组合微滤工艺处理含裂片核素废水的冷试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微滤工艺和传统工艺相结合处理放射性废水能获得较高的去污因数和浓缩倍数。本文开发了吸附-微滤工艺、混凝共沉淀-微滤工艺分别处理含铯、锶的废水,对混凝-微滤工艺处理锕系元素废水的操作参数进行了优化。
     以亚铁氰化钾锌为吸附剂,进行了吸附-微滤工艺处理低浓度含铯废水的冷试验研究,试验中制备的亚铁氰化钾锌的分子式为K_2Zn_3[Fe(CN)_6]_2,结构致密,粒径为0.275~17.4μm,对铯具有较好的吸附性能,对铯的吸附行为符合Freundlich等温式和拟二级动力学模型。静态试验表明,吸附剂的投加量为0.330 g/L时,对铯的去污因数为75.8,去除率达到了98.7%,而相同参数下的小试规模冷试验对铯的去除效果要好于静态吸附试验,主要原因是曝气过程使吸附剂表面不断更新,从而使旧吸附剂具有持续的吸附能力。吸附剂用量越大,去污因数越大,浓缩倍数越小,吸附剂投加量分别为0.330 g/L、0.165 g/L、0.083 g/L,进水铯浓度为100μg/L左右时,去污因数分别为208.7、128.8、77.2,浓缩倍数分别为539、1218、2306。出水无色透明,浊度最低为0.05 NTU,最高为0.10 NTU。出水中金属元素钙、镁基本不被截留,铁被全部截留。毒性很强的CN-浓度小于0.002 mg/L,达到了《污水综合排放标准》(GB8978-1996)。
     以蒙脱石为吸附剂,由于吸附剂投量过高,无法满足工程要求,因而采用吸附-微滤工艺处理含锶废水是不可行的。
     以Na_2CO_3为沉淀剂,以FeCl_3为混凝剂,采用混凝共沉淀-微滤工艺处理含锶废水是可行的。序批式运行方式中,当Na_2CO_3投加量为2000 mg/L,FeCl_3投加量为10 mg/L,进水锶浓度为10 mg/L左右时,去污因数达到458,但膜污染严重,限制了工艺的应用范围。在连续式运行方式中,当进水锶浓度为5.3 mg/L,Na_2CO_3投加量为2000 mg/L,FeCl_3投加量为20 mg/L时,平均去污因数为183.6,浓缩倍数达到249。该工艺出水水质较好,浊度小于0.10 NTU。铁基本被全部去除,钙的去除率达到88%以上,镁的去除率较低,水的软化有利于锶的去除。
     混凝-微滤工艺处理锕系元素废水的应用规模冷试验运行效果良好,无论主膜组件出水期间,还是辅助膜组件进行浓缩期间,出水的浊度正常。当浓缩倍数为565时,污泥流动性较好,能顺利排出反应器。
     参考处理含裂片核素废水和锕系元素废水的试验结果,进行了处理同时含铯、锶混合废水工艺的初步设计,原水首先以Na_2CO_3为沉淀剂,以FeCl_3为混凝剂采用混凝共沉淀-微滤工艺去除锶,然后以亚铁氰化钾锌为吸附剂采用吸附-微滤工艺去除铯。
Microfiltration process combined with traditional process for the treatment of liquid radioactive waste can obtain higher decontamination factor and concentration factor. An adsorption-microfiltration process and a coagulating coprecipitation-microfiltration process were developed to treat the wastewater containing cesium and strontium respectively and the operating parameters of the coagulation-microfiltration process for the treatment of actinide elements wastewater were optimized as well in this paper.
     The adsorption-microfiltration process was researched to treat the low level cesium wastewater with the potassium zinc hexacyanoferrate as the adsorbent. The molecular formula of the adsorbent was K_2Zn_3[Fe(CN)_6]_2, and its structure was compacted with particle size of 0.275~17.4μm. Its adsorption ability for cesium was good and the adsorption behavior was in accordance with the Freundlich type sorption isotherm and the pseudo-second order kinetics model. The results of the jar test showed that the decontamination factor was 75.8 and the removal reached 98.7% when the dose of the adsorbent was 0.330 g/L, whenas, the results of the lab-scale test with the same parameters showed that the effect of cesium removal was better than that of the jar test, which resulted from the continuous renewal of the adsorbent surface by which the adsorption capacity of the old adsorbent was improved. The more the adsorbent dose, the largerer the decontamination factor was while the smaller the concentration factor was. When the dose of the adsorbent was 0.330 g/L, 0.165 g/L, 0.083 g/L respectively and the cesium concentration of the raw water was about 100μg/L, the decontamination factor was 208.7, 128.8, 77.2 and concentration factor was 539, 1218, 2306 respectively. The effluent was colorless and transparent, the lowest turbidity was 0.05 NTU and the highest was 0.10 NTU. The calcium and the magnesium were not rejected while iron was rejected all and the concentration of CN- in the effluent, whose toxicity was serious, was lower than 0.002 mg/L and met the Integrated Wastewater Discharge Standard (GB8978-1996).
     The adsorption-microfiltration process with the montmorillonite as the adsorbent was not feasible because of the adsorbent does being too high to satisfy the engineering requirement.
     The coagulating coprecipitation-microfiltration process was feasible to treat wastewater containing strontium with Na_2CO_3 as the precipitant and FeCl_3 as the coagulant. In the batch operation mode, the decontamination factor reached 458 when the Na_2CO_3 dose was 2000 mg/L, the FeCl_3 dose was 10 mg/L and the strontium concentration in the raw water was about 10 mg/L, but the membrane fouling was serious which limited the application of the process. In the continuous operation mode, the mean decontamination factor was 183.6 and the concentration factor was 249 when the Na_2CO_3 dose was 2000 mg/L, the FeCl_3 dose was 20 mg/L and the strontium concentration in the raw water was 5.3 mg/L. The effluent quality was good with the turbidity being smaller than 0.10 NTU. The iron was removed all, the removal of the calcium was higher than 88% and that of the magnesium was lower, the softening of the water was favorable to the strontium removal.
     The operation effect of the full-scale cold test of the coagulation-microfiltration process for the treatment of actinide elements wastewater was good and the turbidity of the effluent was normal no matter the main or the auxiliary membrane worked. When the concentration factor was 565, the fluidity of the sludge was good and discharging from the membrane reactor was feasible.
     With reference to the results of the treatment of fission produce nuclides wastewater and actinide elements wastewater, a process for the treatment of mixed wastewater containing strontium and cesium simultaneously was designed preliminarily by which the strontium was removed first by coagulating coprecipitation-microfiltration with Na_2CO_3 as the precipitant and FeCl_3 as the coagulant, and then the cesium was removed by adsorption-microfiltration with the potassium zinc hexacyanoferrate as the adsorbent.
引文
[1] Wei M-S, Huang K-H. Recycling and reuse of industrial waste in Taiwan[J]. Waste Management, 2001, 21(1): 93-97.
    [2] Gr?bener K H, Koch C, Nickel W. Volume reduction, treatment and recycling of radioactive waste[J]. Nuclear Engineering and Design, 1990, 118(1): 115-122.
    [3] International Atomic Energy Agency. Underground disposal of radioactive wastes: Basic Guidelines: Safety Series No.54[R]. Vienna: IAEA, 1981.
    [4] Hass P A. A review of information on ferrocyanide solids for removal of cesium from solution[J]. Separation Science and Technology, 1993, 28(17-18): 2479-2506.
    [5]王玉宾,孙伟,黄伟.膜技术应用进展[J].矿产与地质, 2003, 17(94): 96-99.
    [6]王学松.膜法分离技术及其应用[M].北京:科学出版社, 1994.
    [7]高永,顾平,陈卫文.膜技术处理低浓度放射性废水研究的进展[J].核科学与工程, 2003, 23(2): 173-177.
    [8]黄明犬,周从直,康青.中低放射性废水处理现状与发展[J].西南给排水, 2003, 25(6): 29-31.
    [9] Ramakul P, Prapasawad T, Pancharoen U, et al. Separation of radioactive metal ions by hollow fiber-supported liquid membrane and permeability analysis[J]. Journal of the Chinese Institute of Chemical Engineers, 2007, 38(5-6): 489-494.
    [10] Zakrzewska-Trznadel G, Harasimowicz M, Mi?kiewicz, A, et al. Reducing fouling and boundary-layer by application of helical flow in ultrafiltration module employed for radioactive wastes processing[J]. Desalination, 2009, 240(1-3): 108-116.
    [11] Inoue H, Kagoshima M. Removal of 125I from radioactive experimental waste with an anion exchange paper membrane[J]. Applied Radiation and Isotopes, 2000, 52(6): 1407-1412.
    [12] Gordon D, Purdy G M, Smith B F, et al. Treatment of liquid wastes[J]. LosAlamos Science, 2000, 26(2): 452-457.
    [13] Neville M D, Jones C P, Turner A D. The EIX process for radioactive waste treatment[J]. Progress in Nuclear Energy, 1998, 32(3-4): 397-401.
    [14] Tomaszewska M, Gryta M, Morawski A W. Study on the concentration of acids by membrane distillation[J]. Journal of Membrane Science, 1995, 102(1-2): 113-122.
    [15] Navratil J D. Pre-analysis separation and concentration of actinides in groundwater using a magnetic filtration/sorption method. I. Background and concept[J]. Journal of Radioanalytical and Nuclear Chemistry, 2001, 248(3): 571-574.
    [16] International Atomic Energy Agency. Application of membrane technologies for lquid: Technical Reports Series No.431[R]. Vienna: IAEA, 2004.
    [17]曹式芳.海水淡化技术的发展[J].天津化工, 2002(2): 6-8.
    [18]许振良.膜法水处理技术[M].北京:化学工业出版社, 2001.
    [19] Zakrzewska-Trznadel G, Harasimowicz M, Andrzej G C. Membrane processes in nuclear technology-application for liquid radioactive waste treatment[J]. Separation and Purification Technology, 2001, 22-23: 617–625.
    [20] Sen Gupta S K, Rimpelainen S. Liquid radwaste processing with spiral-wound reverse osmosis[J]. Ultrapure Water, 1997, 141(1): 32-39.
    [21] Chmielewski A G, Harasimowicz M, Tyminski B, et al. Concentration of low-level and medium-level radioactive wastes with 3-stage reverse-osmosis pilot-plant[J]. Separation Science and Technology, 2001, 36(5-6): 1117-l127.
    [22] Arnal J M, Sanchoa M, Verdti G, et al. Treatment of 137Cs liquid wastes by reverse osmosis Part I. Preliminary tests[J]. Desalination, 2003, 154(1): 27-33.
    [23] Arnal J M, Sanchoa M, Verdti G, et al. Treatment of 137Cs liquid wastes by reverse osmosis Part II. preliminary tests[J]. Desalination, 2003, 154(1): 35-42.
    [24] Rautenbach R, Groschl A. Separation potential of NF membranes[J]. Desalination, 1990, 77(1): 73–84.
    [25] Szoke S, Phtzay G, Weiser L. Cobalt(III) EDTA complex removal from aqueous alkaline borate solutions by nanofiltration[J]. Desalination, 2005, 175(2): 179-185.
    [26]白庆中,陈红盛,叶裕才,等.无机纳滤膜处理低水平放射性废水的试验研究[J].环境科学, 2006, 27(7): 1334-1338.
    [27]侯立安,左莉.纳滤膜分离技术处理放射性污染废水的试验研究[J].给水排水, 2004, 30(10): 47-49.
    [28] Hwang E D, Lee K W, Choo K H, et al. Effect of precipitation and complexation on nanofiltration of strontium-containing nuclear wastewater[J]. Desalination, 2002, 147(1-3): 289-294.
    [29] Bodzek M, Korus I, Loska K. Application of hybrid complexation-ultrafiltration process for removal of metal ions from galvanic wastewater[J]. Desalination, 1999, 121(2): 117-121.
    [30] Korus I, Bodzek M, Loska K. Removal of zinc and nickel ions from aqueous solutions by means of the hybrid complexation-ultrafiltration process[J]. Separation and Purification Technology, 1999, 17(2): 111-116.
    [31] Zakrzewska-Trznadel G, Harasimowicz M. Removal of radionuclides by membrane permeation combined with complexation[J]. Desalination, 2002, 144(1-3): 207-212.
    [32] Zakrzewska-Trznadel G. Radioactive solutions treatment by hybrid complexation–UF/NF process[J]. Journal of Membrane Science, 2003, 225(1-2): 25-39.
    [33] Kryvoruchko A P, Yu L, Yurlova, et al. Ultrafiltration removal of U(VI) from contaminated water[J]. Desalination, 2004, 162: 229-236.
    [34] Gao Y, Zhao J, Zhang G, et al. Treatment of the wastewater containing low-level 241Am using flocculation-microfiltration process[J]. Separation and Purification Technology, 2004, 40(2): 183-189.
    [35]赵军,张东,苑国琪,等.絮凝微滤组合工艺处理241Am废水[C]//全国放射性流出物和环境监测与评价研讨会论文集.杭州, 2003: 563-567.
    [36] Nakamaru Y, Ishikawa N, Tagami K, et al. Role of soil organic matter in the mobility of radiocesium in agricultural soils common in Japan[J]. Colloids and Surfaces A: Physicochemical Engineering Aspects, 2007, 306(1-3): 111-117.
    [37] Marinin D V, Brown G N. Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters[J]. Waste Management, 2000, 20(7): 545-553.
    [38]李虎杰,易发成.沸石对放射性核素Cs+, Sr2+的吸附阻滞作用.矿物岩石, 2006, 26(1): 5-8.
    [39] Osmanlioglu A E. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey[J]. Journal of Hazardous Materials, 2006, 137(1): 332-335.
    [40] Vejsada J, Hradil D, Randa Z, et al. Adsorption of cesium on Czechsmectite-rich clays– A comparative study[J]. Applied Clay Science, 2005, 30(1): 53- 66.
    [41]王秋萍,宋崇立,姜长印,等.除Cs用无机离子交换剂的筛选[J].离子交换与吸附, 2000, 16(3): 225-233.
    [42] Ayrault S, Jimenez B, Garnier E, et al. Sorption mechanisms of cesium on CuII2FeII(CN)6 and CuII3[FeIII(CN)6]2 hexacyanoferrates and their relation to the crystalline structure[J]. Journal of Solid State Chemistry, 1998, 141(2): 475-485.
    [43]王士柱,姜长印.亚铁氰化钾锌类交换剂去除Cs+的初步研究[J].核化学与放射化学, 1996, 18(4): 247-251.
    [44]孙永霞,姜长印,宋崇立.用亚铁氰化钛钾从模拟高放废液中吸附Cs研究[J].离子交换与吸附, 1997, 13(2): 147-152.
    [45]姜长印,王士柱,宋崇立,等.用亚铁氰化钾钛从高放废液中去除铯的研究[J].核化学与放射化学, 1995, 17(2): 99-103.
    [46] Milonji? S, Bispo I, Fedoroff M, et al. Sorption of cesium on copper hexacyanoferrate/polymer/silica composites in batch and dynamic conditions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2002, 252(3): 497-501.
    [47]王宝贞.放射性废水处理(上册)[M].北京:科学出版社, 1979.
    [48]于丁一,宋澄章,李航宇.膜分离工程及典型设计实例[M].北京:化学工业出版社, 2005.
    [49] International Atomic Energy Agency. Chemical precipitation process for the treatment of aqueous radioactive waste: Technical report series No.337[R]. Vienna: IAEA, 1992.
    [50] International Atomic Energy Agency. Techniques for the solidification of high level wastes: Technical reports series No.176[R]. Vienna: IAEA, 1977.
    [51] Shakir K, Sohsah M, Soliman M. Removal of cesium from aqueous solutions and radioactive waste simulants by coprecipitate flotation[J]. Separation and Purification Technology, 2007, 54(3): 373-381.
    [52] ?ebesta F. Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix I. Methods of modification of properties of inorganic ion-exchangers for application in column packed beds[J]. Journal of Radioanalytical and Nuclear Chemistry, 1997, 220(1): 77-88.
    [53] Milyutin V V, Gelis V M, Klindukhov V G, et al. Coprecipitation of 127microamounts of Cs with ferrocyanides of various metals[J]. Radiochemistry, 2004, 46(5): 479-480.
    [54] Rout T K, Sengupta D K, Besra L. Flocculation improves uptake of 90Sr and 137Cs from radioactive effluents[J]. International Journal of Mineral Processing, 2006, 79(4): 225-234.
    [55] Rout T K, Sengupta D K, Kaur G, et al. Enhanced removal of dissolved metal ions in radioactive effluents by flocculation[J]. International Journal of Mineral Processing, 2006, 80(2-4): 215-222.
    [56] Rao S V S, Biplob P, Lal K B, et al. Effective removal of cesium and strontium from radioactive wasters using chemical treatment followed by ultra filtration[J]. Journal of Radioanalytical and Nuclear Chemistry, 2000, 246(2): 413-418.
    [57]任建新.膜分离技术及其应用[M].北京:化学工业出版社, 2003.
    [58] Rudenko L I, Dzhuzha O V, Khan V E. Smeipermeable dynamic membranes for ultrfiltration treatment of ground water to remove radionuclides[J]. Radiochemistry, 2007, 49(2): 201-203.
    [59] Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski A G. Concentration of radioactive components in liquid low level radioactive waste by membrane distillation[J]. Journal of Membrane Science, 1999, 163(2): 257-264.
    [60] Dushenkov S, Vasudev D, Kapulnik Y, et al. Removal of U from water using terrestrial plants[J]. Environmental Science and Technology, 1997, 31(1): 3468-3437.
    [61] Balarama Krishna M V, Rao S V, Arunachalam J, et al. Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent[J]. Separation and Purification Technology, 2004, 38(2): 149-161.
    [62] Singh S, Eapen S, Thorat V, et al. Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides[J]. Ecotoxicology and Environmental safety, 2008, 69(2): 306-311.
    [63]蒋永一,黄秋红,顾鼎祥.应用生物吸附剂技术处理中低放废液的研究[J].铀矿地质, 2003, 19(5): 310-317.
    [64]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
    [65] Li B, Liao J, Wu J, et al. Removal of radioactive cesium from solutions by zincferrocyanide[J]. Nuclear Science and Techniques, 2008, 19(2): 88-92.
    [66] Loos-Neskovic C, Fedoroff M, Fedoroff E, et al. Zinc and nickel ferrocyanides: preparation, composition and structure[J]. Talanta, 1984, 31(12): 1133-1147.
    [67] Loos-Neskovic C, Fedoroff M, Fedoroff E, et al. Preparation, composition and structure of some nickel and zinc ferrocyanides: Experimental results[J]. Talanta, 1989, 36(7): 749-759.
    [68] Chang C-Y, Chau L, Hu W-P, et al. Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium[J]. Microporous and Mesoporous Materials, 2008, 109(1-3): 505-512.
    [69] Ayrault S, Loos-Neskovic C, Fedoroff M, et al. Copper hexacyanoferrates: Preparation, composition and structure[J]. Talanta, 1994, 41(9): 1435-1452.
    [70] Ayrault S, Loos-Neskovic C, Fedoroff M, et al. Compositions and structures of copper hexacyanoferrates(II) and (III): experimental results[J]. Talanta, 1995, 42(11): 1581-1593.
    [71] Loewenschoss H. Metal-Ferrocyanids compexes for the decontamination of caesium from aqueous radioactive waste[J]. Radioactive Waste Manage, 1982, 2(4): 327-341.
    [72] Konecny C, Caletra R. Adsorption properties of insoluble hexacyanoferrates (II) supported on sillca gel[J]. Journal of Rdioanalytical Chemistry, 1973, 14(2): 255-266.
    [73] Ganzerli V M, Meloni M S. Adsorption of monovalent ions on zinc ferrocyanids[J]. Journal of Inorganic Nuclear Chemistry. 1972, 34(4): 1427-1436.
    [74]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社, 1999.
    [75] Loos-Neskovic C, Ayrault S, Badillo V, et al. Structure of copper-potassium hexacyanoferrate(II) and sorption mechanisms of cesium[J]. Journal of Solid State Chemistry, 2004, 177 (6): 1817-1828.
    [76] Ho Y S, Ng J C Y, Mckay G. Kinetic of pollutant sorption by biosorbents: Review[J]. Separation and Purification Methods, 2000, 29(2): 189-232.
    [77] Chiou M S, Li H Y. Equilibrium and kinetic modeling of adsorption of reactive dye on crosslinked chitosan beads[J]. Journal of Hazardous Materials, 2002,93(2): 233-248.
    [78] Wang S B, Li H. Dye adsorption on unburned carbon: Kinetics and equilibrium[J]. Journal of Hazardous Materials, 2005, 126(1-3): 71-77.
    [79] Hsu T-C, Yu C C, Yeh C-M. Adsorption of Cu2+ from water using raw and modified coal fly ashes[J]. Fuel, 2008, 87(7): 1355-1359.
    [80] Kannan N, Sundaram M M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons– a comparative study[J]. Dyes and Pigment, 2001, 51(1): 25-40.
    [81]宋应华,朱家文,陈葵,等.大孔树脂对红霉素的吸附动力学研究[J].离子交换与吸附, 2007, 239(4): 349-359.
    [82]李颖,岳钦艳,高宝宝,等.活性炭纤维对活性染料的吸附动力学研究[J].环境科学, 2007, 28(11): 2638-2641.
    [83]秦丽红,张凤宝,张国亮,等. NTS在大孔吸附树脂上的吸附动力学及机理[J].化学工业与工程, 2007, 24(3): 245-248.
    [84] Huang Y, Ma X, Liang G, et al. Adsorption behavior of Cr(VI) on organic-modified rectorite[J]. Chemical Engineering Journal, 2008, 138(1-3): 87-193.
    [85] Argun M E, Dursun S. A new approach to modification of natural adsorbent for heavy metal adsorption[J]. Bioresource Technology, 2008, 99(13): 2516-2527.
    [86] Huang J Y, Takizawa S, Fujita K. Pilot-plant study of a high recovery membrane filtration process for drinking water treatment[J]. Desalination, 2000, 41(10): 77-84.
    [87] American Public Health Assotiation. Standard Methods for the Examination of Water and Wastewater[M]. 15th ed. Washington: APHA, 1981.
    [88] Oughton D H, Day J P. Determination of cesium, rubidium and scandium in biological and environmental materials by neutron activation analysis[J]. Journal of Radioanalytical and Nuclear Chemistry, 1993, 174(1), 177-185.
    [89] Marin B, Valladon M, Polve M, et al. Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry[J]. Analytica Chimica Acta, 1997, 342(2-3): 91-112.
    [90] Racz L, Bumbalova A, Harangozo M, et al. Determination of cesium andselenium in cultivated mushrooms using radionuclide X-ray fluorescence technique[J]. Journal of Radioanalytical and Nuclear Chemistry, 2000, 245(3): 611-614.
    [91] Vladimir N, Dominic L, Karen M, et al. Extraction and determination of Cs in natural waters by ICP-MS after ion exchange separation[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(9): 1225-1229.
    [92] Shimizu Y, Okuno Y, Uryu K, et al. Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment[J]. Water Research, 1996, 30(10): 2285-2392.
    [93]董秉直,曹达文,管晓涛,等.混凝对膜过滤的影响[J].中国给水排水, 2002, 18(12): 34-36.
    [94] Wendong X, Shankararaman C, Dennis A, et al. Indirect evidence for deposit rearrangement during dead-end microfiltration of iron coagulated suspensions[J]. Journal of Membrane Science, 2004, 239(2): 227-241.
    [95]桂萍,黄霞,钱易.三种型式膜生物反应器工艺运行特性研究[J].给水排水, 1999, 25(3): 24-27.
    [96] Glucina K, Alvarez A, Laine J M. Assessment of an integrated membrane system for surface water treatment[J]. Desalination, 2000, 132 (1-3): 73-82.
    [97]黄霞,桂萍,范晓军,等.膜生物反应器废水处理工艺的研究进展[J].环境科学研究, 1998, 11(1): 40-44.
    [98]王金明,易发成.改性凹凸棒石对模拟核素Sr2+的吸附性能的研究[J].水处理技术, 2006, 32(10): 25-28.
    [99]金承黎,易发成,李玉香.粘土矿物在核废物处理中的应用[J].矿产综合利用, 2003(5): 35-38.
    [100] Bellenger J-P, Staunton S. Adsorption and desorption of 85Sr and 137Cs on reference minerals, with and without inorganic and organic surface coatings[J]. Journal of Environmental Radioactivity, 2008, 99(5): 831-840.
    [101]王金明,易发成,崔少波. 4A沸石对Sr2+的吸附性能的研究[J].辐射防护, 2006, 26(4): 209-214.
    [102]易发成,李玉香,唐蓉,等.矿物材料对核素Sr、Cs的吸附性能研究[J].中国矿业,2004, 13(12): 67-70.
    [103] Cole T, Bidoglio G, Soupioni M, et al. Diffusion mechanisms of multiple strontium species in clay[J]. Geochimica et Cosmochimica Acta, 2000, 64(3):385-396.
    [104]易发成,李玉香,石正坤,等.矿物材料对核素Sr、Cs的吸附及其固化材料的性能研究[J].西南科技大学学报, 2006, 21(4): 1-7.
    [105]谢天俊.简明定量分析化学[M].广州:华南理工大学出版社, 2003.
    [106] Weast R C. CRC Handbook of Chemistry and Physics[M]. 58th ed. Ohio: CRC Press Inc, 1977.
    [107]大连理工大学无机化学教研室.无机化学(下册)[M].北京:高等教育出版社, 1990.
    [108]罗谷风.结晶学导论[M].北京:地质出版社, 1985.
    [109]高永.去除水中有害金属离子的膜化学反应器研制及其机理研究[D].天津:天津大学环境科学与工程学院, 2006.
    [110]常青.水处理絮凝学[M].北京:化学工业出版社, 2003.
    [111]汤鸿宵.用水废水化学基础[M].北京:中国建筑工业出版社, 1979.
    [112]谷万成.低中水平放射性废液的水泥固化研究[J].湿法冶金, 2005, 24(1): 33-39.
    [113] Favre-Réguillon A, Sorin A, Pellet-Rostaing S, et al. Nanofiltration assisted by complexation: A promising process for the separation of trivalent long-lived minor actinides from lanthanides[J]. Comptes Rendus Chimie, 2007, 10(10-11): 994-1000.
    [114]赵军,汪涛,张东,等.絮凝-微滤组合工艺处理含钚废水[J].核化学与放射化学, 2007, 29(2): 113-117.
    [115]李晓波.混凝微滤工艺处理高砷水源水和低放废水的试验研究[D].天津:天津大学环境科学与工程学院, 2008.
    [116] Zhang G, Gao Y, Zhang Y, et al. Removal of fluorided from drinking water by a membrane coagulation reactor (MCR)[J]. Desalination, 2005, 177(1-3): 143-155.
    [117]彭跃莲,刘忠洲.膜生物反应器中影响透水率的几个因素[J].水处理技术, 2000, 26(6): 3-4.
    [118]雷乐成,汪大翚.水处理高级氧化技术[M].北京:化学工业出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700