有机酸解胶法制备的锐钛矿相TiO_2超细晶粒的自组装薄膜及其光电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化钛溶胶由于具备了粉体与薄膜等固态材料不可比拟的亲和性及相容性,而成为了一种具有广阔应用前景的无机纳米材料。对于溶胶来说,稳定性和分散性是评价其性能好坏的重要指标,同时还会影响其在实际中的应用效果,因此,如何获得稳定高分散的溶胶仍是二氧化钛溶胶制备及应用过程中的核心问题。本论文采用沉淀-解胶法结合水热处理合成了锐钛矿相二氧化钛溶胶,同时,通过“自下而上”的方法,将二氧化钛溶胶作为基元,自组装制备了纳米二氧化钛薄膜,并对其在化学需氧量(chemical oxygen demand,COD)的检测以及染料敏化太阳能电池(Dye-sensitized solar cells,DSSCs)等方面的应用进行了研究。
     以湿化学法得到的水合二氧化钛为原料,采用三氟乙酸作为解胶剂,通过沉淀-解胶法制备了锐钛矿相的二氧化钛纳米溶胶,结合水热处理进一步调控了溶胶中二氧化钛晶粒的尺寸。所获得的二氧化钛溶胶表现出了优异的分散性和稳定性。将干燥后的溶胶经煅烧处理获得二氧化钛粉体,通过苯酚的光催化降解实验研究了粉体的光催化活性,其中从溶胶Ti/8TFA-2中所获得的二氧化钛粉体表现出了优于商业纳米二氧化钛的光催化效果。
     将导电玻璃分别交替浸泡在胶核带正电的TiO2溶胶和阴离子聚电解质聚苯乙烯磺酸钠(poly(styrene sulfonic acid) sodium salt,PSS)中,通过层层自组装技术制备了不同层数的TiO2/PSS薄膜,经500℃煅烧后,获得了致密的纳米TiO2薄膜,并在三电极体系的电化学池中研究了薄膜的光电催化性能。其中,层数为15层的薄膜电极表现出了最佳的光电催化活性。将其作为传感器用于COD的检测,最终获得的COD检测范围为0-130mg·L-1,最低检测限为1.0mg·L-1。由此可见,将层层自组装纳米TiO2薄膜电极用于COD的检测切实可行。
     利用二氧化钛溶胶晶粒的高烧结活性,先将干燥后的溶胶进行低温煅烧(300℃,1h),煅烧后二氧化钛的比表面积从224.7m2/g降低到了94.9m2/g,适用于DSSC光阳极的制备,结合层层自组装法制备的阻挡层(预处理),通过丝网印刷法最终获得具有一定光学梯度的DSSC光阳极。经预处理后,DSSC的性能明显提高。为了进一步提高其光电性能,又将经预处理的DSSC光阳极进行了后处理,通过溶胶的内渗透改性后,DSSC的光电转换效率最终效率达到了7.87%。同时与传统的TiCl4处理的改性工艺相比,利用溶胶对光阳极进行预处理及后处理表现出了更好的改性效果。因此,对于DSSC来说,溶胶改性光阳极的方法可以有效代替传统的TiCl4处理工艺而被广泛应用。
     由于柔性透明聚合物基底不能耐受高温,传统的制膜方法不再适用于在柔性基底上制备光阳极,为了解决这个问题,引入了全新的全纳米颗粒自组装的概念,利用层层自组装技术,以高结晶度的纳米二氧化钛溶胶与商业二氧化钛P25为原料,在柔性基底上制备了一系列全纳米二氧化钛颗粒自组装薄膜。为了进一步研究纳米二氧化钛薄膜的光电性能,将其分别用于水体中有机物的检测以及染料敏化太阳能电池光阳极的制备。全纳米二氧化钛颗粒自组装薄膜表现出了较高的光电催化活性,可有效检测出水体中有机物的含量。而以其作为光阳极所组装电池的性能还较低,实验中柔性DSSC的最高光电转换效率为1.09%。但这一定程度上证明了该方法可用于柔性DSSC光阳极的制备,并为在柔性透明导电基底上制备无机半导体薄膜提供了一个新的研究方向。
TiO2sols have been seen as one of the most useful inorganic materials since they can be more conveniently used than the solid TiO2nano-materials, such as TiO2nanoparticles and TiO2thin films. The stability and dispersity are always used to estimate the characteristics of the sols, which will affect their prosperities in the application. Therefore, the researches about TiO2sols still focus on the preparation of the highly dispersed TiO2sols. In this study, the anatase TiO2sols were synthesized by a peptization-hydrothermal process. Moreover, the TiO2thin films were prepared by self assembly technique through the "bottom-up" method. The applications of TiO2thin films in the fields about the determination of chemical oxygen demand (COD) and the fabrication of dye-sensitized solar cells (DSSCs) were systematically investigated as well.
     Anatase TiO2sols with high dispersity and stability were prepared by the peptization of amorphous precipitates in trifluoroactic acid (TFA) solution. The crystallite size of TiO2in the sols was tuned by the subsequently hydrothermal treatment. In order to investigate the photocataltic activities of the TiO2in sol and remove affection of the organics on the surface of the TiO2in photocatalysis. The dried TiO2sols were calcined at500℃for2h, and the degradation of phenol proved that the photocatalytic activities of the obtained TiO2nanoparticles. The nanoparticles obtained from the sample Ti/8TFA-2had shown a better photocatalytic activity than that of the commercial TiO2nanoparticles.
     The positive charged nanoparticles in the sol Ti/8TFA-2and the poly(styrene sulfonic acid) sodium salt (PSS) solution were used to prepare TiO2/PSS thin films by a layer-by-layer (LBL) self-assembly technique, and the compact TiO2thin films were obtained after calcination at500℃.The TiO2LBL thin films were introduced to be working electrodes in three-electrode photoelectrochemical cells. The15-layer TiO2thin film electrode showed the highest photoelectrochemical property and it was employed as a sensor for the chemical oxygen demand. The detection limit of1.0mg-L"1with a working range of0-130mg-L"1was achieved. The results demonstrated the practicability of the photoelectrocatalysis for COD determination through the LBL TiO2thin film electrodes.
     Since the TiO2nanocrystals in the sol were easy to sinter, the dried sol was calcined at300℃for1h to eliminate the organics over the surface of TiO2and increase the crystallite size of the TiO2nanocrystals (the special surface area of the calcined TiO2decreased from224.7m2/g to94.9m2/g) to prepare the paste for the porous layer of DSSCs. The compact layer was prepared by the diluted sol through the layer-by-layer self assembly technique to control its thickness. Compared with the DSSCs without the compact layer, the cells with the LBL compact layers showed improved photovoltaic properties. In order to further enhance the photovoltatic properties of the DSSCs, the photoanodes with compact films were also modified by the TiO2sol through the post treatment, and finally the photoelectron conversion efficiency of the modified DSSC had increased to7.87%. The treatment with the TiO2sol was a better way for the modification of DSSC photoanodes than the traditional treatment through a TiCl4solution, which also showed the great potential in the application of the preparation and modification for the DSSC photoanodes.
     The flexible transparent conductive oxide (TCO) substrates are always with a low thermal stability at high temperature, and the thin films can not prepared on them through the traditional methods.The all-nanoparticle self-assembly technique was used in this study to solve this problem. The all-nanoparticle TiO2thin film was prepared by the crystallized TiO2nanoparticles in sol and the commercial TiO2(P25) through the layer-by-layer self assembly method. The TiO2films were applied in water quality assessment and the fabrication of DSSC photoanodes. They had showed the high photocatalytic properties in water quality assessment, but the photoelectron conversion efficiencies of DSSCs with the all-nanoparticle TiO2thin film photoanodes were low. The highest photoelectron conversion efficiency of flexible DSSC with the all-nanoparticle TiO2thin film photoanode just arrived to1.09%. Moreover, the results demonstrated the practicability of the all-nanoparticle assembly technique in DSSC and presented a brand new way to fabricate the TiO2films on flexible TCO substrates.
引文
[1]Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode, Nature,1972,238,37-38.
    [2]Gratzel, M. Photoelectrochemical cells, Nature,2001,414,338-344.
    [3]Hagfeldt, A.; Gratzel, M. Light-induced redox reactions in nanocrystalline systems, Chem. Rev.,1995,95,49-68.
    [4]Linsebigler, A. L.; Lu, G Q.; Yates, J. T. Photocatalysis on TiO2 surfaces-principles mechanisims, and selected results, Chem. Rev.,1995,95,735-758.
    [5]Millis, A.; Le Hunte, S. An overview of semiconductor photocatalysis, J. Photochem. Photobiol.A,1997,108,1-35.
    [6]Fahmi, A.; Minot, C.; Silvi, B.; Causa, M. Theoretical analysis of the structures of titanium dioxide crystals, Phys. Rev. B,1993,47,717-724.
    [7]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用,2002,化学工业出版社,25-45.
    [8]Zheng, W. J.; Liu, X. D.; Yan, Z. Y.; Zhu, L. J. Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4, ACS Nano,2009,3,115-122.
    [9]Li, Y. Z.; Lee, N.-H.; Hwang, D.-S.; Song, J. S.; Lee, E. G.; Kim S.-J. Synthesis and characterization of nano titania powder with high photoactivity for gas-phase photo-oxidation of benzene from TiOCl2 aqueous solution at low temperatures, Langmuir,2004,20,10838-10844.
    [10].Polleux, J.; Pinna, N.; Antonietti, M.; Niederberger, M. Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures, Adv. Mater., 2004,16,436-439.
    [11]Li, J.-G.; Ishigaki, T.; Sun, X. D. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions:phase-selective synthesis and physicochemical properties, J. Phys. Chem. C,2007,111,4969-4976.
    [12]Zhao, B.; Chen, F.; Huang, Q.; Zhang, J. Brookite TiO2 nanoflowers, Chem. Commun.,2009,5115-5117.
    [13]刘守新,刘鸿.光催化及光电催化基础与应用,2006,化学工业出版社,北京,208.
    [14]Linsebigler, A. L.; Lu G.; Yates, J. T. Photo catalysis on TiO2 surfaces:principles, mechanisms, and selected results, Chem. Rev.,1995,95,735-758.
    [15]Tomkiewicz, M. Scaling properties in photocatalysis, Catal. Today,2000,58, 115-123.
    [16]Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis, Chem. Rev.,1995,95,69-96.
    [17]Guillard, C.; Lachheb, H.; Houas, A.; Ksibi, M.; Elaloui, E.; Herrmann, J. M. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2, J. Photochem. Photobiol. A:Chem.,2003,158,27-36.
    [18]Sivalingam, G.; Nagaveni, K.; Hegde, M. S.; Madras, G. Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2, Appl. Catal. B: Environ.,2003,45,23-38.
    [19]Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J. M. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Appl. Catal. B:Environ.,2002,39,75-90.
    [20]Li, L.; Wu, Q.; Guo, Y.; Hu, C. Nanosize and bimodal porous polyoxotungstate-anatase TiO2 composites:Preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation, Microporous Mesoporous Mater.,2005,87,1-9.
    [21]Zhu, X.; Yuan, C.; Chen, H. Photocatalytic degradation of pesticide pyridaben.3. In surfactant/TiO2 aqueous dispersions, Environ. Sci. Technol.,2007,41,263-269.
    [22]Franke, R.; Franke, C. Model reactor for photocatalytic degradation of persistent chemicals in ponds and waste water, Chemosphere,1999,39,2651-2959.
    [23]Al-Sayyed, G.; D'Oliveira, J. C.:Pichat, P. Semiconductor-sensitized photodegradation of 4-chlorophenol in water, J. Photochem. Photobiol. A:Chem., 1991,58,99-144.
    [24]Sun, Y.; Pignatello, J. J. Evidence for a surface dual hole-radical mechanism in the TiO2 photocatalytic oxidation of 2,4-dichlorophenoxyacetic acid, Environ. Sci. Technol.,1995,29,2065-2072.
    [25]Sclafani, A.; Palmisano, L.; Schiavello, M. Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion, J. Phys. Chem.,1990,94,829-832.
    [26]Mao, Y.; Schoneich, C.; Asmus, K. D. Identification of organic acids and other intermediates in oxidative degradation of chlorinated ethanes on TiO2 surfaces en route to mineralization. A combined photocatalytic and radiation chemical study, J. Phys. Chem.,1995,10080-10089.
    [27]Chen, S.; Cao, G. Study on the photocatalytic oxidation of NO2- ions using TiO2 beads as a photocatalyst, Desalination,2006,194,127-134.
    [28]Alonso, M. D.; Coronado, J. M.; Maira, A. J.; Soria, J.; Loddo, V.; Augugliaro, V. Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions, Appl. Catal. B:Environ.,2002,39,257-267.
    [29]Rajeshwar, K. Photoelectrochemistry and the environment, J. Appl. Electrochem., 1995,25,1067-1082.
    [30]Dutta, P. K.; Ginwalla, A.; Hogg, B.; Patton, B. R.; Chwieroth, B.; Liang, Z.; Gouma, P.; Mills, M.; Akbar, S. Interaction of carbon monoxide with anatase surfaces at high temperatures:optimization of a carbon monoxide sensor, J. Phys. Chem. B,1999, 103,4412-4422.
    [31]Ruiz, A. M.; Sakai, G.; Cornet, A.; Shimanoe, K.; Morante, J. R.; Yamazoe, N. Cr-doped TiO2 gas sensor for exhaust NO2 monitoring, Sens. Actuators B,2003,93, 509-518.
    [32]Wu, M. T.; Yao, X.; Yuan, Z. H.; Sun, H. T.; Wu, W. C.; Chen, Q. H.; Xu, G. Y. Effect of noble metal catalyst on titania exhaust gas oxygen sensor, Sens. Actuators B,1993, 14,491.
    [33]Ruiz, A.; Arbiol, J.; Cirera, A.; Cornet, A.; Morante, J. R. Surface activation by Pt-nanoclusters on titania for gas sensing applications, Mater. Sci. Eng. C,2002.19, 105-109.
    [34]Kim, Y.; Lee, K.; Sasaki, S.; Hashimoto, K.; Ikebukuro, K.; Karube, I. Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode, Anal. Chem.,2000,72,3379-3382.
    [35]Zhang, S.; Zhao, H.; Jiang, D.; John, R. Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell, Anal. Chim.,2004,514,89-97.
    [36]Zhao, H.; Jiang, D.; Zhang, S.; Catterall, K.; John, R. Development of a direct photoelectrochemical method for determination of chemical oxygen demand, Anal. Chem.,2004,76,155-160.
    [37]Zhang, S.; Jiang, D.; Zhao, H. Development of chemical oxygen demand on-line monitoring system based on a photoelectrochemical degradation principle, Environ. Sci. Technol.,2006,40,2363-2368.
    [38]Yang, M.; Li, L.; Zhang, S.; Li, G.; Zhao, H. Preparation, characterisation and sensing application of inkjet-printed nanostructured TiO2 photoanode, Sens. Actuators B, 2010,147,622-628.
    [39]Gerischer, H. Electrochemical techniques for the study of photosensitization, Photochem. Photobiol,1972,16,243-260.
    [40]Fujishima, A.; Watanabe, T.; Tatsuoki, O.; Honda, K. Spectral sensitization of photo-electrochemical reactions of cadmium sulfide single crystal electrode, Chem. Lett.,1975,4,13-18.
    [41]Memming, R. Photochemical and electrochemical processes of excited dyes at semiconductor and metal electrodes, Photochem. Photobiol.,1972,16,325-333.
    [42]Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Dye-sensitized zinc oxide:aqueous electrolyte:platinum photocell, Nature,1976,261,402-403.
    [43]O'Regan. B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991, 353,737-740.
    [44]Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos. N.; Gratzel, M. Conversion of light to electricity by cis-X2Bis (2, 2'-bipyridyl-4,4'dicarboxylate) ruthenium (Ⅱ) charge transfer sensitizers (X=Cl-, Br-, T, CN- and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc.,1993, 115,6382-6390.
    [45]Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Gratzel, C.; Nazeeruddin, M. K.; Gratzel, M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films,2008,516,4613-4619.
    [46]Hagfeldt, A.; Gratzel, M. Light-induced reduced redox reaction in nanocrystalline systems, Chem. Rev.,2008,126,49-68.
    [47]Phani, G.; Tulloch, G.; Vittorio, D.; Skryabin, I. Titania solar cells:new photovoltaic technology, Renew. Energ.,2009,28,303-309.
    [48]Goetzberger, A.; Hebling, C.; Schock, H. W. Photovoltaic materials, history, status and outlook, Mater. Sci. Eng.,2008,43,1-46.
    [49]Luo, Y. H.; Li, D. M.; Meng, Q. B. Towards optimization of materials for dye-sensitized solar cells, Adv. Mater.,2009,21,4647-4651.
    [50]Yella, A.;Lee. H.-W.;Tsao, H. N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M; Gratzel, M. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency, Science,2011,334,629-634.
    [51]Onda, T.; Shibuchi, S.; Satoh, N.; Tsujii, K. Super-water-repellent fractal surfaces, Langmuir,1996,12,2125-2127.
    [52]Quere, D. Non-sticking drops, Rep. Prog. Phys.2005,68,2495-2532.
    [53]Zhang, X.; Jin, M.; Liu, Z.; Nishimoto, S.; Saito, H.; Murakami, T.; Fujishima, A. Preparation and photocatalytic wettability conversion of TiO2-based superhydrophobic surfaces, Langmuir,2006,22,9477-9479.
    [54]Zhang, X.; Jin, M.; Liu, Z.; Tryk, D. A.; Nishimoto, S.; Murakami, T.; Fujishima, A. Superhydrophobic TiO2 surfaces:preparation, photocatalytic wettability conversion, and superhydrophobic-superhydrophilic patterning, J. Phys. Chem. C,2007,111, 14521-14529.
    [55]Caputo, G.; Nobile, C.; Kipp, T.; Blasi, L.; Grillo, V.; Carlino, E.; Manna, L. Cingolani, R.; Cozzoli, P. D.; Athanassiou, A. Reversible wettability changes in colloidal TiO2 nanorod thin-film coatings under selective UV laser irradiation, J. Phys. Chem. C,2008,112,701-714.
    [56]Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces, Nature,1997, 388,431-432.
    [57]Zhang, X.; Fujishima, A.; Jin, M.; Emeline, A. V.; Murakami, T. Double-layer TiO2-SiO2 nanostructured films with self-cleaning and antireflection properties, J. Phys. Chem. B,2006,110,25142-25148.
    [58]Liu, Z.; Zhang, X.; Murakami, T.; Fujishima, A. Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties, Sol. Energy Mater. Sol. Cells,2008,92, 1434-1438.
    [59]Nakata, K.; Sakai, M.; Ochiai, T.; Murakami, T.; Takagi, K.; Fujishima, A. Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles, Langmuir,2011,27,3275-3278.
    [60]Zhang, X.; Sato, O.; Taguchi, M.; Einaga, Y.; Murakami, T.; Fujishima, A. Self-cleaning particle coating with antireflection properties, Chem. Mater.,2005,17, 696-700.
    [61]张青红.二氧化钛基纳米材料及其在清洁能源技术中的研究进展,无机材料学报,2012,27,1-10.
    [62]Khan, S. U. M.; Al-Shahry, M.; Ingler Jr., W. B. Efficient photochemical water splitting by a chemically modified n-TiO2, Science,2002,297,2243-2245.
    [63]Torres, G. R.; Lindgren, T.; Lu, J.; Granqvist, C.-G.; Lindquist, S.-E. Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation, J. Phys. Chem. B,2004,108,5995-6003.
    [64]Liu, G; Yang, H. G.; Wang, X.; Cheng, L.; Pan, J.; Lu, G Q.; Cheng, H.-M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant{001} facets derived from TiN, J. Am. Chem. Soc.2009,131,12868-12869.
    [65]Choi, W. Y.; Termin; A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem.,1994,98,13669-13679.
    [66]Patsoura, A.; Kondarides, D. I.; Verykios, X. E. Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes, Appl. Catal. B:Environ.,2006,64,171-179.
    [67]Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst, Int. J. Hydrogen Energy,2009,34,5337-5346.
    [68]Le, T. T.; Akhtar, M. S.; Park, D. M.; Lee, J. C.; Yang, O.-B. Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light, Appl. Catal. B:Environ.,2012,111-112,397-401.
    [69]Dai, K.; Peng, T.; Ke, D.; Wei, B. Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation, Nanotechnology,2009,20,125603-125609.
    [70]Zhang, X.-Y.; Li, H.-P.; Cui, X.-L.; Lin, Y. H. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, J. Mater. Chem.,2010,20,2801-2806.
    [71]T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, Photochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett.,1985,29, 211-214.
    [72]Sunada, K.; Kikuchi, Y.; Hashimoto, K.; Fujishima, A. Bactericidal and detoxification effects of TiO2 thin film Photocatalysts, Environ. Sci. Technol.,1998, 32,726-728.
    [73]Fujishima, A.; Tata, N. R.; Donald, A. T. Titanium dioxide photocatalysis, J. Photochem. Photobiol. C,2000,1,1-21.
    [74]Yu, J. C.; Ho, W. K.; Yu, J. G.; Yip, H.; Wong, P. K.; Zhao, J. C. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ. Sci. Technol.,2005,39,1175-1179.
    [75]Akhavan, O.; Ghaderi, E. Photocatalytic Reduction of Graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys. Chem. C,2009,113,20214-20220.
    [76]Hu, C.; Guo, J.; Qu, J.; Hu, X. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir,2007,23,4982-4987.
    [77]Baram, N.; Starosvetsky, D.; Starosvetsky, J.; Epshtein, M.; Armon, R.; Eli, Y. E. Enhanced inactivation of E. coli bacteria using immobilized porous TiO2 photoelectrocatalysis, Electrochim. Acta,2009,54,3381-3386.
    [78]Karunakaran, C.; Abiramasundari, G.; Gomathisankar, P.; Manikandan, G.; Anandi, V. Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light, J. Colloid Interface Sci.,2010,352,68-74.
    [79]Seo, J.; Chung, H.; Kim, M.; Lee, J.; Choi, I.; Cheon, J. Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment, Small,2007,3,850-853.
    [80]Kalbacova, M.; Macak, J. M.; Stein, F. S.; Mierke, C. T.; Schmuki, P. TiO2 nanotubes: photocatalyst for cancer cell killing, Phys. Stat. Sol.,2008,2,194-196.
    [81]Mital Gupta, S.; Tripathi, M. A review on the synthesis of TiO2 nanoparticles by solution route, Cent. Eur. J. Chem.,10,2012,279-294.
    [82]Chen, X.; Mao, S. S. Titanium dioxide nanomaterials:synthesis, properties, modification, and applications, Chem. Rev.2007,107,2891-2959.
    [83]赵敬哲,王子忱,刘艳华,王莉玮,宋庆,杨桦,赵慕愚,冯守华,徐如人.液相一步合成金红石型超细TiO2,高等学校化学学报,1999,20,467-469.
    [84]高桂兰,段学臣.纳米金红石型二氧化钛粉末的制备及表征,硅酸盐通报,2004,1,88-90.
    [85]Sonawane, R. S.; Hegde, S. G.; Dongare, M. K. Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating, Mater. Chem. Phys.,2003,77, 744-750.
    [86]Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes, Chem. Rev.,2005,105,1025-1102.
    [87]Ganguli, D. Sol-gel processing of materials for electronic and related application, Bull. Mater. Sci.,1992,15,421-430.
    [88]Paz, Y.; Luo, Z.; Rabenberg, L.; Heller, A. Photooxidative self-cleaning transparent titanium-dioxide films on glass, J. Mater. Res.,1995,10,2842-2848.
    [89]Negishi. N.; lyoda, T.; Hashimoto, K.; Fujishima, A. Preparation of transparent TiO2 thin-film photocatalyst and its photocatalytic activity, Chem. Lett.,1995,24, 841-842.
    [90]Chau, J. L. H.; Liu, H.-W.; Su, W.-F. Fabrication of hybrid surface-modified titania-epoxy nanocomposite films, J. Phys. Chem. Solids,2009,70,1385-1389.
    [91]余家国,熊建锋,程蓓.高活性二氧化钛光催化剂的低温水热合成,催化学报,2005,26,745-749.
    [92]Ovenstone, J.; Yanagisawa, K. Effect of hydrothermal treatment of amorphous titania on the Phase change from anatase to rutile during calcination. Chem Mater.,1999, 11,2770-2774.
    [93]Kolen'ko, Y. V.; Maximov, V. D.; Garshev, A. V.; Meskin, P. E.; Oleynikov, N. N.; Churagulov, B. R. Hydrothermal synthesis of nanocrystalline and mesoporous titania from aqueous complex titanyl oxalate acid solutions, Chem. Phys. Lett.,2004,388, 411-415.
    [94]Yin, H.; Wada, Y.; Kitamura, T.; Kambe, S.; Murasawa, S.; Mori, H.; Sakatac, T.; Yanagida, S. Hydrothermal synthesis of nanosized anatase and rutHe TiO2 using amorphous phase TiO2, J. Mater. Chem.,2001,11,1694-1703.
    [95]Yu, J.; Wang, G.; Cheng, B.; Zhou, M. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders, Appl. Catal. B:Environ.,2007,69,171-180.
    [96]Dinh, C.-T.; Nguyen, T.-D.; Kleitz, F.; Do, T.-O. Shape-controlled synthesis of highly crystalline titania nanocrystals, ACS Nano,2009,3,3737-3743.
    [97]Wang, C.; Deng, Z.-X.; Zhang, G.; Fan, S.; Li, Y. Synthesis of nanocrystalline TiO2 in alcohols. Powder Techno1.,2002,125,39-44.
    [98]Kim, C.-S.; Moon, B. K.;; Park, J.-H. Choi, B.-C.; Seo, H.-J. Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant, J. Cryst. Growth,2003, 257,309-315.
    [99]Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets, Nature, 2008,453,638-642.
    [100]Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant{001} facets, J. Am. Chem. Soc.,2009,131,4078-4083.
    [101]Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc.,2009,131,3152-3153.
    [102]Zhu J.;, Wang, S.; Bian, Z.; Xie, S.; Cai, C.; Wang, J.; Yang, H.; Li, H. Solvothermally controllable synthesis of anatase TiO2 nanocrystals with dominant {001} facets and enhanced photocatalytic activity, Cryst. Eng. Comm.,2010,12, 2219-2224.
    [103]Chhabra, V.; Pillai, V.; Mishra, B.K.; Morrone, A.; Shah, D. O. Synthesis, characterization, and properties of microemulsion-mediated nanophase TiO2 particles, Langmuir,1995,11,3307-3311.
    [104]Lin, J.; Lin, Y.; Liu, P.; Meziani, M. J; Allard, L. F.; Sun, Y. P. Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension, J. Am. Chem. Soc., 2002,124,11514-11518.
    [105]张朝平,黄毅,申德君,罗玉萍,刘坚.凝胶-微乳液化学剪裁制备Ti02纳米颗粒,稀有金属,2002,26,257-261.
    [106]Wu M. M.; Long J. B.; Huang A. H.; Luo Y. J.; Feng S. H.; Xu R. R. Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles, Langmuir,1999,15,8822-8825.
    [107]Chen, C.; Qi, X.; Zhou, B. Photosensitization of colloidal TiO2 with a cyanine dye, J. Photochem. Photobiol., A,1997,109,155-158.
    [108]Barringer, E. A.; Bowen, H. K. High-purity monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide.2. aqueous interfacial electrochemistry and dispersion stability, Langmuir,1985,1,420-428.
    [109]Vorkapic, D.; Matsoukas, T. Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides, J. Am. Ceram. Soc.,1998,81,2815-2820.
    [110]Chen, X.-Q.; Gu, G.-B.; Liu, H.-B. Reaction of titanium tetrabutoxide with acetic anhydride and structure analysis of the titanyl organic compound products, Acta Chim. Sinica,2003,61,1592-1596.
    [111]Chen, X.-Q.; Shen, W.-H. Preparation and properties of stable nanocrystalline anatase TiO2 colloids, Chem. Eng. Technol.,2008,31,1277-1281.
    [112]Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-Baker, R.; Gratzel, M. Enhance the performance of dye-sensitized solar cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals, J. Phys. Chem. B,2003, 107,14336-14341.
    [113]Wilson, G. J.; Will, G. D.; Frost, R. L.; Montgomery, S. A. Efficient microwave hydrothermal preparation of nanocrystalline anatase TiO2 colloids, J. Mater. Chem., 2002,12,1787-1791.
    [114]Lee, D.-S.; Liu, T.-K. Preparation of TiO2 sol using TiCl4 as a precursor, J. Sol-Gel Sci. Technol.,2002,25,121-136.
    [115]高濂,张青红,孙静,郑珊.一种制备二氧化钛溶胶的简便方法,中国发明专利:CN1295977,2001.05.23.
    [116]Ichinose, H.; Terasaki, M.; Katsuki, H. Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium hydrate, J. Sol-Gel Sci. Technol.,2001,22,33-40.
    [117]Sasirekha, N.; Rajesh, B.; Chen, Y.-W. Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent, Thin Solid Films,2009, 518,43-48.
    [118]Li, S.; Li, Y. G.; Wang, H. Z.; Fan, W. G.; Zhang, Q. H. Peptization-hydrothermal method as a surfactant-free process toward nanorod-like anatase TiO2 nanocrystals, Eur. J. Inorg. Chem.,2009,4078-4084.
    [119]Qian, D. F.; Li, Y. G.; Zhang, Q. H.; Shi, G. Y.; Wang, H. Z. Anatase TiO2 sols derived from peroxotitanium acid and to form transparent TiO2 compact film for dye-sensitized solar cells, J. Alloys Compd.,2011,509,10121-10126.
    [1]Look, J. L.; Zukoski, C. F. Colloidal stability and titania precipitate morphology: Influence of short-range repulsions, J. Am. Ceram. Soc.,1995,78,21-32.
    [2]徐兆瑜.纳米TiO2的新功能及其应用进展,化工技术与开发,2003,32,27-32.
    [3]李大成,周大利,刘恒,张萍,张云,龚家竹.纳米Ti02的应用,四川有色金属,2002,4,13-15.
    [4]Huang, J. S.; Ding, H. L.; Dodson, W. S.; Li, Y. Z. Application of TiO2 sol for UV radiation measurements, Anal. Chim. Acta,1995,311,115-122.
    [5]Lee, J. H.; Kang, M.; Chong, S. J. The preparation of TiO2 nanometer photocatalyst film by a hydrothermal method and its sterilization performance for Giardia lamblia, Water Res.,2004,38,713-719.
    [6]Xie, Y. B; Yuan, C. W. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation, Appl. Catal. B:Environ., 2003,46,251-259.
    [7]熊国兴,张玉红,姚楠,杨维慎.一种由四氯化钛制备二氧化钛溶胶的方法,中国发明专利:CN1323743,2001.11.28.
    [8]高濂,张青红,孙静,郑珊.一种制备二氧化钛溶胶的简便方法,中国发明专利:CN1295977,2001.05.23.
    [9]黄冬根,廖世军,党志.氟掺杂锐钛矿型TiO2溶胶的制备、表征及催化性能,化学学报,2006,64,1805-1811.
    [10]李爽,张青红,李耀刚,王宏志.过氧钛酸水热合成锐钛矿相二氧化钛纳米棒溶胶,无机材料学报,2009,24,675-679.
    [11]Li, S.; Li, Y. G.; Wang, H. Z.; Fan, W. G.; Zhang, Q. H. Peptization-hydrothermal method as a surfactant-free process toward nanorod-like anatase TiO2 nanocrystals, Eur. J. Inorg. Chem.,2009,4078-4084.
    [12]Qian, D. F.; Li, Y. G.; Zhang, Q. H.; Shi, G. Y.; Wang, H. Z. Anatase TiO2 sols derived from peroxotitanium acid and to form transparent TiO2 compact film for dye-sensitized solar cells, J. Alloys Compd.,2011,509,10121-10126.
    [13]Ichinose, H.; Terasaki, M.; Katsuki, H. Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium hydrate, J. Sol-Gel Sci. Technol.,2001,22,33-40.
    [14]Sasirekha, N.; Rajesh, B.; Chen, Y.-W. Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent, Thin Solid Films,2009,518,43-48.
    [15]Zhang, Q. H.; Gao, L. Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation, Langmuir,2004,20,9821-9827.
    [16]Zhang, Q. H.; Fan, W. G.; Gao, L. Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst, Appl. Catal. B:Environ.,2007,76,168-173.
    [17]Su, W. G.; Zhang, J.; Feng, Z. C.; Chen, T.; Ying, P. L.; Li, C. Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy, J. Phys. Chem. C,2008,112,7710-7716.
    [18]Jiang, D.; Xu, Y.; Hou, B.; Wu, D.; Sun, Y. H. A simple non-aqueous route to anatase TiO2, Eur. J. Inorg. Chem.,2008,1236-1240.
    [19]Zhang, Q. H.; Gao, L.; Xie, H. Q. Analysis of the structure of titanium tetrachloride derived precipitates, Mater. Sci. Eng. A,2003,343,22-27.
    [20]Kolen'ko, Y. V.; Kovnir, K. A.; A.I.; Gavrilov, A. V. Garshev, J. Frantti, O.I. Lebedev, B.R. Churagulov, G. Van Tendeloo, M. Yoshimura, Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide, J. Phys. Chem. B,2006,110,4030-4038.
    [21]Liu, Y. J.; Claus, R. O. Blue light emitting nanosized TiO2 colloids, J. Am. Chem. Soc.,1997,119,5273-5274.
    [22]Joselevich, E.; Willner, I. Photosensitization of quantum-size TiO2 particles in water-in-oil microemulsions, J. Phys. Chem.,1994,98,7628-7635.
    [23]Li, J. G.; Shigaki, T.; Sun, X. D. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions:Phase-selective synthesis and physicochemical properties, J. Phys. Chem. C,2007,111,4969-4976.
    [1]Kim, Y. C.; Lee, K. H.; Sasaki, S.; Hashimoto, K.; Ikebu-kuro, K.; Karube, I. Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode, Anal. Chem.,2000,72,3379-3382.
    [2]Chen, J. S.; Zhang, J. D.; Xian, Y. Z.; Ying, X. Y.; Liu, M. C.; Jin, L. T. Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research, Water Res.,2005,39,1340-1346.
    [3]Zhao, H. J.; Jiang, D. L.; Zhang, S. Q.; Catterall, K.; John, R. Development of a direct photoelectrochemical method for determination of chemical oxygen demand, Anal. Chem.,2004,76,155-160.
    [4]Yu, J.; Zhao, X.; Zhao, Q. Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method, Mater. Chem. Phys.,2001,69,25-29.
    [5]Kasanen, J.; Suvanto, M.; Pakkanen,. T. T. Self-cleaning, titanium dioxide based, multilayer coating fabricated on polymer and glass surfaces, J. Appl. Polym. Sci., 2009,111,2597-2606.
    [6]Sirghi, L.; Aoki, T.; Hatanaka, Y. Hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering deposition, Thin Solid Films,2002,422, 55-61.
    [7]Bessergenev, V. G.; Pereira, R. J. F.; Mateus, M. C.; Khmelinskii, I. V.; Vasconcelos, D. A.; Nicula, R.; Burkel, E.; Botelho do Rego, A. M.; Saprykin, A. I. Study of physical and photocatalytic properties of titanium dioxide thin films prepared from complex precursors by chemical vapour deposition, Thin Solid Films,2006,503,29-39.
    [8]S.; Karuppuchamy, J. M.; Jeong, D. P.; Amalnerkar, H. Minoura, Photoinduced hydrophilicity of titanium dioxide thin films prepared by cathodic electrodeposition, Vacuum,2006,80,494-498.
    [9]Yu, H.; Zhang, S.; Zhao, H.; Xue, B.; P.; Liu, Will, G. High-performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solar cells, J. Phys. Chem. C,2009,113,16277-16282.
    [10]Mu, Q. H.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Template-free formation of vertically oriented TiO2 nanorods with uniform distribution for organics-sensing application, J. Hazard. Mater.,2011,188,363-368.
    [11]Decher, G. Fuzzy nanoassemblies:Toward layered polymeric multicomposites Science,1997,277,1232-1237.
    [12]Kim, T.-H.; Sohn, B.-H. Photocatalytic thin films containing TiO2 nanoparticles by the layer-by-layer self-assembling method, Appl. Surf. Sci.,2002,201, 109-114.
    [13]Patrocinio, A. O. T.; Paterno, L. G.; Murakami Iha, N. Y. Layer-by-layer TiO2 films as efficient blocking layers in dye-sensitized solar cells, J. Photochem. Photobiol. A:Chem.,2009,205,23-27.
    [14]Yang, M.; Li, L. H.; Zhang, S. Q.; Li, G. Y.; Zhao, H. J. Preparation, characterisation and sensing application of inkjet-printed nanostructured TiO2 photoanode, Sens. Actuators B Chem.,2010,147,622-628.
    [15]Zhang, Z.; Yuan, Y.; Liang, L.; Cheng, Y.; Shi, G.; Jin, L. Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation, J. Hazard. Mater.,2008,158, 517-522.
    [16]Yu, J. G.; Zhao, X. J.; Zhao, Q. N. Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films, J. Mater. Sci. Lett.,2000,19,1015-1017.
    [17]Jung, S.-C.; Kim, S.-J.; Imaishi, N.; Cho, Y.-I. Effect of TiO2 thin film thickness and specific surface area by low-pressure metal-organic chemical vapor deposition on photocatalytic activities, Appl. Catal. B:Environ.,2005,55, 253-257.
    [18]Biju, K. P.; Jain, M, K. Sol-gel derived TiO2:ZrO2 multilayer thin films for humidity sensing application, Sens. Actuators B:Chem.,128,2008,407-413.
    [19]Liu, H.; Cheng, S. A;. Wu, M.; Wu, H. J.; Zhang, J. Q.; Li, W. Z.; Cao, C. N. Photoelectrocatalytic degradation of sulfosalicylic acid and its electrochemical impedance spectroscopy investigation, J. Phys. Chem. A,2000,104,7016-7020.
    [20]Han, Y.; Zhang, S.; Zhao, H.; Wen, W.; Zhang, H.; Wang, H.; Peng, F. Photoelectrochemical characterization of a robust TiO2/BDD heterojunction electrode for sensing application in aqueous solutions, Langmuir,2010,26, 6033-6040.
    [21]Li, J. Q.; Zheng, L.; Li, L. P.; Shi, G Y.; Xian, Y. Z.; Jin, L. T. Ti/TiO2 electrode preparation using laser anneal and its application to determination of chemical oxygen demand, Electroanalysis,2006,18,1014-1018.
    [22]Zhang, S. Q.; Li, L. H.; Zhao, H. J. A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters, J. Environ. Sci. Technol.,2009,43,7810-7815.
    [23]Wang, D.; Liu, Y.; Yu, B.; Zhou, F.; Liu, W. TiO2 nanotubes with tunable morphology, diameter, and length:synthesis and photo-electrical/catalytic performance, Chem. Mater.,2009,21,1198-1206.
    [24]Cheung, K. Y.; Yip, C. T.; Djurisic, A. B.; Leung, Y. H.; Chan, W. K. Long K-doped titania and titanate nanowires on Ti foil and fluorine-doped tin oxide/quartz substrates for solar-cell applications, Adv. Fuct. Mater.,2007,17, 555-562.
    [1]O'Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,335,737-740.
    [2]Gratzel, M. Photoelectrochemical cells, Nature,2001,414,338-344.
    [3]Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Gratzel, C.; Nazeeruddin, M. K.; Gratzel, M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films,2008,516,4613-4619.
    [4]Wu, M.-S.; Tsai, C.-H.; Wei, T.-C. Electrochemical formation of transparent nanostructured TiO2 film as an effective bifunctional layer for dye-sensitized solar cells, Chem. Commun.,2011,47,2871-2873.
    [5]Yoo, B.; Kim, K.; Lee, D.-K.; Ko, M. J.; Lee, H.; Kim, Y. H.; Kim, W. M.; Park, N.-G. Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells, J. Mater. Chem., 2010,20,4392-4398.
    [6]Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E., Gratzel, M. Molecular-scale interface engineering of TiO2 nanocrystals: Improving the efficiency and stability of dye-sensitized solar cells, Adv. Mater.,2003,15, 2101-2104.
    [7]詹卫伸,潘石,李源作,陈茂笃.二氢吲哚类染料用于染料敏化太阳能电池光敏剂的比较,物理化学学报,2009,25,2087-2092.
    [8]Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S.Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells, J. Phys. Chem. B,2003,107,8607-8611.
    [9]Peng, B.; Jungmann, G.; Jager, C.; Haarer, D.; Schmidt, H. W.; Thelakkat, M. Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells, Coord. Chem. Rev.,2004,248,1479-1489.
    [10]Palo mares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, J. Am. Chem. Soc.,2003,125, 475-482.
    [11]Cameron, P. J.; Peter, L. M.; Hore, S. How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells?, J. Phys. Chem. B,2005,109,930-936.
    [12]Cameron, P. J.; Peter, L. M. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?, J. Phys. Chem. B,2005,109,7392-7398.
    [13]Hore, S.; Kern, R. Implication of device functioning due to back reaction of electrons via the conducting glass substrate in dye sensitized solar cells, Appl. Phys. Lett.,2005,87,263504.
    [14]Yu, H.; Zhang, S. Q.; Zhao, H. J.; Will, G.; Liu, P. R. An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells, Electrochim. Acta,2009,54,1319-1324.
    [15]Noh, J. H.; Lee, S.; Kim, J. Y.; Lee, J. K.; Han H. S.;, Cho, C. M.; Cho, I. S.; Jung, H. S.; Hong, K. S. J. Functional multilayered transparent conducting oxide thin films for photovoltaic devices, J. Phys. Chem. C,2009,113,1083-1087.
    [16]Liu, Y. M.; Sun, X. H.; Tai, Q. D.; Hu, H.; Chen, B. L.; Huang, N.; Sebo, B.; Zhao, X.-Z. Efficiency enhancement in dye-sensitized solar cells by interfacial modification of conducting glass/mesoporous TiO2 using a novel ZnO compact blocking film, J. Power Sources,2011,196,475-481.
    [17]Patrocinio, A. O. T.; Paterno, L. G.; Murakami Iha, N. Y. Layer-by-layer films as efficient blocking layers in dye-sensitized solar cells, J. Phtochem. Photobiol. A:Chem.,2009,205,23-27.
    [18]Patrocinio, A. O. T.; Paterno, L. G.; Murakami Iha, N. Y. Role of polyelectrolyte for layer-by-layer compact TiO2 films in efficiency enhanced dye-sensitized solar cells, J. Phys. Chem. C,2010,114,17954-17959.
    [19]Qian, D. F.; Li, Y. G.; Zhang, Q. H.; Shi, G. Y.; Wang, H. Z. Anatase TiO2 sols derived from peroxotitanium acid and to form transparent TiO2 compact film for dye-sensitized solar cells, J. Alloys Compd.,2011,509,10121-10126.
    [20]Hossain, M. F.; Biswas, S.; Takahashi, T. The effect of sputter-deposited TiO2 passivating layer on the performance of dye-sensitized solar cells based on sol-gel derived photoelectrode, Thin Solid Films,2008,517,1294-1300.
    [21]Thelakkat, M.; Schmitz, C.; Schmidt, H. -W. Fully vapor-deposited thin-layer titanium dioxide solar cells, Adv. Mater.,2002,14,577-581.
    [22]Kovash Jr., C. S.; Hoefelmeyer, J. D.; Logue, B. A. TiO2 compact layers prepared by low temperature colloidal synthesis and deposition for high performance dye-sensitized solar cells, Electrochim. Acta,2012,67,18-23.
    [23]Yu, H.; Zhang, S. Q.; Zhao, H. J.; Xue, B. F.; Liu, P. R.; Will, G. J. High-performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solar cells, Phys. Chem. C,2009,113,16277-16282.
    [24]Adachi, M.; Murata, Y.; Takao, J.; Jiu, J. T.; Sakamoto, M.; Wang, F. M. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism, J. Am. Chem. Soc.,2004,126,14943-14949.
    [25]Li, S.; Li, Y. G.; Wang, H. Z.; Fan, W. G.; Zhang, Q. H. Peptization-hydrothermal method as a surfactant-free process toward nanorod-like anatase TiO2 nanocrystals, Eur. J. Inorg. Chem.,2009,27,4078-4084.
    [26]Yang, S. M.; Kou, H. Z.; Wang, L.; Wang, H. J.; Fu, W. H. Photoelectrochemical properties of N3 sensitized Ho3+ modified TiO2 nanocrystalline electrodes, Acta Phys.-Chim. Sin.,2009,25,1219-1224.
    [27]杨术明,寇慧芝,汪玲,王红军,付文红.N3敏化Ho离子修饰TiO2纳米晶电极的光电化学性质,物理化学学报,2009,25,1219-1224.
    [28]O'Regan, B.; Durrant, J.; Sommeling, P.; Bakker, N. Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells.2. Charge density, band edge shifts, and quantification of recombination losses at short circuit, J. Phys. Chem. C,2007,111,14001-14010.
    [29]钱迪峰,张青红,万钧,李耀刚,王宏志.二氧化钛纳米晶溶胶内渗透电极对染料敏化太阳能电池的光伏性能的提高,物理化学学报,2010,26,2745-2751.
    [30]Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Liska, P.; Pechy, P.; Gratzel, M. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells, Prog. Photovolt:Res. Appl.,2007,15,603-612.
    [31]奚小网,胡林华,徐炜炜,戴松元,TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究,物理学报,2011,6,118203.
    [32]Ito, S.; Liska, P.; Comte, P.; Charvet, R.; Pechy, P.; Bach, U.; Schmidt-Mende, L. Zakeeruddin, S. M.; Kay, A.; Nazeeruddin, M. K.; Gratzel, M. Control of dark current in photoelectrochemical (TiO2/I- -I3-) and dye-sensitized solar cells, Chem. Commun.,2005,4351-4353.
    [33]Xia;J.;Masaki N.;Jiang,K.;Yanagida,S.Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cell, J. Phys. Chem. B,2006,110,25222-25228.
    [34]Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions, Electrochim. Acta,2002,47,4213-4225.
    [35]Han, L. Y.; Koide, N.; Chiba, Y.; Mitate, T. Modeling of an equivalent circuit for dye-sensitized solar cells, Appl. Phys. Lett.,2004,84,2433-2435.
    [36]Lee, S.; Noh, J. H.; Han, H. S.; Yim, D. K.; Kim, D. H.; Lee, J.-K.; Kim, J. Y.; Jung, H. S.; Hong, K.S. Nb-doped TiO2:A new compact layer material for TiO2 dye-sensitized solar cells, J. Phys. Chem. C,2009,113,6878-6882.
    [37]Jiu, J. T.; Isoda, S.; Wang, F. M.; Adachi, M. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film, J. Phys. Chem. B,2006,110,2087-2092.
    [38]Hoshikawa, T.; Kikuchi, R.; Eguchi, K. Impedance analysis for dye-sensitized solar cells with a reference electrode, J. Electroanal. Chem.,2006,588,59-67.
    [39]Fabregat-Santiago, F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D. B.; Zakeeruddin, S. M.; Gratzel, M. Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids, J. Phys. Chem. C,2007,111,6550-6560.
    [40]Xia, J.; Masaki, N.; Jiang, K.; Yanagida, S. Sputtered Nb2O5 as a novel blocking layer at conducting Glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells, J. Phys. Chem. C,2007,111,8092-8097.
    [41]李秀娟,金洙吉,康仁科,郭东明,苏建修.抛光液中缓蚀剂对铜硅片的影响,半导体学报,2005,11,2259-2263.
    [1]Yamaguchi, T.; Tobe, N.; Matsumoto, D.; Nagai, T.; Arakawa, H. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%, Solar Energy Mater. Solar Cells,2010,94,812-816.
    [2]Lee, B.; Buchholz, D. B.; Guo, P.; Hwang, D.-K.; Chang, R. P. H. Optimizing the performance of a plastic dye-sensitized solar cell, J. Phys. Chem. C 2011, 115,9787-9796.
    [3]Li, Y. L.; Lee, W. J.; Lee, D.-K.; Kim, K. K.; Park, N.-G.; Ko, M. J. Pure anatase TiO2 "nanoglue":An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells, Appl. Phys. Lett.,2011,98,103301.
    [4]Zhang, D. S.; Yoshida, T.; Oekermann, T.; Furuta, K.; Minoura, H. Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells, Adv. Funct. Mater.,2006,16,1228-1234.
    [5]Miyasaka, T.; Kijitori, Y. Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers, J. Electrochem. Soc.,2004,151,A1767-A1773.
    [6]Zhang, D. S.; Yoshida, T.; Furuta, K.; Minoura, H. Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells, J. Photochem. Photobio. A:Chem.,2004,164,159-166.
    [7]Fan, K.; Peng, T.; Chen, J.; Dai, K. Effects of tetrabutoxytitanium on photoelectrochemical properties of plastic-based TiO2 film electrodes for flexible dye-sensitized solar cells, J. Power Source,2011,96,2939-2944.
    [8]Patrocinio, A. O. T.; Paterno, L. G.; Murakami Iha, N. Y. Layer-by-layer TiO2 films as efficient blocking layers in dye-sensitized solar cells, J. Photochem. Photobiol. A:Chem.,2009,205,23-27.
    [9]Lee, D.; Rubner, M. F.; Cohen, R. E. All-nanoparticle thin-film coatings, Nano Lett.,2006,6,2305-2312.
    [10]Schulze, K.; Kirstein, S. Layer-by-layer deposition of TiO2 nanoparticles, Appl. Surf. Sci.,2005,246,415-419.
    [11]He, J. A.; Mosurkal, R.; Samuelson, L. A.; Li, L.; Kumar, J. Dye-sensitized solar cell fabricated by electrostatic layer-by-layer assembly of amphoteric TiO2 nanoparticles, Langmuir,2003,19,2169-2174.
    [12]Agrios, A. G.; Cesar, I.; Comte, P.; Nazeeruddin, M. K.; Gartzel, M. Nanostructured composite films for dye-sensitized solar cells by electrostatic layer-by-layer deposition, Chem. Mater.,2006,18,5395-5397.
    [13]Zhang, L.; Xie, A. J.; Shen, Y. H.; Li, S. K. Preparation of TiO2 films by layer-by-layer assembly and their application in solar cell, J. Alloys Compd., 2010,505,579-583.
    [14]Xie, Y. Photoelectrochemical reactivity of a hybride electrode composed of polyoxophosphotungstate encapsulated in titannia nanotubes, Adv. Mater.,2006, 16,1823-1831.
    [15]Yu, J. G.; Zhao, X. J.; Zhao, Q. N. Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films, J. Mater. Sci. Lett,2000,19,1015-1017.
    [16]Jung, S.-C.; Kim, S.-J.; Imaishi, N.; Cho, Y.-I. Effect of TiO2 thin film thickness and specific surface area by low-pressure metal-organic chemical vapor deposition on photocatalytic activities, Appl. Catal. B:Environ.,2005,55, 253-257.
    [17]Liu, H.; Cheng, S. A;. Wu, M.; Wu, H. J.; Zhang, J. Q.; Li, W. Z.; Cao, C. N. Photoelectrocatalytic degradation of sulfosalicylic acid and its electrochemical impedance spectroscopy investigation, J. Phys. Chem. A,2000,104,7016-7020.
    [18]Lefdil, M. A.; Diaz, R.; Bihri, H.; Aouaj, M. A.; Rueda, F. Preparation and characterization of sprayed FTO thin films, Eur. Phys. J. Appl. Phys.,2007,38, 217-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700