高阻燃UPR/粘土纳米复合材料的制备及阻燃机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不饱和聚酯树脂(UPR)性能优良,加工简便,是目前热固性树脂中产量较大的品种之一,用途极其广泛,但普遍存在易燃等问题,使得阻燃UPR成为热门研究之一。本文充分利用廉价的矿物材料,通过添加少量粘土和使用纳米粒子来减少卤-锑阻燃剂的用量,制备了高阻燃UPR/粘土纳米复合材料,并采用XRD、TEM、SEM、FTIR、TG、DSC、氧指数、垂直燃烧实验、力学性能分析等手段对材料性能进行了表征。成功解决了聚合物材料高阻燃、高力学性能之间的矛盾,研究了纳米复合材料的微观结构、形成机理及其阻燃机理,为阻燃材料的发展提供了理论依据。
     以三氯化锑为原料,采用醇盐水解法,通过控制溶液过饱和度和生长界面的反应速度,采用表面活性剂降低固液界面张力,减小成核半径,首次合成单分散纳米Sb_2O_3和纤维状纳米Sb_4O_5Cl_2,以及纳米Sb_2O_3/云母、纳米Sb_4O_5Cl_2/云母复合物,揭示了纳米粒子生长规律,实现了对于最终产品维度、尺寸和形貌的控制。结果表明:单分散纳米Sb_2O_3平均粒径约为21nm,74%的粒子小于15nm;Sb_2O_3粒子均匀生长在云母表面和层间,其驱动力主要来源于云母表面与颗粒的静电引力,层间距限制了纳米粒子的生长,避免了团聚,因此得到95%的颗粒在5nm左右。优化制备条件为:反应温度45℃,醇化时间1h,SbCl_3/无水乙醇比例5g/30ml,用PEG处理纳米Sb_2O_3。纤维状纳米Sb_4O_5Cl_2分布均匀,单根最长可达1.5μm,长径比在1∶100到1∶200之间。
     首次采用酸溶法和醇盐水解法制备了纳米Sb_4O_5Cl_2柱撑蒙脱土,提出纳米Sb_4O_5Cl_2柱撑蒙脱土的形成机理。结果表明:蒙脱土经Sb_4O_5Cl_2柱撑后,001面特征峰由1.2 nm扩大到1.5 nm左右,在4.0 nm层间距处出现一衍射峰;Al-OH振动峰、AlMg-OH弯曲振动的吸收带发生移动;Sb_4O_5Cl_2纳米粒子镶嵌在蒙脱土的片层空隙内。纳米Sb_4O_5Cl_2柱撑膨润土的形成主要通过Sb~(3+)或Sb(OR)_3分子与蒙脱土层间Na~+的交换和吸附,在蒙脱土层间原位水解产生Sb_4O_5Cl_2纳米粒子,达到扩充层间距的目的,同时层间距离限制了纳米粒子的生长,使它粒径小,分散好。
     采用超声波法首次实现高岭土/丙二醇(K/PD)的快速插层,并从热力学和插层驱动力的角度分析了插层反应的机理。结果表明:二甲基亚砜(DMSO)是较好的一次插层剂,插层率达91%以上,反应的优化条件为水10%、温度90℃、超声波强度8KHz和3h。UPR聚合单体中,只有PD可以二次取代K/DMSO,实现快速插层,条件为:插层反应温度为80℃,插层时间为3h。插层驱动力来自于高岭土的结构、有机插层剂、水、能量等。在相同条件下,多水、结构压力大的管状结构高岭土比普通的高岭土更易于插层;有机插层剂的性质决定了能否插层和插层效率;水可以破坏插层剂的结构,改变有机分子与高岭土片层的成键方式;超声波通过超声空化作用,提供局部超高温、超高压和“活性种”,插层效率高,所需时间短。
     首次以K/PD插层前驱体作为反应单体之一,采用原位聚合法制备了UPR/高岭土纳米复合物,首次采用电子束轰击的方法动态模拟复合物晶格结构变化过程,由此推断其微观结构和插层方式,分析UPR/高岭土的形成机理。结果表明:加入5%以下高岭土对树脂性能影响不大;复合材料中高岭土片层剥离,与树脂混合均匀, X衍射呈非晶态;高岭土表面羟基特征峰发生移动,出现UPR的特征峰,与溶液混合法制备的复合材料明显不同。聚合反应释放的自由能大多以有用功的形式反抗高岭土片层间的吸引力而做功,使层间距大幅度增加,甚至剥离。
     以玻璃钢为载体,将纳米级锑系阻燃剂加入到UPR/高岭土纳米复合物中,制备了高阻燃的纳米复合材料,揭示了材料的微观结构与性能的关系以及阻燃机理。结果表明:UPR固化时形成网格结构,在网格结构之间存在间隙;加入阻燃剂后,阻燃剂填充在树脂网络结构中间,但材料的均匀性和紧密度不好,材料的力学性能降低;高岭土插层之后,切面颗粒相对排列紧密,片层结构分布于网格结构间隙,均匀有序,材料的拉伸强度和弹性模量有所提高;将纳米氯氧化锑加入到UPR纳米复合材料中,材料表面致密,材料的力学性能没有降低。阻燃剂提高了树脂的分解温度,Sb_4O_5Cl_2无论是单独还是与卤素协同使用,其阻燃性能都优于超细Sb_2O_3,减少了含卤化合物的用量;纳米级的阻燃效果明显高于微米级的;粘土单独使用时,阻燃效果不明显,但可以提高树脂的热稳定性。在复合材料中,原位聚合不饱和聚酯树脂/4%高岭土插层复合物+6%Sb_4O_5Cl_2+10%氯化石蜡制备的玻璃钢制品氧指数可达35%以上;材料燃烧后表面形成一层致密、光滑、发亮的高岭土吸附层,降低了材料的燃烧性,增强了力学性能。
     高聚物纳米复合材料的阻燃机理包括自由基捕获机理和物理作用。聚合物的燃烧过程实际上是高分子与氧气反应生成自由基的链传递过程,Sb_4O_5Cl_2或Sb_2O_3在卤素化合物的协同下,分解生成气相的SbCl_3,捕获气相中能维持燃烧链式反应的活泼自由基,改变了气相的反应模式,减少了反应放出热量从而使火焰淬灭。纳米复合材料的高阻燃特性还取决于其结构,高岭土以纳米尺寸均匀分散在聚合物基体中,限制了UP分子链的活动,提高了树脂的分解温度和材料的阻隔性能;材料在燃烧过程中表面形成含高岭土的坚硬炭层,有效地抑制了挥发性可燃物的转移,热量的扩散和蔓延以及外界氧的进入,使材料获得良好的阻燃性能。
Unsaturated polyester resin(UPR) is widely used in many fields and becomes one of the most application amount thermoset resins because of its excellent performance and simple process. But it’s easily flammable. So flame retardant UPR is widely studied. This dissertation studied the preparation of high flame retarsant UPR/clay nanocomposites containing little halogen- antimony additives though adding little clay and nanoparticles. The properties of nanocomposites were characterized by means of XRD, FTIR, TEM, SEM, TG, DSC, limited oxygen index (LOI), vertical burning test and mechanical analysis. The microstructure, formation and flame retardant mechanism have been studied which will provide theory basis for the development of flame retardant materials.
     In the first time, the monodispersed nano-Sb_2O_3, Sb_4O_5Cl_2 nanobelts, nano-Sb_2O_3/ mica and nano-Sb_4O_5Cl_2/mica composition were prepared with SbCl3 as raw material by alcoholysis, through controling supersaturation of solution and reaction rate, decreasing solide-liquid interfacial tension using surfactants. The growth rule of nanoparticles and how to control the dimensionality, size and morphology of products were discovered. The results show that the mean particle size of monodispersed nano-Sb_2O_3 is about 21nm among them the particle size of 74% particles is less than 15nm. The nanoparticles of Sb_2O_3 have assembled uniformly between mica layers and have a narrow size distribution around 5nm, 95% particles. The drive force comes from the electrostatic attraction force.
     The distance between the layers limits the growth of particles. The fibers-like structure of Sb_4O_5Cl_2 with 0.3-1.0μm in length and 10-50 nm in diameter were confirmed by TEM. The nano-Sb_4O_5Cl_2 pillared montmorillonite composites were prepared in the first time and the formation mechanism was discussed. The results show that after montmorillonite has been pillared by Sb_4O_5Cl_2, the typical value of d(001) of montmorillonite was increased from 1.2nm to 1.5nm and a diffraction peak appeared in 4nm, the characteristic absorption peak moved. Montmorillonite displayed loose, porous state like honeycomb with Sb_4O_5Cl_2 nanoparticles in it.
     The kaolinite/propanediol intercalation compounds (K/PD) were prepared quickly by sonochemistry method in the first time. The intercalation mechanism was discussed from the aspect of themodynamics and intercalating force. The results show that dimethylsulfoxide (DMSO) is the better once intercalating agent and the intercalation rate get up to 91%. In UPR polymerization monomers, only K/PD can be prepared by replacing DMSO in K/DMSO composition. The intercalating drive force comes from the stucture of kaolinite, organic intercalating agent, water, energy and so on. Ultrasonic can provide high temperature, high presure and active seed in some area.
     In the first time, Unsaturated polyester resin/kaolinite intercalation nanocomposites (UPR/K) were prepared by in situ polymerization using K/PD intercalation usher as one of reaction monomers. The change process of composites crystal structures were simulated in dynamic mode by using electron beam bombardment, from which the microstructures and intercalation styles were deduced, and the formation mechanism of UPR/K was analysed. The results show that 5% kaolinite can’t effect the properties of resin, the kaolinte layers exfoliated and mixed uniformly in the composites. The energy released from polymerization reaction mostly changes to work resisting attraction force from kaolinite layers, makes distance of layers inlarge in extent, even exfoliate.
     The high flame retardant nanocomposites were prepared by adding nano-antimony compound into UPR/K using FRP as carrier. The relationship between microstructure and properties of materials and flame retardant mechanism were discussed. The results show that UPR formed net structure when solidifying. There were holes between nets. The flame retardant addtives filled loose in the net, which result in the mechanical properties of materials decreased. The kaolinite intercalating layers dispered uniformly and tightly in the net hole, which increased the stretching intension and flexibility module, limited the movement of UPR molecular and resultes in the improvement of decomposition temperature of resin. This special nanostructure and larger length-radius ratio also conduce diffusing path more zigzag and diffusing time longer of small moleculars in matrix, so the obstruction properties of materials have improved. After adding nano-Sb_4O_5Cl_2 into UPR/nanocomposites, the materials surface got compact. UPR sample with UPR/4% kaolinite preparing by in situ polymerization +6%Sb_4O_5Cl_2+10%CP-70 has best flame retardant properties with 35% LOI. After burning, The nano-kaolinite layers array flat on the materials surface and form hardness char shell, which inhibites effedtively the volatility combustible materials producing by polymer decomposion transfering to burning zone, the quantity of heat diffusing to no-burning zone and entering of oxygen. Polymer forms active radical, and then passes quickly through a chain reaction while burning. Sb_4O_5Cl_2 or Sb_2O_3 decomposes to produce SbCl3 under synergizing with halogen which can capture active radicals in gas, decreases the energy from reaction and finally makes fire extinguish.
引文
[1]舒中俊,漆宗能,王佛松,等.阻燃新途径-聚合物/粘土纳米复合材料的特殊阻燃性[J].高分子通报, 2000(4) : 65-70
    [2] Gilman J W, Kashiwagi T, Lichtenhan J D. Nanocomposites: A revolutionary new flame retardant approach [J] . SAMPE Journal , 1997, 33 (4) : 40-46
    [3] Porter D, Metcalfe E., Thomas M. J. K. Nanocomposites Fire Retardants-Review[J]. Fire.Mater, 2000, (24) : 45-52
    [4]彭淑鸽,高秋明.新型纳米层状硅酸盐Magadiite主体材料的制备、表征、结构和生成机理研究[J ].高等学校化学学报,2004,25 (4) : 603-606
    [5] Gilman J W, Ackson C L, Morgan A B, et al. Flammability properties of polymer-silicate (clay) nanocomposites polypropylene, polystyrene, and polyamide-6 /clay nanocomposites [ M ]. Proc. Of Flame Retardants 2000 , 49- 68
    [6] Lan. Layered clay intercalates and exfoliates having a low quartz content. US 6 596 803[P], 2003
    [7] Lan, Tie, Psihogios, et al. Nanocomposite based on a bridged clay, and cable comprising said composite. US 6 674 009[P], 2004
    [8]王寻,周平,李博文,等.聚苯乙烯/高岭石纳米复合材料的制备与表征[J].硅酸盐学报,2003,31 (10) : 955-958
    [9]欧育湘,赵毅,房小敏,等.溴系阻燃塑料的回收再利用[J].化工进展, 2006, 25(4):362-366
    [10]盖国胜.超微粉体技术[M].北京:化学工业出版社, 2004: 200
    [11]王林江,吴大清.矿物材料在纳米科技中的应用[J].矿物学报, 2001,21(3):351-354
    [12]段学臣.砷锑烟尘的回收及锑品深加工研究[D].中南大学博士学位论文,长沙,1990.
    [13]肖松文,刘志宏,李启厚,等.超细立方晶型锑白粉的湿法制备新工艺[J].矿业工程,1999, 3 (19) : 39-41.
    [14] Richard E. Lowery, Denton C. Fentress D. W. Godbehere, et al. Rapidly dispersible compositions of antimony pentoxide. US patent, 4804496, 1989-2-14.
    [15]申云飞.阻燃剂胶体五氧化二锑[J].精细化工, 1995,12(1) : 29-32.
    [16]欧育湘.阻燃剂-制造、性能及应用[M].北京:兵器工业出版社,1997.
    [17]谈应顺.一步法生产锑酸钠[J].湖南有色金属.1995, 11(5) :34-38.
    [18]阳卫军.阻燃用氯氧化锑的制备、应用性能及其阻燃机理[D].中南大学博士学位论文,长沙,2001.
    [19]唐漠堂,阳卫军.氯氧化锑阻燃剂的研究进展[J].现代化工. 2000, 20(6) : 15-19.
    [20]高纯四氧化二锑.聚合物助剂科技信息与商情, 1992 (3), 85.
    [21] Leebrick J R, Cassidy J J. Flame-resistant polymeric products [P]. Blg. Patent, 627622, 1962-1-26.
    [22] Komori Y, Sugahara Y, Kuroda K et al. Direct Intercalation of Poly(vinylpyrrolidone) into Kaolinite by a Refined Guest Displacement Method [J]. Chem. Mater. 1999, 11:3-6.
    [23] Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst[J]. Chem. Commun. 2000 (15), 1371-1373.
    [24] Hamanoi O, Kudo A. Reduction of Nitrate and Nitrite Ions over Ni-ZnS Photocatalyst under Visible Light Irradiation in the Presence of a Sacrificial Reagent [J]. Chem. Lett. 2002, 31:838-841.
    [25] Tsuji I, Kudo A. H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts [J]. J. Photochem. Photobiol. A 2003, 156:249-252.
    [26] Miyoshi H, Mori H, Yoneyama H et al. Light-induced decomposition of saturated carboxylic acids on iron oxide incorporated clay suspended in aqueous solutions [J].Langmuir 1991, 7:503-510.
    [27] Sato T, Masaki K, Sato K, et al. Photocatalytic properties of layered hydrous titanium oxide/CdS-ZnS nanocomposites incorporating CdS-ZnS into the interlayer [J]. J. Chem. Tech. Biotechnol. 1996, 67:339-345.
    [28] Kiraly Z, Dekany I, Mastalir A, et al. In Situ generation of palladium nanoparticles in smectite Clays [J]. J. Catal. 1996, 161:401-408.
    [29]何宏平.粘土矿物与金属离子作用研究[M].北京:石油工业出版社,2001. 5-6.
    [30] Pinnavaia T J. Intercalated Clay Catalysts [J]. Science 1983, 220:365-371.
    [31] Malla P B, Ravindranathan P R, Komarneni S K, et al. Intercalation of copper metal clusters in montmorillonite [J]. Nature 1991, 351:555-557.
    [32] Malla P B, Ravindranathan P, Komarneni S, et al. Reduction of copper acetate hydroxide hydrate interlayers in montmorillonite by a polyol process. A new approach in the preparation of metal-supported catalysts [J]. J. Mater. Chem. 1992, 2:559-565.
    [33] Crocker M, Buvindranathan J G, Komarneni S, et al. Synthesis and characterization of palladium crystallites intercalated in montmorillonite [J]. Chem. Mater. 1993, 5:105-109.
    [34] Papp S, Szucs A, Dekany I. Colloid synthesis of monodisperse Pd nanoparticles in layered silicates [J]. Solid State Ionics. 2001, 141-142:169-176.
    [35] Papp S, Szucs A, Dekany I. Preparation of Pd0 nanoparticles stabilized by polymers and layered silicate [J]. Appl. Clay Sci. 2001, 19:155-172.
    [36] Ayyappan S, Subbanna G N, Srinivasa R, et al. Nanoparticles of nickel and silver produced by the polyol reduction of the metal salts intercalated in montmorillonite [J]. Solid State Ionics. 1996, 84:271-281.
    [37] Aihara N, Torigoe K, Esumi K, et al. Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions [J]. Langmuir 1998, 14:4945-4949.
    [38] Gao Y, Yu Y Z. Deposition of silver nanoparticles on montmorillonite platelets by chemical plating [J].J. Mater. Sci. 2002, 37:5083-5087.
    [39] Chen C C, Kuo P L. Gold nanoparticles prepared using polyethylenimine adsorbed onto montmorillonite [J]. J. Colloid Interf. Sci. 2006, 293:101-107.
    [40] Papp S, Szel J, Oszko A, et al. Synthesis of polymer-stabilized nanosized rhodium particles in the interlayer space of layered silicates [J]. Chem. Mater. 2004, 16:1674-1685.
    [41] Szollosi G, Mastalir A, Bartok M, et al. Effect of ion exchange by an organic cation on platinumimmobilization on clays [J]. Catal. Lett. 2001, 74:241-249.
    [42] Han Y S, Yamanaka S. J. Preparation and characterization of microporous SiO2–ZrO2 pillared montmorillonite [J]. Solid State Chem. 2006, 179:1146–1153.
    [43] Dekany I, Turi L, Kiraly Z. CdS, TiO2 and Pd°nanoparticles growing in the interlamellar space of montmorillonite in binary liquids [J].Appl. Clay Sci. 1999, 15:221–239.
    [44] Mogyorosi K, Dekany I, Fendier J H. Preparation and characterization of clay mineral intercalated titanium dioxide nanoparticles [J]. Langmuir, 2003, 19:2938-2946.
    [45] Ilisz I, Dombi A, Mogyorosi K, et al. Photocatalytic water treatment with different TiO2 nanoparticles and hydrophilic/hydrophobic layer silicate adsorbents [J]. Collids Surf. A 2004, 230:89-97.
    [46] Nemeth J, Dekany I, Suvegh K, et al. Preparation and Structural Properties of Tin Oxide-Montmorillonite Nanocomposites [J]. Langmuir 2003, 19(9):3762-3769.
    [47] Nemeth J, Rodriguez-Gattorno G, Diaz D, et al. Synthesis of ZnO Nanoparticles on a Clay Mineral Surface in Dimethyl Sulfoxide Medium [J]. Langmuir 2004, 20 (7): 2855-2860.
    [48] Frost R L, Kristof J, Mako E, and Kloprogge J T. Modification of the Hydroxyl Surfacein Potassium-Acetate-Intercalated Kaolinite between 25 and 300℃[J]. Langmuir, 2000(16): 7421-7428.
    [49] Patakfalvi R, Oszko A, Dekay I. Synthesis and characterization of silver nanoparticle/kaolinite composites[J].Colloids Surf. A 2003, 220:45-54.
    [50] Patakfalvi R, Dekany I. Synthesis and intercalation of silver nanoparticles in kaolinite/DMSO complexes[J]. Appl. Clay Sci. 2004, 25:149-159.
    [51] Yoshiyuki Sugahara, Shigeo Satokawa, Kazuyuki Kuroda, Chuzo Kato, et al. Evidence for the formation of interlayer polyacrylonitrile in kaolinite[J]. Clays and Clay Minerals, 1988; 36(4): 343 - 348.
    [52]李伟东,黄建国.高岭土-聚丙烯酰胺夹层复合物的合成.复合材料学报,1994,11 (1): 23-28
    [53] James J.Tunney,Christian Detellier. Aluminosilicate Nanocomposite Materials. Poly(ethylene glycol)-Kaolinite Intercalates[J]. Chem. Mater , 1996 ,8 (4) :927-935
    [54] Gardolinski J E, Carrera, L.C.M.,Cantao, M.P.; Wypych, F.,et al. Layered polymer-kaolinite nanocomposites [J]. Mater Sci , 2000 , 35(12) : 3113-3119
    [55] Matsumura A , Komori Y, et al. Preparation of a kaolinite-nylon 6 intercalation compound [ J ]. Bull Chem Soc Japan ,2001 ,74 (6) :1153-1158
    [56] Tetsuro I, Yoshihiko K, Yoshiyuki S, et al. Synthesis of a kaolinite–poly( -alanine) intercalation compound[J]. J. Mater. Chem., 2001, 11:3291– 3295
    [57]张生辉,夏华.高岭土插层复合物研究进展[J].化工新型材料,2003,31(6): 5-8
    [58] Komori Y, Yoshiyuki S , Sugahara Y, Kuroda K et al. Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate [J]. Applied Clay Sci. 1999,15(1) : 241-252
    [59] Ryoji Takenawa, Yoshihiko Komori, Shigenobu Hayashi, Jun Kawamata, and Kazuyuki Kuroda et al. Intercalation of Nitroanilines into Kaolinite and Second Harmonic Generation[J]. J. Mater. Chem., 2001,13:3741-3746
    [60] Yariv S , Lapides I , Michaelian K H , Lahav N, et al. Thermal intercalation of alkali halides into kaolinite [J ]. Thermal Analysis and Calorimetry, 1999,56(2): 865-884
    [61] Pilar Aranda, Eduardo Ruiz-Hitzky. Poly(ethylene oxide)-silicate intercalation materials[J]. .Chem.Mater., 1992,4(6),1385.
    [62] Behzad Pourabas, Vahid Raeesi. Preparation of ABS/montmorillonite nanocomposite using a solvent/non-solvent method[J]. Polymer, 2005,46: 5533–5540
    [63] Suprakas Sinha Ray, Mosto Bousmina. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world[J]. Progress in Materials Science,2005,50(8): 962–1079
    [64] Park, C.I., Park, O.O., Lim, J.G. , Kim, H.J. et al. The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polymer, 42 (17): 7465-7475
    [65] Nikhil N. Bhiwankar, R.A. Weiss. Melt-intercalation of sodium-montmorillonite with alkylamine and quarternized ammonium salts of sulfonated polystyrene ionomers[J]. Polymer 2005,46(18): 7246–7254
    [66] Kojima.Y,Usuki.A,Kawasumi.MOkada.A,Kurauchi.T,Kamigaitio.O. et al. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with -caprolactam[J]. J.Polymer Sci Part A:Plym Chem,1993,31:983
    [67] Xaoan Fu, Qutubuddin, Syed. Synthesis of polystyrene-clay nanocomposites.Materials Letters,2000,42(1-2):12–15
    [68] Ahmed Rehab, Nehal Salahuddin. Nanocomposite materials based on polyurethane I ntercalated into montmorillonite clay[J]. Materials Science and Engineering A,2005,399(1-2): 368–376
    [69] Xinyu Huang. Preparation, Characterization and preperties of polymer-layered silicate nanocomposites [D]. The Graduate Faculty of The University of Akron 2002,5
    [70] Giuliana Gorrasi, Mariarosaria T, Vittoria V, Eric P, Be′ne′dicte L, Michael A, Philippe D,. et al. Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion[J]. Polymer,2003,44 :2271–2279
    [71]冯莉,刘炯天,廖立勇.单分散纳米Sb_2O_3的研制.化工学报[J], 2005, 56(11):2245-2250
    [72]欧育湘.实用阻燃技术[M].北京:化学工业出版社, 2002: 155-159
    [73]王淑玲.中国锑资源现状及可持续发展问题探讨[R]. 2001年中国锑剂锑制品市场报告会,南宁: 2001, 5: 1-8.
    [74]李宾杰,周静芳,李亚东,等.纳米Sb_2O_3的制备与性能研究[J].无机化学学报. 2004,20(4): 407-411
    [75]符金开,罗晓春,余伦,等.等离子体锑白炉生产超细三氧化二锑粉末试验研究[J].湖南有色金属,2003,19(6): 35-36
    [76] M.J.Van Bommel, W.A.Groen, H.A.M. Van Hal, W.C.Keur,T.N.M.Bernards, et al. The electrical and optical properties of nano-sized antimony doped tinoxide particles[J]. Journal of Materials Science 1999,34:4803~4809.
    [77]王彬果,冯莉,宋说讲,等.纳米Sb_4O_5Cl_2的制备及其在云母表面上的吸附性能[J].化工进展, 2008, 27 (4): 544-549.
    [78] Cushing B L, Kolesnichenko V L, O’Connor C J. Rcent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem. Rev. 2004, 104: 3893-3946
    [79] Wang Z L. Nanowires and Nanobelts, Materials, Properties and Devices (Vol.2). Kluwer Academic Publishers.
    [80]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001
    [81]朱静.纳米材料与器件[M].北京:清华大学出版社,2001
    [82] El-Sayed. M A. Some Interesting Properties of Metals Confind in Time and Nanometer Space of Different shapes, Acc.Chem. Res. 2001,34:257-264
    [83] Templiton A C, Wuelfing W P, Murray R W. Monolayer-Protected Cluster Molecules, Acc. Chem. Res. 2000,33:27-36
    [84] Puntes V F, Krishnan K M, Alivisatos A P. Collodial nanocystal shape and size control: The case of cobalt[J]. Science 2001,291:2115-2117
    [85]冯莉,刘炯天,王建怀,等.表面活性剂对纳米Sb_2O_3和纳米Sb_2O_3/云母分散性的影响[J]无机材料学报,2006,21(4): 972-978
    [86]金良超.正交设计与多指标分析.北京:中国铁道出版社, 1988: 1-18.
    [87]沈钟,王果庭.胶体与表面化学.北京::化学工业出版社, 1997(2): 34-35.
    [88]肖新才,楮良银,陈文梅,王枢,李艳,等.聚(N-异丙基丙烯酰胺)温敏微球的粒径及单分散性[J].化工学报,2004,55(2):321-324.
    [89]程世贤,龚福忠,李成海,等.微细Sb_2O_3粉体对十六烷基三甲基溴化铵的吸附研究[J].广西大学学报(自然科学版), 2000,25(3),202-205
    [90]郑忠.胶体科学导论[M].北京:高等教育出版社,1989
    [91] Paui C. Hiemenz著;周祖康,马季铭译.胶体与表面化学原理[M].北京:北京大学出版社,1986
    [92] Cushing B L, Kolesnichenko V L, O’Connor C J. Rcent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem. Rev. 2004, 104: 3893-3946
    [93]施尔畏.水热结晶学[M],北京:科学出版社,2004
    [94] Sun Y G, Xia Y N. Shape-Controlled Synthesis of Gold and Silver Nanopaticles[J]. Science, 2002,298:2176-2179.
    [95]傅献彩,沈文霞,姚天扬,等.物理化学[M](第五版).北京:高等教育出版社,2006:413-414
    [96] Feng Li,Wang Jianhuai, Liu Jiongtian. et al. Preparation and Fire retardancy of Antimony Oxide Nanoparticles/ Mica composition. Journal of composites materials,2006,41(20)
    [97]冯莉,刘炯天,廖立勇,等.纳米Sb_2O_3及其在云母表面的组装与阻燃性能[J].应用化学,2005,22(9):962-966
    [98] Alexand K., Lee Y-J., Yong S.P. et al. Orientation-controlled monolayer assembly of zeolite crystals on glass and mica by covalent linkage of surface-bound epoxide and amine groups. Angew. Chem.[J],2000, 39(5):950-953.
    [99] Feng Li, Liu Jiongtian. Growth of Nano-Sb_2O_3 on Mica Substrates and Flame Retardant Properties[J]. J. China Univ. of Mining & Tech. (English Edition),2006, 16(3):266-269
    [100]曹素红,冯莉,王彬果,等. Sb_4O_5Cl_2柱撑蒙脱土复合阻燃剂的制备及表征[J].化工矿物与加工, 2008, 37(4):19-23.
    [101] Thomas M K, Heinrich N, Thomas S, et al. Synthesis, Characterization, Crystal Structure, and hybrid DFT Computation of Antimony (III) Chloride Diazide, SbCl(N3)2 [J]. Z. Anorg. Allg. Chem., 2001, 627 (1): 81-84
    [102] Sean J G, James O J, Ajit B, et al. A theoretical and experimental study of Sb4O6: vibrational analysis, infrared, and Raman spectra [J]. Spectrochimica Acta Part A, 2004, 60 (1-2): 425-434.
    [103] Kloprogge J T, Mahmutagic E, Frost R L. Mid-infrared and infrared emission spectroscopy of Cu-exchanged montmorillonite [J]. J. of Colloid Interf. Sci., 2006, 296 (1): 640-646.
    [104]冯莉,刘炯天,马玉苗,等.纳米Sb_2O_3/云母阻燃微粉的制备及其阻燃机理.中国矿业大学学报[J],2005,34(11): 750-755
    [105]冯莉,刘炯天,宋说讲,等.原位聚合制备不饱和聚酯树脂/高岭土纳米复合材料及性能表征.高分子材料科学与工程,2008,24(3):78-81
    [106]宋说讲,冯莉,王彬果,等.不饱和聚酯树脂插层高岭土纳米复合材料的制备.科技论文在线, 2007, 10.
    [107]漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践.北京:化学工业出版社,2002 :95
    [108]冯莉,林哲,刘炯天,等.超声波法制备高岭石插层复合物前驱体.硅酸盐学报,2006,34(10): 1226-1231
    [109] Junosuke Murakamia, Tetsuro Itagakia, Kazuyuki Kuroda. Synthesis of kaolinite-organic nanohybrids with butanediols. Solid State Ionics 2004,172 : 279–282
    [110]宋说讲,冯莉,王彬果,等.超声波法制备1,2-丙二醇插层高岭土复合物的研究[J].化工新型材料,2007,35(9):5-7
    [111]林哲,冯莉,王永田,等.超声法制备高岭土/二甲基亚砜插层复合物的影响因素[J].硅酸盐学报, 2007, 35(5): 653-658
    [112] FROST R.L. . Birdwood kaolinite: a highly order kaolinite that is difficult to intercalate and XRD, SEM and Raman spectroscopic study[J ]. Applied Caly Science 2002 ,20 :177-187.
    [113]王林江,吴大清,袁鹏等.高岭石/甲酰胺插层的Raman和DRIFT光谱[J].高等学校化学学报, 2002,23(10):1948-1951
    [114] FANG Qinhua, HUANG Shiping, WANG Wenchuan et al. Intercalation of dimethyl sulphoxide in kaolinite: molecular dynamics simulation study [J]. Chem Phys Lett, 2005, 411: 233–237.
    [115] DENG Youjun, WHITE G. Norman, DIXON Joe B et al. Effect of Structural Stress on the Intercalation Rate of Kaolinite[J]. J Colloid Interface Sci, 2004, 250: 379–393.
    [116] FROST Ray L, KRISTOF Janos, PAROZ Gina N. Role of water in the Intercalation of kaolinite with hydrazine[J]. J Colloid Interface Sci, 1998, 208, 216–225.
    [117]王林江,吴大清.高岭石有机插层反应的影响因素[[J].化工矿物与加工,2001,(5): 29-32
    [118] Shigenobu Hayashi. NMR study of dymatics and evolution of guest molecules in Kaolinite/Dimethyl Sulfoxide[J]. Clays and clay minerals,1997,45(5):724-732.
    [119] Andrea Michalkowa, Daniel Tunega, Ladislav Turi Nagy. Theoretical study of interactions of dickite and kaolinite with small organic molecules[J]. Journal of Molecular Strcture(Theochem), 2002,581:37-49
    [120]周艳,郑小瑰,贾德民.不饱和聚酯基纳米复合材料研究进展[J].热固性树脂,2003,18(5):22-24
    [121] Xiao Yinghong,Wang xin,Yang xujie,et al. Nanometre sized TiO2 as applied to the modification of unsaturated polyester resin[J]. Materials Chemistry and Physics,2003,77(2):609-611.
    [122] Liqun Xu, L. James Lee*. Effect of nanoclay on shrinkage control of low profile unsaturated polyester (UP) resin cured at room temperature[J]. Polymer, 2004,45: 7325–7334
    [123]欧育湘,房晓敏.国际阻燃剂市场特点和发展动向[J].现代化工, 2006,26(5):63
    [124] Gilman JW, Jackson CL, Morgan AB, et al. Flammability Properties of Polymer-layered-silicate naanocomposites[J]. Polypropylene and polystyrene nanocomposites. Chem. Mater. 2000,12:1866-1873
    [125] Dietche F, Mulhaupt R. Thermal Properties and flammability of acrylic nanocomposites based upon organophilic layered silicates[J]. Polym. Bull. 1999,43:395-402
    [126] Zanetti M, Lomakin S Camino G.Polymer silicate manocomposites[J]. Macromol,Mater,Eng. 2000,279:1-9
    [127] Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O, et al. Synthesis and properties of polymide-clay hybrid[J]. Polym,Sci.:part A: polym. Chem. 1993,31:2493-2498
    [128] Okada A ,Kawasumi M,Kurauchi T. Polym Prepr ,1987 ,28 :447-449
    [129]沈开猷.不饱和聚酯树脂及其应用[M].北京:化学工业出版社, 2001,1.
    [130]张成龙.不饱和聚酯树脂理化性能的研究[J].玻璃钢/复合材料, 1998, 5: 19-21.
    [131]王英新.酸值对不饱和聚酯树脂性能的影响[J].天津化工, 2004(6): 28-29.
    [132]王文治,陈朝莹.不饱和聚酯树脂固化过程及结构变化[J].热固性树脂, 1999(3): 37-42.
    [133]姚希曾.不饱和聚酯树脂固化程度的评定[J].热固性树脂, 1994(3): 48-50.
    [134]刘雪宁,张洪涛,杨治中,等.苯乙烯-马来酸酐共聚物/高岭土纳米复合材料的制备[J].科学通报, 2005, 50(4): 331-335.
    [135] Mohammad A. Q, Ibrahim N A. Characterization of kaolinite of the Baten El-Ghoul region/south Jordan by infrared spectroscopy[J]. Spectrochimica Acta Part A, 2005 (61): 1519-1523.
    [136] Tamer A E, Christian D. Aluminosilicate nanohybrid materials:Intercalation of polystyrene in kaolinite[J].Journal of Physics and Chemistry of Solids, 2006 (67): 950-955.
    [137] D.J. Suh, Y.T. Lim, O.O. Park.. The property and formation mechanism of unsaturated polyester–layered silicate nanocomposite depending on the fabrication methods[J]. Polymer, 2000, 41:8557–8563
    [138] Alexander B M, Charles A W. Flame Retardant Polymer Nanocompostes[M]. John wliey and Sons Int. Press, New York, 2007.
    [139] Zanetti M, Kashiwagi T, Falqui L, et al. Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites [J]. Chem. Mater., 2002, 14(2), 881-887.
    [140] Kashiwagi T, Harris R.H, Zhang X, et al. Flame retardant mechanism of polyamide 6–clay nanocomposites [J]. Polymer, 2004, 45(3), 881-891.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700