漂浮阳极泥富集金银及回收锑铋工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漂浮阳极泥是铜电解过程中产生的含砷、锑、铋较高的金银物料,其中含砷13.83%、锑32.67%、铋9.479%、金0.0173%、银0.87%,具有较大的回收价值。
     本研究以漂浮阳极泥为原料,采用盐酸浸出富集金银,锑粉还原、两次水解分离锑铋,并用水解分离锑铋产物氯氧锑和氯氧铋分别制备氧化锑和氧化铋。
     采用盐酸浸出漂浮阳极泥,当固液比为1:5,反应时间为1h,反应温度为80℃,盐酸浓度为6mol/L时,锑铋浸出率分别可达到99.2%,99.1%。浸出后漂浮阳极泥中金含量为0.26%,银含量为13.12%,与浸出前相比,金银富集15倍以上。
     采用过量锑粉还原盐酸浸出液,适宜的锑粉还原条件为:温度60℃,还原时间1~3h。还原液经两次水解分离锑铋,当稀释比为8:1,反应时间为2~3h,反应温度为20℃时,锑水解率可达98.13%。锑水解后液用氢氧化钠调节pH值,进行铋的水解,当温度为20℃,反应时间为1h,终点pH值为3时,铋水解率可达99.5%。
     锑水解产物氯氧锑调浆后用碳酸钠溶液转化制备氧化锑,当终点pH值为8.5时,可得到纯度为88.4%,表面形貌为球形的立方晶型的三氧化二锑。
     用工业实验所得的铋水解产物粗氯氧铋制备氧化铋,经过盐酸浸出,水解除锑,水解沉铋,氢氧化钠转化,可得到纯度为96.2%的单斜的α—Bi2O3。
     漂浮阳极泥富集金银及回收锑铋工艺为漂浮阳极泥的处理开辟了新的思路,可以取得良好的经济效益。
Floating anode slime is Au and Ag samples from copper electrolytic process with high As, Sb, Bi contents, including Asl3.83%, Sb32.67%, Bi9.479%, Au0.0173%, Ag0.87%. So, floating anode slime has a high recovery value.
     Hydrochloride acid leaching was utilized to enrich Au and Ag from floating anode slime. Antimony powder reduction, two-step hydrolysises were used to separate Sb and Bi. The hydrolysates SbOC1 and BiOC1 from two-step hydrolysises process were used to prepare Sb2O3 and Bi2O3, respectively.
     The leaching rates of Sb and Bi were 99.2% and 99.1% when hydrochloric acid concentration was 6mol/L, reaction temperature was 80℃, ratio of solid to liquid was 1:5, reaction time was 1h. Compared with not-leached floating anode slime, the contents of Au and Ag in leached floating anode slime were enriched more than 15 times.
     Antimony powder was used to reduced hydrochloride leaching solution, and the suitable reduction condition was that temperature was 80℃, reaction time was 1~3h. The hydrolysis rate of Sb was 98.13% after the reduction solution was hydrolyzed to separated Sb and Bi, when dilution ratio was 8:1, temperature was 20℃, reaction time was 2~3h. The hydrolysis rate of Bi was 99.5% after the pH of hydrolysis solution of Sb was adjusted to hydrolyze Bi, when temperature was 20℃, reaction time was 1h, final pH was 3.
     The Sb2O3 with purity was 88.4%, SEM was spherical and XRD pattern was cubic, was obtained, after the hydrolysate SbOC1 from hydrolysis of Sb was transformed by Na2CO3 to prepare cubic Sb2O3, when the final pH was 8.5.
     The Bi2O3 with purity was 96.2%, SEM was fibrous and XRD pattern was monoclinic, was obtained after the crude BiOC1 from industrial experiment was treated by the process of hydrochloride acid leaching, hydrolysis removing Sb, hydrolysis precipitating Bi, NaOH transforming.
     The enrichment of Au and Ag and recovery of Sb and Bi from floating anode slime was opened up a new thought for the treatment of floating anode slime, and can acquire good economic benefit.
引文
[1]柳青,王吉坤.国内主要厂家阳极泥泥处理工艺流程改进状况[J].南方冶金,2008,(2):25~27.
    [2]卢宜源.贵金属冶金学[M].长沙:中南大学出版社,2004.
    [3]邱光文,徐远志.高银铜阳极泥湿法处理流程研究[J].有色金属设计,2000,27(2):19-24.
    [4]侯惠芬.从铜阳极泥中综合回收重有色金属和稀、贵金属[J].上海有色金属,2000,21(2):88-93.
    [5]王小龙,张听红.铜阳极泥处理工艺的探讨[J].矿冶,2005,14(2):46-45.
    [6]黎鼎鑫.贵金属提取与精炼[M].长沙:中南工业大学出版社,1991.
    [7]胡少华.铜阳极泥中金银及有价金属的回收[J].江西有色金属,1999,13(3):37-39.
    [8]杨勇,陈鹤群.铜阳极泥选冶联合流程的特点与展望[J].昆明理工大学学报,2002,27(1):31~34.
    [9]张博亚,王吉坤.用选冶联合流程处理铜阳极泥的生产实践[J].中国有色冶金,2007,(5):25~27.
    [10]陈东.国内铜阳极泥湿法处理流程评述汇[J].黄金,1989,10(4):30-32.
    [11]余真荣.铜阳极泥湿法处理工艺的技术改造[J].黄金,1999,20(4):34-38.
    [12]王日.铜阳极泥处理工艺优化[J].南昌水专学报,2004,23(4):76-77.
    [13]胡少华.高铋铜阳极泥处理及实践[J].江西有色金属,2003,17(3):31-33.
    [14]尹湘华.高杂质铜阳极泥的处理[J].有色金属(冶炼部分),2005(5):16-18.
    [15]郑雅杰,孙召明,汪蓓,等.阳极泥预处理及回收稀散金属的方法:中国,200810032000.0[P].2009-01-07.
    [16]苏中府.“贵冶牌”电解铜质量的提高[J].重有色冶炼,1976.
    [17]郑金旺.铜电解精炼时砷、锑、铋的分配行为及其应用研究.中南大学博士学位论文,2005.
    [18]黄善富.浅析砷锑在铜电解过程中的行为[J].有色冶炼,2002,6(3):20~22.
    [19]彭容秋.重金属冶金学[M].长沙:中南大学出版社,1991.
    [20]赵天从.锑[M].北京:冶金工业出版社,1987.
    [21]赵瑞荣,石西昌.冶金物理化学[M].长沙:中南大学出版社,2006.
    [22]周磊,李军旗.一种用氧化锑矿、硫氧混合锑矿生产三氧化二锑粉的方法[P].CN1103895.1995-06-2.
    [23]Zeng D W, Zhu B L, Xie C S. Oxygen patrial pressure effect on Synthesis and characteristics of Sb2O3 nanoparticles[J]. Materials Science and Engineering: A, 2004,366(2):332-337.
    [24]宋如泽.微粒高纯三氧化二锑的工业试验研究[J].广东有色金属,1998,(3):47-51.
    [25]唐仕祥.工业锑白炉试制粗颗粒Sb2O3的研究[J].湖南冶金,1998,(3):8-10.
    [26]孙克萍,张念炳等.用等离子体蒸发制备超细高纯锑白的研究[J].有色金属(冶炼部分),2005,(5):47-48.
    [27]Edstrand M. On the crystal structure of the antimony oxychloride Sb4O5Cl2 and isomorphous oxybromide[J]. Acta Chemica Scandinavica,1947(1):178-203.
    [28]Hashimoto, Hiroyuki, Nishimura, et al. Hydrolysis of antimony(Ⅲ)-hydrochloric acid solution at 25℃[J]. Materials Transactions,2003,44(8): 1624-1629.
    [29]赵天从,汪键.有色金属提取冶金手册(锡锑汞)[M].北京:冶金工业出版社,1999.
    [30]吕志平,吴岚.立方晶体三氧化二锑的制备[J].太原理工大学学报,2001,32(5):510-513.
    [31]甘庆民,杨秉文.耐光三氧化二锑的制备[J].化学世界,1997(5):243-245.
    [32]段学臣,赵天从.湿法锑白晶型转变[J].中国有色金属学报,1996,6(1):36-39.
    [33]肖松文,刘志宏,李启厚,等.超细立方晶型锑白粉的湿法制备新工艺[J].矿冶工程,1999,19(3):39-41.
    [34]Shafer J L. Process for the production of light stable antimonous oxide by hydrolysis of antimony trichloride in the presence of complexing agents[P]. US3998940,1976:12-21.
    [35]Yang B W, Gan Q M. Preparation method of cubic crystal antimony trioxide[P]. CN1072392,1993:05-26.
    [36]Liu Y P, Zhang Y H, Zhang M W, et al. Preparation of nanocrystalline antimony oxide powders by use of γ-ray radiation-oxidization route[J]. Materials Science and Engineering B49,1997:42-45.
    [37]Tsugia Sato et al. J. Chem. Teeh. Bioteehnol.1993,58(4):315.
    [38]M. Samy Shall, W Slack, W. Vann. Synthesis of nanoscale metal oxide particles using laser vaporization/condensation in a diffusion cloud chamber[J]. Phys Chem.1994,98(12):3067~3070
    [39]张熙春,王上荣,吴立峰.CN:87101630,1988-08-10.
    [40]Guo L, Wu Z H. Synthesis of novel Sb2O3 and Sb2O5 nanorods. Chem-physics Lett.2000,318:49~52.
    [41]段学臣,张多默,赵天从.等.超微锑白(Sb2O3)的研究[J].矿冶工程.1998,18(2):61-63
    [42]汪立果.铋冶金[M].北京:冶金工业出版社,1986.
    [43]秦毅红,王云燕,彭文杰.铋深加工产品的应用及其发展前景[J].世界有色金属,1998,(4):44-45.
    [44]Sugimoto, Naoki. Ultraf stoptical switches and wave length divisionmufti-plexing(WDM) amplifiers based on bismuth oxide glasse[J]. Journal of the American Ceramic Society,2002,85(5):1083-1088.
    [45]S.A.Cheng, Y.Q.Lei, Y.J.Leng, Q.D.Wang. Electrochemical performance of metal hydride negative electrode modified with bismuth oxide [J]. Journal of Alloys and Compounds,1998, (264):104-106.
    [46]L.T.Lam, H.Ceylan, N.P.Haigh,J.E.Manders. Influence of bismuth on the charging ability of negative plate in lead-acid batteries [J]. Journal of Power sources,2002, (107):155-161.
    [47]林玉宝,林良真,肖立.铋系高温超导直流电缆的研制物理[J],2001,30(7):389-391.
    [48]Yukhin Yu. M, Baryshinikov N.V, Afoning L. Z. et al. Purification of bismuth by hydrolysis of nitric acid solutions[J]. Zh. Prikl. Khim.1990,63(1):14-15.
    [49]Yin Zhimin, Pan Qinglin, Chen Shizhu. Manufacture of bismuth trioxide fine powder for various applications[P]. CN 108482513 Mar,1994
    [50]Revzin.GE, Arkhipov S. M. Revzina T.V. et al. Bismuth oxide[J]. Prom. ObraZtsy Tobarnye Znaki.1979, (21):73.
    [51]吴绍华,刘春艳,刘进,等.超细Bi2O3粉体的制备研究现状[J].中国粉体技术,2005,(6):37-41.
    [52]韩俊鹤,欧慧灵,廖鹏,等.表面修饰的Bi2O3纳米微粒的光学特性[J].河南大学学报(自然科学版),2001,31(3):14-16.
    [53]尹志民,陈世柱,潘青林,等.熔体雾化—燃烧法制备高纯三氧化二铋超细粉[J].中国有色金属学报,1994,4(4):62-64.
    [54]Lutz M dler, Sotiris E Pratsinis. Bismuth oxide nanoparticles by flame spray pyrolysis[J]. JAmCeramSoc,2002,85(7):1713-1718.
    [55]禹争光,杨邦朝,敬履伟.纳米氧化铋粉体的制备及对ZnO压敏电阻性能的影响[J].硅酸盐学报,2003,31(12):1184-1187.
    [56]王勇,赵攀峰,郑雅杰.含砷废酸制备亚砷酸铜及其在铜电解液净化中的 应用[J].中南大学学报:自然科学版,2007,36(8):1115-1120.
    [57]肖发新,郑雅杰,简洪生,等.砷、锑和铋对铜电沉积及阳极氧化机理的影响[J].中南大学学报:自然科学版,2009,40(3):575-580.
    [58]Petkova E N. Mechanisms of floating slime formation and its removal with the help of sulphur dioxide during the electrorefining of anode copper[J]. Hydrometallurgy,1997,46(3):277-286.
    [59]Petkova E N. Microscopic examination of copper electrorefining slimes[J]. Hydrometallurgy,1990,24(3):351-359.
    [60]许并社,李明照.铜冶炼工艺[M].北京:化学工业出版社,2007,1:200-205.
    [61]Fernandez M A, Segarra M, Espiell F. Selective leaching of arsenic and antimony contained in the anode slimes from copper refining[J]. Hydrometallurgy,1996,41(23):255-267.
    [62]蔡练兵,刘维,柴立元.高砷铅阳极泥预脱砷研究[J].矿冶工程,2007,12(6):44-47.
    [63]WANG Xue-wen, CHEN Qi-yuan, YIN Zhou-lan, XIAO Lian-Sheng. Identification of arsenato antimonates in copper anode slimes[J]. Hydrometallurgy,2006,84(3-4):211-217.
    [64]赵国权,贺家齐,王碧文.铜回收、再生与加工技术[M].北京:化学工业出版社,2007.
    [65]钟卫佳.铜加工技术实用手册[M].北京:冶金工业出版社,2007.
    [66]Hoffmann J.E, Bautista R.G, Ettel V.A., et al. The electrorefining and winning of copper, proceedings of the symposium sponsored by the TMS copper, nickel, cobalt, precious metals and electrolytic processes committees [M]. New York: The Metallurgical Society,1987.
    [67]京彬.我国铜矿资源勘查开发前景展望[J].国土资源科技,2004,(6):27-30.
    [68]陈进中,曹华珍,郑国渠,等.高锑低银类铅阳极泥制备五氯化锑新工艺[J].中国有色金属学报,2008,18(11):2094-2099.
    [69]Lin H K. Extraction of antimony by a copper chloride extractant[J]. Hydrometallurgy,2004,73(3-4):283-291.
    [70]Eric H. Oelkers, David M. Sherman, K. Vala Ragnarsdottir, et al. An EXAFS spectroscopic study of aqueous antimony(Ⅲ) chloride complexation at temperatures from 25 to 250℃[J].Chemical Geology,1998,151(1-4):21-27.
    [71]傅崇说,王庆祥,郑蒂基.关于氯化物溶液中铅、银结晶分离的理论分析[J].中南矿冶学院学报,1981,12(4):6-9.
    [72]项斯芬.无机化学丛书氮、磷、砷分族[M].北京:科学出版社,1991
    [73]肖发新.铜电解液净化新工艺及其基础理论研究.南大学博士学位论文,2008.
    [74]王云燕,彭文杰,舒余德,等.Bi(Ⅲ)-X(Cl-,NO3-)-H2O体系热力学平衡研究[J].中南工业大学学报,2001,32(3):139-141.
    [75]郑雅杰,罗圆,王勇.利用含砷废水制备三氧化二砷的方法:中国,200710035704.2[P].2007-09-07.
    [76]郑雅杰,王勇,赵攀峰.一种利用含砷废水制备亚砷酸铜和砷酸铜的方法:中国,200610032456.1[P].2006-10-25.
    [77]吕志平,吴岚.立方晶体三氧化二锑的制备[J].太原理工大学学报,2001,32(5):510-513.
    [78]何书燊.等离子体生产Sb2O3的装置及工艺[J].有色冶炼,2003,2(1):26-29.
    [79]李启厚,肖松文,刘志宏,等.酒石酸根离子控制锑白粉末结构形貌的模板作用行为[J].高等学校化学学报,2000,9(21):1344-1347.
    [80]伍致平.关于特性氧化锑的小试报告,湖南育色金属研究所,1986.
    [81]许秀莲,徐志峰.从锡电解阳极泥中综合回收Pb、Bi的研究[J].有色冶炼,2001,(6):15-17.
    [82]唐冠中,许秀莲.从低品位硫化铋矿中生产氯氧化铋的新方法[J].有色金属(冶炼部分),1994,(4):16-18.
    [83]吴文伟,赖水彬,姜求宇,等.由氯氧化铋直接制备纳米氧化铋[J].有色金属,2006,58(3):42-45.
    [84]吴文伟,赖水彬,姜求宇,等.一种由粗铋直接制备高纯氧化铋的方法[J].有色金属,2004,56(4):36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700