeftinija D M, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. J Am Chem Soc, 2003, 125: 4451-4459.
    [2] Radu D R, Lai C Y, Jeftinija K, et al. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent[J]. J Am Chem Soc, 2004, 126: 13216-13217.
    [3] Han Y J, Stucky G D, Butler A. Mesoporous silicate sequestration and release of proteins[J]. J Am Chem Soc, 1999, 121: 9897-9898.
    [4] Lin V S Y, Lai C Y, Huang J, et al. Molecular recognition inside of multifunctionalized mesoporous silicas: toward selective fluorescence detection of dopamine and glucosamine[J]. J Am Chem Soc, 2001, 123: 11510-11511.
    [5] Radu D R, Lai C Y, Wiench J W, et al. Gatekeeping layer effect: a poly(lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters[J]. J Am Chem Soc, 2004, 126: 1640-1641.
    [6] Scott B J, Wirnsberger G, McGehee MD, et al. Dye-doped mesostructured silica as a distributed feedback laser fabricated by soft lithography[J]. Adv Mater, 2001, 13: 1231-1234.
    [7] Slowing I, Trewyn B G, Lin V S Y. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells[J]. J Am Chem Soc, 2006, 128: 14792-14793.
    [8] Park C, Oh K, Lee S C, et al. Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motify[J]. Angew Chem Int Ed, 2007, 46: 1455-1457.
    [9] Minoofar P N, Dunn B S, Zink J I. Multiply doped nanostructured silicate sol-gel thin films:spatial segregation of dopants, energy transfer, and distance measurements[J]. J Am Chem Soc, 2005, 127:2656-2665.
    [10] Asefa T, MacLachlan M J, Coombs N, et al. Periodic mesoporous organosilicas with organic groups inside the channel walls[J]. Nature, 1999, 402: 867-871.
    [11] Stein A, Melde B J, Schroden R C, Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age[J]. Adv Mater, 2000, 12: 1403-1419.
    [12] Fujita S, Inagaki S. Self-organization of organosilica solids with molecular-scale and mesoscale periodicities[J]. Chem Mater, 2008, 20: 891-908.
    [13] Walcarius A, Etienne M, Lebeau B. Rate of access to the binding sites in organically modifiedsilicates. 2. ordered mesoporous silicas grafted with amine or thiol groups[J]. Chem Mater, 2003, 15: 2161- 2173.
    [14] Yoshitake H, Yokoi T, Tatsumi T. Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1[J]. Chem Mater, 2002, 14: 4603- 4610.
    [15] Huang H Y, Yang R T, Chinn D, et al. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas[J]. Ind Eng Chem Res, 2003, 42: 2427-2433.
    [16] Zheng F, Tran D N, Busche B J, et al. Ethylenediamine-modified SBA-15 as regenerable CO_2 sorbent[J]. Ind Eng Chem Res, 2005, 44: 3099-3105.
    [17] Trens P, Russell M L, Spjuth L, et al. Preparation of malonamide-MCM-41 materials for the heterogeneous extraction of radionuclides[J]. Ind Eng Chem Res, 2002, 41: 5220-5225.
    [18] Lei C, Shin Y, Liu J, et al. Entrapping enzyme in a functionalized nanoporous support[J]. J Am Chem Soc, 2002, 124: 11242-11243.
    [19] Mercier L, Pinnavaia T J. Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg(II) uptake[J]. Environ Sci Technol, 1998, 32: 2749-2754.
    [20] Antochshuk V, Jaroniec M. 1-Allyl-3-propylthiourea modified mesoporous silica for mercury removal[J]. Chem Commun, 2002, 258-259.
    [21] Kang T, Park Y, Choi K, et al. Ordered mesoporous silica (SBA-15) derivatized with imidazole-containing functionalities as a selective adsorbent of precious metal ions[J]. J Mater Chem, 2004,14: 1043-1049.
    [22] Armata G S, Salmas C E, Louloudi M, et al. Relationships among pore size, connectivity, dimensionality of capillary condensation, and pore structure tortuosity of functionalized mesoporous silica[J]. Langmuir, 2003, 19: 3128-3136.
    [23] Rodríguez-López G, Marcos M D, Mart?n?ez-Má?ez R, et al. Efficient boron removal by using mesoporous matrices grafted with saccharides[J]. Chem Commun, 2004, 2198-2199.
    [24] Burke A M, Hanrahan J P, Healy D A, et al. Large pore bi-functionalised mesoporous silica for metal ion pollution treatment[J]. J Hazard Mater, 2009, 164: 229-234.
    [25] Pérez-Quintanilla D, Hierro I, Fajardo M, et al. Adsorption of cadmium(II) from aqueous media onto a mesoporous silica chemically modified with 2-mercaptopyrimidine[J]. J Mater Chem, 2006, 16: 1757-1764.
    [26] Inagaki S, Guan S, Ohsuna T, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure[J]. Nature, 2002, 416: 304-307.
    [27] Kapoor M P, Yang Q H, Inagaki S. Self-assembly of biphenylene-bridged hybrid mesoporous solid with molecular-scale periodicity in the pore walls[J]. J Am Chem Soc, 2002, 124: 15176-15177.
    [28] Morell J, Wolter G, Fr?ba M. Synthesis and characterization of highly ordered thiophene-bridged periodic mesoporous organosilicas with large pores[J]. Chem Mater, 2005, 17: 804-808.
    [29] Cornelius M, Hoffmann F, Fr?ba M. Periodic mesoporous organosilicas with a bifunctional conjugated organic unit and crystal-like pore walls[J]. Chem Mater, 2005, 17: 6674-6678.
    [30] Peng H, Tang J, Yang L, et al. Responsive periodic mesoporous polydiacetylene/silica nanocomposites[J]. J Am Chem Soc, 2006, 128: 5304-5305.
    [31] Maegawa Y, Goto Y, Inagaki S, et al. A useful procedure for diiodination of carbazoles and subsequent efficient transformation to novel 3,6-bis(triethoxysilyl)carbazoles giving mesoporous materials[J]. Tetrahedron Lett, 2006, 47: 6957-6960.
    [32] Nakajima K, Tomita I, Hara M, et al. A stable and highly active hybrid mesoporous solid acid catalyst[J]. Adv Mater, 2005, 17: 1839-1842.
    [33] Ohashi M, Kapoor M P, Inagaki S. Chemical modification of crystal-like mesoporous phenylene-silica with amino group[J]. Chem Commun, 2008, 841-843.
    [34] Hatton B D, Landskron K, Whitnall W, et al. Spin-coated periodic mesoporous organosilica thin films-towards a new generation of low-dielectric-constant materials[J]. Adv Funct Mater, 2005, 15: 823-829.
    [35] Rebbin V, Schmidt R, Fr?ba M. Spherical particles of phenylene-bridged periodic mesoporous organosilica for high-performance liquid chromatography[J]. Angew Chem Int Ed, 2006, 45: 5210–5214.
    [36] Zhu H, Jones D J, Zajac J. et al. Synthesis of periodic large mesoporous organosilicas and functionalization by incorporation of ligands into the framework wall[J]. Chem Mater, 2002, 14: 4886-4894.
    [37]Cho E B, Kim D, Jaroniec M. Periodic mesoporous organosilicas with multiple bridging groups and spherical morphology[J]. Langmuir, 2007, 23: 11844-11849.
    [38] Arruebo M, Galán M, Navascués N, et al. Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications[J]. Chem Mater, 2006, 18: 1911-1919.
    [39] Levy L, Sahoo Y, Kim K S, et al. Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications[J]. Chem Mater, 2002, 14: 3715-3721.
    [40] Louis C, Bazzi R, Marquette C A, et al. Nanosized hybrid particles with double luminescence for biological labeling[J]. Chem Mater, 2005, 17: 1673-1682.
    [41] Lin YS, Wu SH, Hung Y, et al. Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous[J]. Chem Mater, 2006, 18: 5170-5172.
    [42] Kim JY, Kim HS, Lee NY, et al. Multifunctional uniform nanoparticles composed of amagnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and ?uorescence imaging and for drug delivery[J]. Angew Chem Int Ed, 2008, 47: 8438-8441.
    [43] Grasset F, Dorson F, Molard Y, et al. One-pot synthesis and characterization of bi-functional phosphor-magnetic@SiO_2 nanoparticles: controlled and structured association of Mo6 cluster units andγ-Fe2O3 nanocrystals[J]. Chem Commun, 2008, 4729-4731.
    [44] Parala H, Winkler H, Seggern H, et al. Confinement of CdSe nanoparticles inside MCM-41[J]. Adv Mater, 2000, 12: 1050-1055.
    [45] Chae W S, Yoon J H, Yu H, et al. Ultraviolet emission of ZnS nanoparticles confined within a functionalized mesoporous host[J]. J Phys Chem B, 2004, 108: 11509-11513.
    [46] Pattantyus-Abraham A G, Wolf M O. A PPV/MCM-41 composite material[J]. Chem Mater, 2004, 16: 2180-2186.
    [47] Sokolov I, Kievsky Y Y, Kaszpurenko J M. Self-assembly of ultrabright fluorescent silica particles[J]. small, 2007, 3: 419-423.
    [48] Yang Y J, Tao X, Hou Q, et al. Fluorescent mesoporous silica nanotubes incorporating CdS quantum dots for controlled release of ibuprofen[J]. Acta Biomaterialia, 2009, 5: 3488-3496.
    [49] Xu Q H, Li L S, Liu XS, et al. Incorporation of rare-earth complex Eu(TTA)4C5H5NC16H33 into surface-modified Si-MCM-41 and its photophysical properties[J]. Chem Mater, 2002, 14: 549-555.
    [50] Li H R, Lin J, Zhang H J, et al. Novel, covalently bonded hybrid materials of europium (terbium) complexes with silica[J]. Chem. Commun, 2001, 1212-1213.
    [51] Sun L N, Zhang H J, Peng C Y, et al. Covalent linking of near-infrared luminescent ternary lanthanide (Er3+, Nd3+, Yb3+) complexes on functionalized mesoporous MCM-41 and SBA-15[J]. J Phys Chem B, 2006, 110: 7249-7258.
    [52] Yang P P, Quan Z W, Lu L L, et al. Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems[J]. Biomaterials, 2008, 29: 692–702.
    [53] Zhao D, Seo S J, Bae B S. Full-color mesophase silicate thin film phosphors incorporated with rare earth ions and photosensitizers[J]. Adv Mater, 2007,19: 3473-3479.
    [54] Li N, Li Xt, Wang W, et al. Blue-shifting photoluminescence of tris (8-hydroxyquinoline) aluminium encapsulated in the channel of functionalized mesoporous silica SBA-15[J]. Mater Chem Phys, 2006, 100: 128-131.
    [55] Wang H, Huang J, Wu S, et al. Design and synthesis of Alq3-functionalized SBA-15 mesoporous material[J]. Mater Lett, 2006, 60: 2662-2665.
    [56] Du Y Y, Fu Y Q, Lu X D, et al. Incorporation of Znq2 complexes into mesoporous silica and their transparent polymer luminescent nanocomposites[J]. J Solid State Chem, 2009, 182:1430-1437.
    [57] Mizoshita N, Goto Y, Kapoor M P, et al. Fluorescence emission from 2,6-naphthylene-bridged mesoporous organosilicas with an amorphous or crystal-like framework[J]. Chem-Eur J, 2009, 15: 219-226.
    [58] Vallet-Regi M, Ramila A, del Real R P, et al. A new property of MCM-41: drug delivery system[J]. Chem Mater, 2001, 13: 308–311.
    [59] Trewyn B G, Giri S, Slowing I I, et al. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems[J]. Chem Commun, 2007, 3236-3245.
    [60] Lai C Y, Trewyn B G, Jeftinija D M, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. J Am Chem Soc, 2003, 125: 4451- 4459.
    [61] Mal N K, Fujiwara M, Tanaka Y, et al. Photo-switched storage and release of guest molecules in the pore void of coumarin-modified MCM-41[J]. Chem Mater, 2003, 15: 3385–3394.
    [62] Mal N K, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica[J]. Nature, 2003, 421: 350-353.
    [63] Zhu Y, Shi J. A mesoporous core-shell structure for pH-controlled storage and release of water-soluble drug[J]. Micropor Mesopor Mater, 2007, 103: 243-249.
    [64] Yang Q, Wang S H, Fan P W, et al. pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery[J]. Chem Mater, 2005, 17: 5999–6003.
    [65] Fu Q, Rama Rao G V, Ista L K, et al. Control of molecular transport through stimuli-responsive ordered mesoporous materials[J]. Adv Mater, 2003, 15: 1262-1266.
    [66] Zhou Z Y, Zhu S M, Zhang D. Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release[J]. J Mater Chem, 2007, 17: 2428-2433.
    [67] Zhu S, Zhou Z, Zhang D. Control of drug release through the in situ assembly of stimuli-responsive ordered mesoporous silica with magnetic particles[J]. Chem Phys Chem, 2007, 8: 2478-2483.
    [68] Giri S, Trewyn B G, Stellmaker M P, et al. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles[J]. Angew Chem Int Ed, 2005, 44: 5038–5044.
    [69] Xu Q, Zhu J J, Hu X Y. Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction[J]. Anal Chim Acta, 2007, 597: 151-156.
    [70] Slowing I I, Trewyn B G, Giri S, et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications[J]. Adv Funct Mater, 2007, 17: 1225-1236.
    [71] Tao S Y, Li G T. Porphyrin-doped mesoporous silica films for rapid TNT detection[J]. Colloid Polym Sci, 2007, 285: 721-728.
    [72] Tapec R, Zhao X J, Tan W. Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors[J]. J Nanosci Nanotechnol, 2002, 2: 405-409.
    [73] Zhao X J, Tapec-Dytioco R, Tan, W H. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles[J]. J Am Chem Soc, 2003, 125: 11474-11475.
    [74]Zhou X, Zhou J. Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles[J]. Anal Chem, 2004, 76: 5302-5312.
    [75] Zhao X, Bagwe R P, Tan W. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion[J]. Adv Mater, 2004, 16: 173-176.
    [76] Ernst S, Hartmann M, Munsch S. Adsorption of selected amino acids from aqueous solutions on mesoporous molecular sieves[J]. Stud Surf Sci Catal, 2001, 135: 4566-4573.
    [77] Kisler J M, Stevens G W, O’Connor A J, et al. Separation of biological molecules using mesoporous molecular sieves[J]. Micropor Mesopor Mater, 2001, 44: 769-774.
    [78] Hartmann M, Vinu A, Chandrasekar G. Adsorption of vitamin E on mesoporous carbon molecular sieve[J]. Chem Mater, 2005, 17: 829-833.
    [79] Diaz J F, Balkus K J. Enzyme immobilization in MCM-41 molecular sieve[J]. J Mol Catal B, 1996, 2: 115-126.
    [1] Uhrich K E, Cannizzaro S M, Langer R S, et al. Polymeric systems for controlled drug release[J]. Chem Rev, 1999, 99: 3181-3198.
    [2] Vukomanovi? M, ?′kapin S D, Poljan?ek I, et al. Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanosphere. part 2: simultaneous release of a drug and a prodrug (clindamycin and clindamycin phosphate)[J].Colloids Surf B: Biointerfaces, 2011, 82: 414-421.
    [3] Fu H, Rahaman M N, Day D E, et al. Hollow hydroxyapatite microspheres as a device for controlled delivery of proteins[J]. J Mater Sci: Mater Med, 2011, 1-13.
    [4] Khashaba R M, Lockwood P E, Lewis J B, et al. Cytotoxicity, calcium release, and pH changes generated by novel calcium phosphate cement formulations[J]. J Biomed Mater Res B, 2010, 93: 297-303.
    [5] David Chen C H, Chen C C, Shie M Y, et al. Controlled release of gentamicin from calcium phosphate/alginate bone cement[J]. Mat Sci Eng C, 2011, 31: 334-341.
    [6] Ankareddi I, Brazel C S. Development of a thermosensitive grafted drug delivery system-synthesis and characterization of NIPAAm-based grafts and hydrogel structure[J]. J Appl Polym Sci, 2011, 120: 1597-1606.
    [7] Geever L M, Higginbotham C L. Temperature-triggered gelation and controlled drug release via NIPAAm/NVP-based hydrogels[J]. J Mater Sci, 2011, 46: 3233-3240.
    [8] Vallet-RegíM, Rámila A, Del Real RP, et al. A new property of MCM-41: drug delivery system[J]. Chem Mater, 2001, 13, 308-311.
    [9] Mal NK, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin modified mesoporous silica[J]. Nature, 2003, 421: 350-353.
    [10] Zhou J, Wu W, Caruntu D, et al. Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application[J]. J Phys Chem C, 2007, 111: 17473-17477.
    [11] Fu Q, Rama Rao GV, Ista LK, et al. Control of molecular transport through stimuli-responsive ordered mesoporous materials[J]. Adv Mater, 2003, 15: 1262-1266.
    [12] Cauda V, Muhlstein L, Onida B, et al. Tuning drug uptake and release rates through different morphologies and pore diameters of confined mesoporous silica[J]. Micropor Mesopor Mater, 2009, 118: 435-442.
    [13] Guo S J, Li D, Zhang L X, et al. Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery[J]. Biomaterials, 2009, 30: 1881-1889.
    [14] Yang P P, Quan Z W, Hou Z Y, et al. A magnetic, luminescent and mesoporous core–shell structured composite material as drug carrier[J]. Biomaterials, 2009, 30: 4786-4795.
    [15] Mellaerts R, Aerts C A, Humbeeck J V, et al. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials[J]. Chem Commun, 2007, 13: 1375-1377.
    [16] Wang J, Vinu A, Coppens M-O. Synthesis and structure of silicalite-1/SBA-15 composites prepared by carbon templating and crystallization[J]. J Mater Chem, 2007, 17: 4265-4273.
    [17] Vinu A, Hossain KZ, Ariga K. Recent advances in functionalization of mesoporous silica[J]. J Nanosci Nanotechnol, 2005, 5: 347-371.
    [18] Slowing II, Trewyn B G, Lin V S Y. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins[J]. J Am Chem Soc, 2007, 129: 8845-8849.
    [19] Radu D R, Lai C Y, Jeftinija K, et al. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent[J]. J Am Chem Soc, 2004, 126: 13216-13217.
    [20] Slowing I I, Vivier-Escoto J L, Wu C W, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers[J]. Adv Drug Delivery Rev, 2008, 60: 1278-1288.
    [21] Yang P P, Quan Z W, Li C X, et al. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier[J]. Biomaterials, 2008, 29: 4341-4347.
    [22] Vivero-Escoto J L, Slowing II, Wu C W, et al. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere[J]. J Am Chem Soc, 2009, 131: 3462-3463.
    [23] Ruiz-Hernandez E, Lopez-Noriega A, Vallet-RegíM, et al.Aerosol-Assisted synthesis of magnetic mesoporous silica spheres for drug targeting[J]. Chem Mater, 2007, 19: 3455-3463.
    [24] Arruebo M, Ho W Y, Lam K F, et al. Preparation of magnetic nanoparticles encapsulated by an ultrathin silica shell via transformation of magnetic Fe-MCM-41[J]. Chem Mater, 2008, 20: 486-493.
    [25] Rosenholm J M, Lindén M. Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications[J]. J Control Release, 2008, 128: 157-164.
    [26] Manzano M, Vallet-RegíM, et al. Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization[J]. Chem Eng J, 2008, 137: 30-37.
    [27] Wang G, Otuonye A N, Blair E A, et al. Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study[J]. J Solid State Chem, 2009, 182: 1649-1660.
    [28] Hamada Y, Sano T, Fujita N, et al. Organic electroluminescent devices with 8-hydroxyquinoline derivative-matal complexes as an emitter[J]. Jpn J Appl Phys, 1993, 32: L514-L515.
    [29] Sapochak L S, Benincasa F E, Schofield R S, et al. Electroluminescent zinc(II) bis(8-hydroxyquinoline):structural effects on electronic states and device performance[J]. J Am Chem Soc, 2002, 124: 6119-6125.
    [30] Pan H C, Liang F P, Mao C J, et al. Highly luminescent zinc(II)-bis(8-hydroxyquinoline) complex nanorods: sonochemical synthesis, characterizations, and protein sensing[J]. J Phys Chem B, 2007, 111: 5767-5772.
    [31] Fernández-Bachiller M I, Pérez C, Rodríguez-Franco MI, et al. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties[J]. J Med Chem, 2010, 53: 4927-4937.
    [32] Palacios M A, Wang Z, Montes V A, et al. Rational design of a minimal size sensor array for metal ion detection[J]. J Am Chem Soc, 2008, 130: 10307-10314.
    [33] Wang L Z, Liu Y L, Chen F, et al. Manipulating energy transfer processes between rhodamine 6G and rhodamine B in different mesoporous hosts[J]. J Phys Chem C, 2007, 111: 5541-5548.
    [34] Pattantyus-Abraham A G, Wolf M O. A PPV/MCM-41 composite material[J]. Chem Mater, 2004, 16: 2180-2186.
    [35] Klier K, Miller A C, Zhang L L, et al. Luminescence of intraporous cerium(III) complexes in alkyl sulfonic mesoporous silica[J]. Chem Mater, 2008, 20: 1359-1366.
    [36] Tagaya M, Ogawa M. Luminescence of tris(8-hydroxyquinoline)aluminum(III) (Alq3) adsorbed into mesoporous silica[J]. Chem Lett, 2006,35: 108-109.
    [37] Wang H, Huang J, Wu S, et al. Design and synthesis of Alq3-functionalized SBA-15 mesoporous material[J]. Mater Lett, 2006, 60: 2662-2665.
    [38] Du Y Y, Fu Y Q, Shi Y L, et al. Incorporation of Znq2 complexes into mesoporous silica and their transparent polymer luminescent nanocomposites[J]. J Solid State Chem, 2009, 182: 1430-1437.
    [39] Parala H, Winkler H, Seggern H, et al. Confinement of CdSe nanoparticles inside MCM-41[J]. Adv Mater, 2000, 12: 1050-1055.
    [40] Zhang W H, Shi J L, Chen H R, et al. Synthesis and characterization of nanosized ZnS confined in ordered mesoporous silica[J]. Chem Mater, 2001, 13: 648-654.
    [41] Chae W S, Yoon J H, Yu H, et al. Ultraviolet emission of ZnS nanoparticles confined within a functionalized mesoporous host[J]. J Phys Chem B, 2004, 108: 11509-11513.
    [42] Wang S Z, Choi D, Yang SM. Incorporation of CdS nanoparticles inside ordered mesoporous silica SBA-15 via ion exchange[J]. Adv Mater, 2002, 14: 1311-1314.
    [43] Xu W, Liao Y, Akins D L. Formation of CdS nanoparticles within modified MCM-41 and SBA-15[J]. J Phys Chem B, 2002, 106: 11127-11131.
    [44] Zhang W H, Shi J L, Wang L Z, et al. Preparation and characterization of ZnO clusters inside mesoporous silica[J]. Chem Mater, 2000, 12: 1408-1413.
    [45] Kobler J, M?ller K, Bein T. Colloidal suspensions of functionalized mesoporous silica nanoparticles[J]. ACS Nano, 2008, 2: 791-799.
    [46] M?ller K, Kobler J, Bein T. Colloidal suspensions of nanometer-sized mesoporous silica[J]. Adv Funct Mater, 2007, 17: 605-612.
    [47] Zhu Y F, Shi J L, Li Y S, et al. Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface[J]. Micropor Mesopor Mater, 2005, 85: 75-81.
    [48] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity[J]. Biomaterials, 2006, 27: 2907-2915.
    [49] Okabayashi H, Izawa K, Yamamoto T, et al. Surface structure of silica gel reacted with 3-mercaptopropyltriethoxysilane and 3-aminopropyltriethoxysilane: formation of the S–S bridge structure and its characterization by raman scattering and diffuse reflectance fourier transform spectroscopic studies[J]. Colloid Polym Sci, 2002, 280: 135-145.
    [50] Gavrilko T, Fedorovich R, Dovbeshko G, et al. FTIR spectroscopic and STM studies of vacuum deposited aluminium (III) 8-hydroxyquinoline thin films[J]. J Mol Struct, 2004, 704: 163-168.
    [51] Burrows P E, Shen Z, Bulovic V, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices[J]. J Appl Phys, 1996, 9: 7991-8006.
    [52] Ahola M, Kortesuo P, Kangasniemi I, et al. Silica xerogel carrier material for controlled release of toremifenocitrate[J]. Int J Pharm, 2000, 195: 219–227.
    [53] Czuryszkiewicz T, Ahvenlammi J, Kortesuo P, et al. Drug release from biodegradable silica fibers[J]. J Non-Cryst Solids, 2002, 306: 1-10.
    [54] Bass J D, Grosso D, Boissiere C, et al. Stability of mesoporous oxide and mixed metal oxide materials under biologically relevant conditions[J]. Chem Mater, 2007, 19: 4349-4356.
    [55] Mortera R, Fiorilli S, Garrone E, et al. Pores occlusion in MCM-41 spheres immersed in SBF and the effect on ibuprofen delivery kinetics: A quantitative model[J]. Chem Eng J, 2010, 156: 184-192.
    [1] Langley P J, Hulliger J. Nanoporous and mesoporous organic structures: new openings for materials research[J]. Chem Soc Rev, 1999, 28: 279-291.
    [2] Marquez F, Garcia H, Palomares E, et al. Spectroscopic evidence in support of the molecular orbital confinement concept: Case of anthracene incorporated in zeolites[J]. J Am Chem Soc, 2000, 122: 6520-6521.
    [3] Scott B J, Wirnsberger G, McGehee M D, et al. Dye-doped mesostructured silica as a distributed feedback laser fabricated by soft lithography[J]. Adv Mater, 2001, 13: 1231-1234.
    [4] Angelos S, Johansson E, Stoddart J F, et al. Mesostructured silica supports for functional materials and molecular machines[J]. Adv Funct Mater, 2007, 17: 2261-2271.
    [5] Trewyn B G, Giri S, Slowing I I, et al. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems[J]. Chem Commun, 2007, 31: 3236-3245.
    [6] Park C, Oh K, Lee S C, et al. Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif [J]. Angew Chem Int Ed, 2007, 46: 1455-1457.
    [7] Minoofar P N, Dunn B S, Zink J I. Multiply doped nanostructured silicate sol-gel thin films:spatial segregation of dopants, energy transfer, and distance measurements[J]. J Am Chem Soc, 2005, 127:2656-2665.
    [8] Xing Y, Rao J. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging[J]. Cancer Biomarkers, 2008, 4: 307-319.
    [9] Waggoner A. Fluorescent labels for proteomics and genomics[J]. Curr Opin Chem Biol, 2006, 10: 62-66.
    [10] Stücker M, Springer C, Paech V, et al. Increased laser doppler ?ow in skin tumors corresponds to elevated vessel density and reactive hyperemia[J]. Skin Res Technol, 2006, 12:1-6.
    [11] Kim J, Lee J E, Lee J, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals[J]. J Am Chem Soc, 2006, 128: 688-689.
    [12] Insin N, Tracy J B, Lee H, et al. Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres[J]. ACS Nano, 2008, 2: 197-202.
    [13] Kim J, Kim H S, Lee N, et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery[J]. Angew Chem Int Ed, 2008, 47: 8438-8441.
    [14] Sathe T R, Agrawal A, Nie S M. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation[J]. Anal Chem, 2006, 78: 5627-5632.
    [15] Coutinho D, Xiong C R. Kenneth mesoporous benzene silica functionalized with various amine groups[J]. Microporous Mesoporous Mater, 2008, 108: 86-94.
    [16] Tao X T, Suzuki H, Wada T, et al. Highly efficient blue electroluminescence of lithium tetra-(2-methyl-8- hydroxy-quinolinato) boron [1][J]. J Am Chem Soc, 1999, 121: 9447-9448.
    [17] Enzel P, Bein T. Intrazeolite synthesis of polythiophene chains[J]. Chem Commun, 1989, 18: 1326-1327.
    [18] Bein T, Enzel P. Encapsulation of polypyrrole chains in zeolite channels[J]. Angew Chem Int Ed Engl, 1989, 28: 1962-1694.
    [19] Pattantyus-Abraham A G, Wolf M O. A PPV/MCM-41 composite material[J]. Chem Mater, 2004, 16: 2180-2186.
    [20] Cardin D J. Encapsulated conducting polymers[J]. Adv Mater, 2002, 14: 553-563.
    [21] Cadby A J, Tolbert S H. Controlling optical properties and interchain interactions in semiconducting polymers by encapsulation in periodic nanoporous silicas with different pore sizes[J]. J Phys Chem B, 2005, 109: 17879-17886.
    [22] Kelly T L, Yamada Y, Schneider C, et al. Enhanced optical properties and opaline self-assembly of PPV encapsulated in mesoporous silica spheres[J]. Adv Funct Mater, 2009, 19: 1-9.
    [23] M?ller K, Kobler J, Bein T. Colloidal suspensions of nanometer-sized mesoporous silica[J]. Adv Funct Mater, 2007, 17: 605-612.
    [24] Marler B, Oberhagemann U, Vortmann S, et al. Influence of the sorbate type on the XRD peak intensities of loaded MCM-41[J]. Microporous Mater, 1996, 6: 375-383.
    [25]álvaro M, Corma A, Ferrer B, et al. Increasing the stability of electroluminescent phenylenevinylene polymers by encapsulation in nanoporous inorganic materials[J]. Chem Mater, 2004, 16: 2142-2147.
    [26] Payra P, Dutta P K. Development of a dissolved oxygen sensor using tris(bipyridyl) ruthenium (II) complexes entrapped in highly siliceous zeolites[J]. Micropor Mesopor Mater, 2003, 64: 109-118.
    [27] Sokolov I, Naik S. Novel fluorescent silica nanoparticles: towards ultrabright silica nanoparticles[J]. Small, 2008, 4: 934-939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700