两种不同途径的原位法制备PPV/AuNPs纳米复合材料及其荧光和光伏性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料因为其优异的光学,电学,磁学等性能,得到了人们的广泛关注。近些年来,将纳米材料掺入到聚合物基质中,研究纳米粒子对聚合物性能的影响以及纳米材料和聚合物之间的相互作用的报道很多。一些研究发现,金纳米粒子(Au nanoparticles,AuNPs)会影响导电聚合物的物理、化学性质;而且复合物的制备方法和途径不同,AuNPs对同一种聚合物性质的影响也不一样。聚对苯撑乙烯(Poly(phenylene vinylene),PPV)是一种性能优异的导电聚合物材料,但是它的刚性结构使得其溶解性极差,几乎不溶于任何溶剂,这给其复合材料的制备和加工带来了困难。所以,PPV复合材料的制备都是先合成其前驱物(Poly(phenylene vinylene) precursor,PPVpre)的复合物,经过热转化得到PPV的复合材料。尽管如此,PPVpre对某些溶剂和其他的有机、无机物质也很敏感。非功能性杂质的引入会影响PPV激子生成和空穴传输。而且,PPVpre的链在溶液中的顺式、反式和顺向式三种构象,可能会对纳米粒子的均匀分散产生影响。因此,选择合适的方法制备PPV纳米复合材料是一个值得研究的课题。
     在本文中,我们用原位合成法,在不引入其他配体保护AuNPs的条件下,通过两种不同的途径成功的制备了PPV/AuNPs纳米复合材料。原位一法是在双锍盐体系中用NaBH4还原HAuCl4先制备出AuNPs,然后滴加NaOH聚合得到PPVpre/AuNPs复合物,最后通过热转化制备出PPV/AuNPs复合材料;原位二法是在渗析后的PPVpre体系中用NaBH4还原HAuCl4制备PPVpre/AuNPs复合物,最后通过热转化制备PPV/AuNPs复合材料。
     我们对两种合成途径得到的PPV/AuNPs纳米复合材料进行了结构,形貌,荧光性质和光伏特性的表征,对测试结果进行了对比,并讨论了两种不同合成途径对性能影响的因素。我们的研究为PPV在光电子器件领域的发展提供了新的参考。
Nanomaterials are received much attention due to their excellent properties in optical, electrical and magnetic properties. There are many reports about incorporating nanoparticles into polymer matrix and investigating on the interaction between them. They find that Au nanoparticles (AuNPs) can influence the chemical and physical properties of conductive polymer. Properties of the composite are also affected by preparing methods and routes. Poly(phenylene vinylene) (PPV) is an excellent conductive polymer. Its rigid structure makes it almost insoluble in any solvent, which brings difficulties to preparation and processing of PPV’s nanocomposites. So we always prepare the PPV precursor (PPVpre) composite, and then convert into PPV composite at high temperature. However, PPVpre is sensitive to many solvents and inorganic and organic substances. The cis, trans and cisoid structure of PPVpre in solution may affect the distribution of nanoparticles. Some nonfunctional materials may affect the generation of exciton and transport of hole. Therefore, choosing a suitable method or route for preparation of PPV composite is very important.
     In this text, we prepared PPV/AuNPs nanocomposite by two different in-situ routes without using any ligand. Both of them obtained PPV/AuNPs nanocomposite by thermal conversion from PPVpre/AuNPs. The difference between them was the preparation of PPVpre/AuNPs. One was using NaBH4 reduce HAuCl4 in two-sulfur salt system at first, and then drop NaOH into the solution for polymerization to form PPV/AuNPs (in-situ route 1). The other was preparing AuNPs in after dialysis PPVpre (in-situ route 2).
     We characterized the structure, morphology, fluorescence properties and photovoltaic property. Compared the properties of PPV/AuNPs by using two different routes and discussed the possible reasons for AuNPs impact on nature of PPV. This study provides a new guidance for development of PPV in optic-electric devices.
引文
[1] Hideki Shirakawa, Edwin J. Louis, Alan G. MacDiarmid, Chwan K. Chiang. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x[J]. J Chem Soc, Chem Commun, 1977,16:578-580.
    [2] Skotheim, T. A. et al. Handbook of Conducting Polymers, 2nd ed.[M]. CRC Press: New York, 1997; pp 343-351.
    [3] Kyungkon Kim and Jung-Il Jin.Preparation of PPV Nanotubes and Nanorods and Carbonized Products Derived Therefrom [J]. Nano Lett, 2001,1:631-636.
    [4] Hiroshi Yabu, Atsunori Tajima, Takeshi Higuchi and Masatsugu Shimomura. A simple route for fabricating poly(para-phenylene vinylene) (PPV)particles by using ionic liquids and a solvent evaporation process[J].Chem. Commun., 2008, 38:4588–4589.
    [5] Wen Zhang, Zonghao Huang, Eryun Yan, Cheng Wang et al. Preparation of poly(phenylene vinylene) nanofibers by electrospinning[J]. Materials Science and Engineering A, 2007, 443:292-295.
    [6] Cheng Wang, Eryun Yan, Zonghao Huang, Qiang Zhao et al. Fabrication of Highly Photoluminescent TiO2/PPV Hybrid Nanoparticle-Polymer Fibers by Electrospinning[J]. Macromol Rapid Commun.2007, 28: 205–209.
    [7] Zijiang Jiang, Zonghao Huang, Peipei Yang, Jinfeng Chen. High PL-efficiency ZnO nanocrystallites/PPV composite nanofibers[J]. Composites Science and Technology,2008,68:3240-3244.
    [8] P.P.Yang, J.F.Chen, Z.H.Huang, S.M.Zhan. A novel 1D organic optic–electronic nanomaterial using PPV(p-type)as shell and Alq3(n-type)as core[J]. Materials Letters,2009,63: 1978–1980.
    [9] Yi Xin, Zonghao Huang, Peipei Yang, Zijiang Jiang. Controlling the Deposition of Light-Emitting Nanofibers/Microfibers by the Electrospinning of a Poly(p-phenylene vinylene)Polyelectrolyte Precursor[J]. Journal of Applied Polymer Science, 2009, 114: 1864-1869.
    [10] Xin, Y.; Huang, Z. H.; Peng, L.; Wang, D. J. .Photoelectric performance of poly(p-phenylene vinylene)/Fe3O4 nanofiber array[J]. Journal of Applied Physics, 2009,105:086106.
    [11] Yi Xin, Zonghao Huang, Zijiang Jiang, Dongfeng Li .Photoresponse of a single poly(p-phenylene vinylene)-CdSe bulk-heterojunction submicron fiber[J].Chem Commun,2010,46:2316–2318.
    [12] Peipei Yang , Sumei Zhan , Zonghao Huang, Jiali Zhai. The fabrication of PPV/C60 composite nanofibers with highly optoelectric response by optimization solvents and electrospinning technology [J]. Materials Letters, 2011, 65:537–539.
    [13] Jinfeng Chen, Peipei Yang, Chunjiao Wang, Sumei Zhan et al. Ag nanoparticles/PPV composite nanofibers with high and sensitive opto-electronic response[J];Nanoscale Research Letters, 2011, 6:121.
    [14] Njoki, P.N., Lim, I-I.S., Mott, D., Park, H.-Y.. Size correlation of optical and spectroscopic properties for gold nanoparticles[J]. Phys Chem C ,2007,111:14664–14669.
    [15]黄丽.聚合物复合材料[M].北京:中国轻工业出版社,2001.1:3.
    [16] Turkevitch,J.;Stevenson,P.C.;Hillier,J. A study of nucleation and growth process in thesynthesis of colloidal gold[J]. Discuss Faraday Soc,1951,11:55-75.
    [17] Frens,G.. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions[J].Nature:Phys.Sci.1973, 241:20-22.
    [18] Yongzhi Wang, Yaoxian Li, Guoen Sun, Guangliang Zhang.Fabrication of Au/PVP Nanofiber Composites by Electrospinning[J]. Journal of Applied Polymer Science, 2007,105: 3618-3622.
    [19] Janovák, László; Dékány, Imre. Optical properties and electric conductivity of gold nanoparticle-containing, hydrogel-based thin layer composite films obtained by photopolymerization[J];Applied Surface Science,2010, 256:2809-2817.
    [20] S.D. Perrault; W.C.W. Chan. Synthesis and Surface Modification of Highly Monodispersed, Spherical Gold Nanoparticles of 50-200 nm[J]. J Am Chem Soc, 2009,131 (47): 17042.
    [21] M.N. Martin; J.I. Basham; P. Chando; S.-K. Eah. Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly[J]. Langmuir,2010,26 (10): 7410.
    [22] Giersig,M.;Mulvaney,P. Preparation of ordered colloid monolayers by electrophoretic deposition[J]. Langmuir, 1993,9:3408-3413.
    [23] Manna, A.; Chen, P.; Akiyama, H.; Wei, T. et al. Optimized Photoisomerization on Gold Nanoparticles Capped by Unsymmetrical Azobenzene Disulfides[J]. Chem Mater, 2003,15 (1): 20–28.
    [24] Liu, Xiong; Worden, James G.; Huo, Qun; Brennan, Joseph P. Kinetic study of gold nanoparticle growth in solution by brust-schiffrin reaction [J]. Journal of Nanoscience and Nanotechnology, 2006 , 6(4):1054-1059.
    [25] Paul J. G. Goulet and R. Bruce Lennox. New Insights into Brust-Schiffrin Metal Nanoparticle Synthesis[J]. J AM CHEM SOC,2010,132:9582–9584.
    [26] Ying Li, Oksana Zaluzhna, Bolian Xu, Yuan Gao et al. Mechanistic Insights into the Brust-Schiffrin Two-Phase Synthesis of Organo-chalcogenate-Protected Metal Nanoparticles[J]. J Am Chem Soc, 2011, 133:2092–2095.
    [27] Porter,L.A.,Jr.;Ji,D.;Westcott,S.L.;Graupe,M. et al. Gold and Silver NanoparticlesFunctionalized by the Adsorption of Dialkyl Disulfides[J]. Langmuir, 1998,14:7378-7386.
    [28] Resch,R.;Baur,C.;Bugacov,A.;Koel,B.E.et al. Linking and Manipulation of Gold Multinanoparticle Structures Using Dithiols and Scanning Force Mircroscopy[J]. J Phys Chem B, 1999,103:3647-3650.
    [29] Fe′lidj,N.;Aubard,J.;Le′vi,G.;Krenn,J.R.;Hohenau,A.et al. Optimized Surface-Enhanced Raman Scattering on GoldNanoparticle Arrays[J]. Appl Phys Lett 2003,82:3095-3097.
    [30]Balasubramanian,R.;Kim,B.;Tripp,S.L.;Wang,X. et al. Dispersion and StabilityStudies of Resorcinarene-Encapsulated Gold Nanoparticles[J]. Langmuir, 2002,18:3676-3681.
    [31] Weare,W.W.;Reed,S.M.;Warner,M.G.;Hutchison,J.E. Improved Synthesis of Small(dCORE≈1.5 nm)Phosphine-Stabilized Gold Nanoparticles[J]. J Am Chem Soc,2000,122:12890-12891.
    [32] Heath,J.R.;Knobler,C.M.;Leff,D.V. Pressure/Temperature Phase Diagrams and Superlattices of OrganicallyFunctionalized Metal Nanocrystal Monolayers:The Influence of Particle Size,Size Distribution,and Surface Passivant[J]. J Phys Chem B, 1997,101:189-197.
    [33] Jana,N.R.;Gearheart,L.;Murphy,C.J. Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles[J].Chem Mater,2001,13:2313-2322.
    [34] Sau,T.K.;Pal,A.;Jana,N.R.;Wang,Z.L.et al. Size Controlled Synthesis of Gold NanoparticlesUsing Photochemically Prepared Seed Particles[J]. J Nanopart Res,2001,3:257-261.
    [35] Meltzer,S.;Resch,R.;Koel,B.E.;Thompson,M.E., et al. Fabrication of Nanostructuresby Hydroxylamine Seeding of Gold Nanoparticle Templates[J].Langmuir, 2001,17:1713-1718.
    [36] Carrot,G.;Valmalette,J.C.;Plummer,C.J.G.;Scholz,S.M., et al. Gold Nanoparticle Synthesis in Graft Copolymer Micelles[J]. Colloid Polym Sci.1998,276:853-859.
    [37] Mo¨ssmer,S.;Spatz,J.P.;Mo¨ller,M.;Aberle,T.et al. Solution Behavior of Poly(styrene)-block-poly(2-vinylpyridine)Micelles Containing Gold Nanoparticles[J]. Macromolecules 2000,33:4791-4798.
    [38] Mallick,K.;Wang,Z.L.;Pal,T. Seed-Mediated SuccessiveGrowth of Gold Particles Accomplished by UV Irradiation:aPhotochemical Approach for Size-Controlled Synthesis[J].J Photochem Photobiol,2001,140: 75-80.
    [39] Zhou,Y.;Wang,C.Y.;Zhu,Y.R.;Chen,Z.Y.. A Novel UltravioletIrradiation Technique for Shape-Controlled Synthesis of GoldNanoparticles at Room Temperature[J]. Chem.Mater.1999,11:2310-2312.
    [40] Reed,J.A.;Cook,A.;Halaas,D.J.;Parazolli,P., et al. The Effects of Microgravity on Nanoparticle SizeDistributions Generated by the Ultrasonic Reduction of anAqueous Gold-Chloride Solution[J]. Ultrason Sonochem,2003,10:285-289.
    [41] Pol,V.G.;Gedanken,A.;Calderro-Moreno,J. Deposition of GoldNanoparticles on Silica Spheres:A Sonochemical Approach[J]. Chem Mater, 2003,15:1111-1118.
    [42] Mizukoshi,Y.;Okitsu,K.;Maeda,Y.;Yamamoto,T.A., et al. Sonochemical Preparation of Bimetallic Nano-particles of Gold/Palladium in Aqueous Solution[J]. J Phys Chem B 1997,101:7033-7037.
    [43] Nakamoto,M.;Yamamoto,M.;Fukusumi,M. Thermolysis of Gold(I)Thiolate Complexes Producing Novel Gold Nanopar-ticles Passivated by Alkyl Groups.Chem Commun,2002,1622-1623.
    [44] Y.M.Shin, M.M.Hohman,M.P.Brenner,G.C.Rutledge . Experimental characterization of electrospinning:the electrically forced jet and instabilities[J]. Polymer 2001,42:9955-9967.
    [45] a)Fong, H.; Chun, I.; Reneker, D. Beaded nanofibers formed during electrospinning[J]. Polymer 1999,40: 4585-4592.
    [46] Ding, B.; Kim, H.; Lee, S.; Lee, D.; Choi, K. Preparation and characterization of nanoscaled poly(vinyl alcohol) fibers via electrospinning[J]. Fiber. Polym. 2002, 3:73-79.
    [47] McCann, J.; Marquez, M.; Xia, Y. Highly porous fibers by electrospinning into a cryogenic liquid[J]. J. Am. Chem. Soc. 2006, 128:1436-1437.
    [48] Ding, B.; Li, C.; Miyauchi, Y.; Kuwaki, O.; Shiratori, S. Formation of novel 2D polymernanowebs via electrospinning[J]. Nanotechnology 2006, 17:3685-3691.
    [49] Kenawya E R, Laymana J M, Watkins J R, Bowlinb G L, et al. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers [J]. Biomaterials, 2003, 24: 907–913.
    [50] Yuya Ishii, Heisuke Sakai, Hideyuki Murata. A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers[J]. Materials Letters 2008,62: 3370–3372.
    [51] Rafique J, Yu J, Yu J, Fang G, Wong K W, et al. Electrospinning highly aligned long polymer nanofibers on large scale by using a tip collector [J]. Appl Phys Lett, 2007,91: 063126.
    [52] Zhang D, Chang J. Electrospinning of three-dimensional nanofibrous tubes with controllable architectures [J]. Nano Lett,2008,8:3283-3287.
    [53] Onozuka, K.; Ding, B.; Tsuge, Y.; Naka, T.,et al. Electrospinning processed nanofibrousTiO2 membranes for photovoltaic applications[J]. Nanotechnology 2006, 17:1026-1031.
    [54] Choi, S.; Lee, Y.; Joo, C.; Lee, S., et al. Electrospun PVDF nanofiber web as polymer electrolyte or separator[J]. Electrochim Acta, 2004, 50, 339-343.
    [55] Yin Li and Gaoquan Shi. Electrochemical Growth of Two-Dimensional Gold Nanostructures on a Thin Polypyrrole Film Modified ITO Electrode [J]. J Phys Chem B, 2005, 109:23787.
    [56] Xichen Cai, Kelechi C. Anyaogu and Douglas C. Neckers. Photopolymerization of conductive polymeric metal nanoparticles [J]. Photochem Photobiol Sci, 2009, 8: 1568–1573.
    [57] Ng Cheog Chan, Y. , Schreck, R.R. , Cohen, R.E. Synthesis of single silver nanoclusters within spherical microdomains in block copolymer films[J]. J Am Chem Soc,1992,114;7295.
    [58] Selvan, S.T., Spatz, J.P., Klok, H.-A., M?ller, M. Gold-polypyrrole core-shell particles in diblock copolymer micelles[J]. Adv Mater,1998,10:132.
    [59] Ankita Prakash , Jianyong Ouyang. Polymer memory device based on conjugated polymer and gold nanoparticles[J]. JOURNAL OF APPLIED PHYSICS 2006,100:054309.
    [60] Sung Huh, Seung Bin Kim. Fabrication of Conducting Polymer Films Containing Gold Nanoparticles with Photo-Induced Patterning[J]. J Phys Chem C, 2010,114:2881.
    [61] Yilmaz, E., Suzer, S. Au nanoparticles in PMMA matrix: In situ synthesis and the effect of Au nanoparticles on PMMA conductivity.Applied Surface Science,2010, 256:6630-6633.
    [62] Santanu Bhattacharyya, Tapasi Sen, Amitava Patra. Host-Guest Energy Transfer: Semiconducting Polymer Nanoparticles and Au Nanoparticles[J]. J Phys Chem C, 2010,114:27.
    [63] Md.Aminur Rahman, Jung Ik Son, Mi-Sook Won, Yoon-Bo Shim. Gold Nanoparticles Doped Conducting Polymer Nanorod Electrodes:Ferrocene Catalyzed Aptamer-Based Thrombin Immunosensor[J]. Anal Chem, 2009, 81 (16): 6604–6611.
    [64] Mahendra D.Shirsat,Mangesh A.Bangar,Marc A.Deshusses,Nosang V.Myung, et al.Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor[J]. APPLIED PHYSICS LETTERS,2009,94:083502.
    [65] Shan Jiang,Jingyu Chen,Jun Tang,E.Jin, et al. Au nanoparticles-functionalized two-dimensional patterned conducting PANI nanobowl monolayer for gas sensor[J]. Sensors and Actuators B,2009, 140:520–524.
    [66] Food Chemistry xxx(2011)xxx–xxx
    [1] P.E.Parad,D.J.Williams. Introduction to Nonlinear Optical Effects in Molecules and Polymers[M]. Willey:New York,1991,p.284.
    [2] J.H.Burroughes,D.D.C.Bradley,A.R.Brown,R.N.Marks et al. Light-emitting-diodes based on conjugated polymers[J]. Nature,1990, 347:539-541.
    [3] W.-L.Li,L.-C.Chen,X.-J.Wang,Z.-H.Huang, et al. Study on EL emission region of polymer thin film in PPV LED[J]. Synth Met,1997,91:315.
    [4] Skotheim, T. A. et al. Handbook of Conducting Polymers, 2nd ed.[M]. CRC Press: New York, 1997; pp 343-351
    [5] K.Kim,Y.Park,C.E.Lee,J.W.Jang,et al. Formation of intragap states and achieving balance in carrier mobilities for a PPV derivative bearing the carbazole pendants[J]. Macromol Symp,2003,192:183-190.
    [6] S.-J.Chung,K.-Y.Kwon,S.-W.Lee,J.-I.Jin, et al. Highly Efficient Light-Emitting Diodes Based on an Organic-Soluble Poly(p-phenylenevinylene) Derivative Carrying the Electron-Transporting PBD Moiety[J]. Adv Mater,1998,10: 1112-1116.
    [7] Halliday DA,Burn PL,Friend RH,Bradley DDC, et al. Determination of the average molecular weigth of poly(P-phenylenevinylene) [J]. Synth Met, 1993;55:902–907.
    [8] Y. Shao, Y.D. Jin and S.J. Dong. Synthesis of gold nanoplates by aspartate reduction of gold chloride [J]. Chem Commun,2004, 9:1104-1105.
    [9] J. Xie, J.Y. Lee and D.I.C. Wang, Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein[J]. J Phys Chem C, 2007, 111, 28: 10226-10232.
    [10] Furstner, A. ActiVe Metals: Preparation Characterization Applications;John Wiley & Sons: New York, 1995.
    [11] Pileni, M. P.Nanocrystal self-assemblies: Fabrication and collective properties[J].Phys Chem. B, 2001, 105(17):3358-3371.
    [12] Henglein, A. Physicochemical properties of small metal particles in solution: "Microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition [J]. J Phys Chem,1993, 97(21)5457-5471.
    [13] Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Monolayer-protected cluster molecules[J]. Acc Chem Res, 2000, 33(1):27-36.
    [14] In-Nam Kang and Hong-Ku Shim. Yellow-Light-Emitting Fluorine-Substituted PPV Derivative[J]. Chem Mater,1997,9:746-749.
    [15] Yong Taik Lim,Tae-Woo Lee,Ho-Chul Lee,O Ok Park. Enhanced photo-stability of conjugated polymer nanocomposites doped with functionalized nanoparticles[J].Optical Materials,2002,21:585–589.
    [1] Santanu Bhattacharyya,Tapasi Sen,and Amitava Patra. Host-Guest Energy Transfer:Semiconducting Polymer Nanoparticles andAu Nanoparticles[J]. J Phys Chem C, 2010,114:11787-11795
    [2] Ondrˇej Dammer ,Blanka Vlcˇkováb,Marek Procházka c,Dmitrij Bondarev b et al. Effect of preparation procedure on the structure,morphology, and optical properties of nanocomposites of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] with gold nanoparticles[J]. Material Chemistry and Physics, 2009,115:352-360.
    [3] I-Shuo Liu a,Yang-Fang Chen b,c,1,Wei-Fang Su. Modulating the photoluminescence of conducting polymer by the surface plasmon of Au colloids[J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,199:291–296.
    [4] K.Topp,H.Borchert,F.Johnen,A.V.Tunc et al. Impact of the Incorporation of Au Nanoparticles into Polymer/Fullerene Solar Cells[J].J Phys Chem A 2010,114:3981–3989.
    [5] M.Herold, J.Gmeiner, M.Schwoerer. The Thermal Conversion of the Tetrahydrothiophene precursor Polymer to Poly(p-Phenylene Vinylene) [J]. Polym Adv Technol, 1999,10:251-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700