电子活性基团修饰的酞菁类化合物及其金属配合物的合成、表征和光谱性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉和酞菁是非常重要的染料分子,其中的四个吡咯或异吲哚氮原子可以和金属元素络合而形成多种多样的配合物。酞菁其大环周围的苯环上的每个位置均可以被取代基所取代,而且取代基的位置和种类大大影响着酞菁的物理和化学性质。中心空穴的氮原子能与70多种元素配位形成配合物,包括主族金属元素、过渡金属元素、镧系金属元素、锕系金属元素等。根据中心余属原子半径的大小以及氧化态的不同,酞菁大环空穴可以容纳一个甚至两个金属(主要是碱金属元素)元素。当配位的中心金属离子半径较大时(例如稀土元素,锕系元素以及主族元素In,Sn,As,Sb,Bi等),倾向于形成八配位的三明治型二层或三层配合物。近年来,由于三明治型酞菁稀土化合物在材料科学领域巨大地潜在的应用,引起了人们极大的兴趣。主要包括分子电子学、化学传感器、电致变色材料、非线性光学器件、催化剂以及液晶材料等。
     花二酰亚胺(简称PDI)作为一种重要的具备显著的光学和化学稳定性的功能染料,在近二十年来一直受到人们的广泛关注。由于其易修饰性,大大增加了PDI化合物的种类,同时拓宽了这类化合物的应用范围。不管在电子器件领域,如有机场效应晶体管(OFET),有机发光二极管(OLED),太阳能电池等方面;还是在光学器件领域,如静电复印感受体、荧光传感器、激光器等方面;都引起了化学和物理科学工作者们的极大兴趣。同时,四硫富瓦烯(TTF)是良好的分子功能材料,其衍生物和金属配位化合物在分析化学、催化、分子电子器件方面有广泛的应用。
     本文通过改变酞菁苯环上的取代基,并应用各种光谱表征手段对酞菁的结构与性质进行深入系统的研究;将PDI引入混杂卟啉酞菁的三明治配合物中,研究了整个系统的光物理性质;在酞菁中引入TTF单元,尝试对其性质和应用进行研究。本文的工作主要有以下三个主要方面:
     1.花二酰亚胺修饰的混杂卟啉酞菁稀土金属配合物的合成、光谱表征和电化学性质
     三明治型混杂卟啉酞菁金属配合物[HEuⅢ{Pc(α-3-OC5H11)4}{TriBPP(NH2))](3) [Pc(α-3-OC5H11)4=1,8,15,22-四(3-戊氧基)酞菁,TriBPP(NH2)=5,10,15-三(对叔丁基苯基)-20-(对氨基苯基)卟啉]和N-正丁基-1,6,7,12-四(对叔丁基苯氧基)-3,4-花二单酐-9,10-单酰亚胺(2)在咪唑的存在下在甲苯中反应得到新颖的苝二酰亚胺与混杂卟啉酞菁稀土铕双层配合物相连的双体系(5)。用同样的方法反应得到卟啉与花二酰亚胺相连的化合物(4)。以2,3和4为模板化物,我们系统研究了苝二酰亚胺与混杂卟啉酞菁稀土铕双层配合物相连的双体系5的电子吸收光谱和电化学性质,结果表明化合物5在基态下三明治型混杂卟啉酞菁金属配合物部分和PDI部分之间没有相互作用。而在荧光测试中发现PDI的荧光大部分被三明治双层部分淬灭,表明化合物5在激发态下存在明显的分子内部相互作用。
     2.TTF取代酞菁的合成及表征
     酞菁(Pcs)和四硫富瓦烯(TTF)都是具有平面共轭型结构的分子,在光电磁多方面有广泛的应用。因此基于扩展酞菁的平面共轭结构考虑,作者设计合成了周边位置被四硫富瓦烯(TTF)取代的酞菁,并对配体及酞菁的合成步骤进行了改进,对各种产物进行了一系列的光谱表征。TTF取代的酞菁具有独特的性质,因为TTF的强给电子特性,使产物以其以中性态和阳离子态混合存在。作者还对三明治型含TTF结构单元的酞菁的合成做了多方面的尝试,对含有TTF单元的酞菁配体的四聚反应机理以及对合成三明治型TTF取代的酞菁配合物的实验方法的改进将是未来研究的重点。
     3.β位八正己基磺酰基取代的酞菁的红外光谱研究
     在2 cm-1的分辨率下,我们测定了一系列周边位置2,3,9,10,16,17,23,24β位八烷基磺酰基取代的酞菁M[Pc(SO2C6H13)8] [M=2H(1), Cu(2), Zn(3)]的红外光谱,我们还用密度泛函理论(DFT)中的B3LYP泛函计算模拟了1和3的红外振动光谱,通过理论计算和实验结果的对比,对红外光谱中的各个振动频率进行了详细的指认。同时我们还讨论了金属配位和酞菁周边八个磺酰基取代对于酞菁红外光谱的影响。
Phthalocyanines and porphyrins are two important classes of pigments, Both series belong to a cyclic tetrapyrrole family in which the four isoindole or pyrrole nitrogen atoms are able to complex with a range of metal ions. Each position of the benzene rings around the macrocycle can be substituted by substituents, and the positions and types of the substituents greatly affect the physical and chemical properties of phthalocyanines. The hydrogen atoms of the central cavity can be replaced by more than 70 elements, almost every metal, and also some metalloids. According to the size and oxidation state of the metal, one or even two(in the case of alkalines) can be included into the phthalocyanine core. With large metal centers which favor octa-coordination (e.g. rare earths, actinides, group 4 transition metals, and main group elements such as In, Sn, As, Sb, and Bi), sandwich-type complexes in the form of double- and triple-deckers can be formed. applications. Recently, the sandwich-type phthalocyaninato double deckers have attracted great attention owing to their potential applications in materials science, mainly including molecular electronics, molecular optronics, molecular iono-electronics, chemical sensors, electrochromism, non—linear optics, e]ectrocata]ysis, liquid crystals, and germicides.
     Perylene-3,4;9,10-tetracarboxylic diimide (PDI) derivatives have attracted increasing attention in the past decade due to their potential applications in molecular electronics and photo devices. These dyes have generated great interest because of their outstanding photochemical and thermal stability, ease of synthetic modification, and desirable optical and redox characteristics. Tetrathiafuivalene(TTF) and it's derivatives are excellent functional molecular materials, its metal coordination compounds are widely used in analycal chemistry, catalysis and molecular electronic devices.
     We systematically studied the structure and properties of the Pcs which were improved by substituents at peripheral positions by means of various kinds of characterization methods. We also introduced the PDI component to Sandwich-type bis(porphyrinato)(phthalocyaninato) metal complex and investigated the optical physical properties of the whole system. We tried to study the properties and applications of new phthalocyanine by introducing the TTF component to its peripheral position. Our research work had been focused on the following three parts:
     1. Perylene Diimide-Appended Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Double-Decker Complex:Synthesis, Spectroscopy and Electrochemical Properties
     Treatment of sandwich-type mixed (phthalocyaninato)(porphyrinato) metal complex [HEuⅢ{Pc(α-3-OC5H11)4}{TriBPP(NH2)}] (3) [Pc(α-3-OC5H11)4 1,8,15,22-tetrakis(3-pentyloxy)-phthalocyaninate, TriBPP(NH2) 5,10,15-tris(4-tert-butylphenyl)-20-(4-aminophenyl)porphyrinate] with N-n-butyl-1,6,7,12-tetra(4-tert-butylphenoxyl)perylene-3,4-dicarboxylate anhydride-9,10-dicarboxylate imide (2) in the presence of imidazole in toluene afforded the novel perylene diimide-appended mixed (phthalocyaninato)(porphyrinato) europium(Ⅲ) double-decker complex (5). Porphyrin-PDI dyad 4 was also obtained by similar method. The electronic absorption spectroscopic and electrochemical properties of PDI-appended double-decker 5 and the model compounds 2,3, and 4 were studied, the results indicated that there was no considerable ground-state interaction between the double-decker unit and the PDI unit in 5. The fluorescence measurements revealed that the emission of PDI unit was effectively quenched by the double-decker unit, suggesting remarkable intramolecular interaction in 5 under excited state.
     2. Synthesis and Characterization of the TTF-substituted Phthalocyanine
     Phthalocyanines(Pcs) and tetrathiafulvalene(TTF) are all planar molecules which have largeπ-conjugated systems and are widely used in optical, electricity, and magnetism. The extension of the planarπ-conjugated structure is an effective way to improve the application of these compounds. So we designed a series of TTF-substituted Pcs and studied them by means of various spectroscopic methods. The TTF-substituted Pcs have particular properties, they are mixtures of the neutral and the radical cation states due to the strong electron-donating characteristic of TTF. The reaction mechanism of cyclic tetramerization of TTF annelated phthalonitriles, and the synthetic procedure of the sandwich-type TTF-substituted phthalocyaninato metal complexes will be the focus of our future work.
     3. The Infrared Spectroscopic Characteristics of Peripheral Octa-Substituted Phthalocyanines with Hexylsulfonyl Groups
     The infrared spectroscopic data for a series of three 2,3,9,10,16,17,23,24-octakis(hexylsulfonyl)phthalocyanine compounds with eight strong electron-withdrawing hexylsulfonyl groups at the peripheral positions M[Pc(SO2C6H13)8] [M=2H(1), Cu(2), Zn(3)] have been collected with resolution of 2 cm-1. The infrared spectra of compounds 1 and 3 have also been calculated at the density functional B3LYP level. Detailed assignments of the vibrational bands in the IR spectra have been achieved through comparison of the experimental and calculated results. The influence of the metalation and the substitution of eight strong electron-withdrawing alkylsulfonyl groups on the IR characteristics of the phthalocyanines has been discussed based on the comparison between corresponding data.
引文
[1]Fischer, H. et al. Die Chemie des pyrrols. [M] Vol 2, part 1, Akad. Verlagsges; Leipzig. 1937,158.
    [2]Zaleski, J. Porphyrin. [J] Z. Physiol. Chem.1902,37,54.
    [3]Wong, C. P.; Venteicher, R. F.; Horrocks Jr., W. D. Lanthanide porphyrin complexes. Potential new class of nuclear magnetic resonance dipolar probe. [J] J. Am. Chem. Soc., 1974,96,7149-7150.
    [4]Wong, C. P.; Horrocks Jr., W. D. New metalloporphyrins. Thorium and yttrium complexes of tetraphenylporphin. [J] Tetrahedron Lett.,1975,16,2637-2640.
    [5]计亮年,彭小彬,黄锦汪.金属卟啉配合物模拟某些金属酶的研究进展[J]自然科学进展2002,12,120-129.
    [6]Sessler, J. L.; Weghorn, S. J. Expanded, Contracted & Isomeric Porphyrins. [M] Pergamon:Oxford, U. K.,1997.
    [7]李德平,胡静.血卟啉类化合物诊治肿瘤的研究进展及应用[J]中国生化药物杂志2003,24,162-163.
    [8]杨新国,孙景志,汪茫,陈红征,黄骥.卟啉类光电功能材料的研究进展[J]功能材料2003,34,113-117.
    [9](a) Uyeda, N.; Kobayashi, T.; Suito, E.; Harada, Y.; Watanabe. M. Molecular image resolution in electron microscopy. [J] J. Appl. Phys.1972,43,5181-5189. (b) Kobayashi, T; Isoda, S. Lattice Images and Molecular Images of Organic Materials. [J] J. Mater. Chem.1993,3,1-14.
    [10]Eley, D. D. Phthalocyanines as Semiconductors. [J] Nature 1948,162,819-819.
    [11](a) Schramm, C. J.; Stojakovic, D. R.; Hoffman, B. M.; Marks, T. J. New Low-Dimensional Molecular Metals:Single-Crystal Electrical Conductivity of Nickel Phthalocyanine Iodide. [J] Science,1978,200,47-48. (b) Marks, T. J. Electrically Conductive Metallomacrocyclic Assemblies. [J] Science,1985,227,881-889.
    [12]Bott, B.; Jones, T. A. A highly sensitive NO2 sensor based on electrical conductivity changes in phthalocyanine films. [J] Sensors and Actuators,1984,5,43-53.
    [13]Vartanyan, A. T. Poluprovodnikovye Svoistva Organicheskikh Krasitel. [J] Zh. Fiz Khim.1948,22,769-774.
    [14]Law, K. Y. Organic photoconductive materials:recent trends and developments. [J] Chem. Rev.1993,93,449-486.
    [15]Tang, C. W. Two-layer organic photovoltaic cell. [J] Appl. Phys. Lett.1986,48, 183-185.
    [16]Nazeeruddin, M. K.; Humphry-Baker, R.; Gratzel, M.; Murrer, B. A. Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. [J] Chem. Comm.1998,719-720.
    [17]Wohrle, D.; Tennigkeit, B.; Elbe, J.; Kreienhoop, L.; Schnurffeil, G. Various Porphyrins and Aromatic Tetracarboxylic Acid Diimides in Thin Film pln-Solar Cells [J] Mol. Cryst. Liq. Cryst.1993,228,221-226.
    [18]王朝晖,衷庆华,熊轶嘉,孙亚,孔繁敖.酞菁锌分子激发态的超快内转移和振动弛豫[J]化学物理学报1998,11,15-19.
    [19]De la Torre, G.; Vazquez. P.; Agullo-Lopez, F.; Torres, T. Phthalocyanines and related compounds:organic targets for nonlinear optical applications. [J] J. Mater. Chem.1998, 8,1671-1683.
    [20]Shirk, J. S.; Lindle, J. R.; Bartoli, F. J. Boyle, M. E. Third-order optical nonlinearities of bis(phthalocyanines). [J] J. Phys. Chem.1992,96,5847-5852.
    [21]陈仕艳,刘云圻,黄学斌,邱文丰,朱道本.酞菁在分子材料器件方面的研究进展[J]自然科学进展2004,14,125-131.
    [22]Leznoff, C. C.; Lever; A. B. P. Phthalocynines:properties and applications. [M] Volumes 1-4, New York:VCH,1989.
    [23]Borisenkova, S. A. New aspects of the heterogeneous catalysis of thiol oxidation by phthalocyanines. [J] Petroleum Chem.1991,31,379-398.
    [24]Katz, H. E.; Bao, Z.; Gilat, S. L. Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors. [J] Acc. Chem. Res.2001,34, 359-369.
    [25]Wiirthner, F. Plastic Transistors Reach Maturity for Mass Applications in Microelectronics. [J] Angew. Chem., Int. Ed.2001,40,1037-1039.
    [26]Angadi, M. A.; Gosztola, D.; Wasielewski, M. R. Organic light emitting diodes using poly (phenylenevinylene) doped with perylenediimide electron acceptors. [J] Mater. Sci. Eng. B.1999,63,191-194.
    [27]Ranke, P.; Bleyl, I.; Simmerer, J.; Haarer, D.; Bacher, A.; Schmidt, H. W. Electroluminescence and electron transport in a perylene dye. [J] Appl. Phys. Lett.1997, 71,1332-1334.
    [28]Law, K.-Y. Organic photoconductive materials:recent trends and developments. [J] Chem. Rev.1993,93,449-486.
    [29]Gregg, B. A.; Cormier, R. A. Doping Molecular Semiconductors:n-Type Doping of a Liquid Crystal Perylene Diimide, [J] J. Am. Chem. Soc.2001,123,7959-7960.
    [30]Breeze, A. J.; Salomon, A.; Ginley, D. S.; Gregg, B. A.; Tillmann, H.; Horhold, H. H. Polymer—perylene diimide heterojunction solar cells. [J] Appl. Phys. Lett.2002,81, 3085-3087.
    [31]Hayes, R. T.; Wasielewski, M. R.; Gosztola, D. Ultrafast Photoswitched Charge Transmission through the Bridge Molecule in a Donor-Bridge-Acceptor System. [J] J. Am. Chem. Soc.2000,122,5563-5567.
    [32]Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R. Molecular-wire behaviour in p -phenylenevinylene oligomers. [J] Nature.1998,396,60-63.
    [33]Hippius, F. Schlosser, F. Wurthner, Energy Transfer in Calixarene-Based Cofacial-Positioned Perylene Bisimide Arrays. [J] J. Am. Chem. Soc.2006,128, 3870-3871.
    [34]Tornizaki, K.; Loewe, R. S.; Kirmaier, C.; Schwartz, J. K.; Retsek, J. L.; Bocian, D. F. Holten, D.; Lindsey, J. S. Synthesis and Photophysical Properties of Light-Harvesting Arrays Comprised of a Porphyrin Bearing Multiple Perylene-Monoimide Accessory Pigments. [J] J. Org. Chem.2002,67,6519-6534.
    [35]Yukruk F, Dogan A. L., Canpinar H, Guc D, Akkaya E. U. Water-Soluble Green Perylenediimide (PDI) Dyes as Potential Sensitizers for Photodynamic Therapy. [J] Org. Lett.,2005,2885-2887.
    [36]Ling, M. M.; Erk, P.; Koenemann, G.; Locklin, M. and Bao, Z. Air-Stable n-Channel Organic Semiconductors Based on Perylene Diimide Derivatives without Strong Electron-Withdrawing Groups. [J] Adv. Mater.2007,19,1123.
    [37]Schouwink, P.; Schafer, A. H.; Seidel, C.; Fuchs, H. The influence of molecular aggregation on the device properties of organic light emitting diodes. [J] Thin Solid Films.2000,372,163-168.
    [38]Tang C.W., Two-layer organic photovoltaic cell. [J] Appl Phys.Lett,1986,48,183
    [39]Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; Mackenzie, J. D., Self-organized discotic liquid crystals for high-effiency organic photovoltaics. [J] Science,2001,293,1119-1122.
    [40]Shamrakov, D.; Reisfeld, R., Superradiant film laser operation in red perylimide dye doped silica-polymethylmethacrylate composit. [J] Chem. Phys. Lett.,1993,213,47.
    [41]Serin, J. M.; Brousmiche, D. W.; Frechet, J. M. J. Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. [J] Chem. Commun.2002, 2605-2607.
    [42]Sugiyasu, K.; Fujita, N. and Shinkai, S., Visible-Light-Harvesting Organogel Composed of Cholesterol-Based Perylene Derivatives. [J] Angew. Chem. Int. Ed.2004,43, 1229-1233.
    [43]He, X.; Liu, H.; Li, Y.; Wang, S.; Wang, N.; Xu, X.; Zhu, D. Gold Nanoparticle-Based Fluorometric and Colorimetric Sensing of Copper(II) Ions. [J] Adv. Mater.2005,17, 2811-2815.
    [44]李洪启,姚钟麒.低聚四硫富瓦烯的合成和发展.[J]有机化学1997,17,134—141.
    [45]Ferraris, J. P.; Cowan, D. O.; Walatka, V.; et al. Electron Transfer in a new highly conducting Donor—Acceptor complex. [J]J. Am. Chem. Soc.,1973,95,948-952.
    [46]沈永嘉,董长征.两个多核四硫代富瓦烯类衍生物的台成和电化学行为.[J]高等化学学报1995,16(7),1059—1063.
    [47]Ferraris, J. P.; Cowan, D. O.; Walatka, V.; Perlstein, J. H. Electron transfer in a new highly conducting donor-acceptor complex. [J] J. Am. Chem. Soc.1973,95(3),948.
    [48]Jerome, D.; Mazaud, A.; Bechgaard, K. Superconductivity in a synthetic organic conductor (TMTSF)2PF6. [J] J. Phys. Lett.1980,41, L-95.
    [49]Aksyuk,V.; Balakiref, F. F.; Boebinger, G. S.; Gammel, P. L.; Haddon, R. C.; Bishop, D. J. Micromechanical "Trampoline" magnetometers for use in large pulsed magnetic fields. [J] Science 1998,280,720.
    [50]Palacio, F.; Miller, J. S. Molecular electronics:A dual-action material. [J] Nature 2000, 408,421.
    [51]Siedle, A. R.; kistenmacher, T. J.; Metzger, R. M.; Kuo, C. S.; Van Duyne, R. P; Cape, T. (Tetrathiafulvalene)bis(acetylacetonato) palladium(Ⅱ), (TTF)Pd(acac)2, a metallotetrathiaethylene containing neutral tetrathiafulvalene. [J] Inorg. Chem.1980,19 (7),2048.
    [52]刘陟,于文涛,蒋民华,张德清,朱道本. (BEDT-TTF)2C3H5SO3·H2O新晶体的生长、结构与导电性.[J]化学学报,2004 62(7),686.
    [53]朱玉兰,李柱石,吴培基,朱道本,2,3-二硫甲基-6,7-二硫十六烷基四硫代富瓦烯的合成.[J]应用化学1992,9(4),120.
    [54]朱玉兰,阚玉和,林元奎,潘万龙,苏忠民,崔亨波,9-(4,5-二硫甲基-1,3-二硫杂环戊烯-2-甲叉基)蒽-10(9H)-酮的合成及量子化学计算.[J]化学学报2003,61(12),1196.)
    [55]Andreu, R.; De Lucas, A. I.; Garin, J.; Martin, N.; Orduna, J.; Sanchez, L.; Sioane, C. New TTF-based donor-acceptor molecules linked by flexible ethylenic spacers. [J] Synthe. Met.1997,86,1817.
    [56]Gonzalez, M.; Segura, J. L.; Seoane, C.; Martin, N.; Garin, J.; Orduna, J.; Alcala, R.; Villacampa, B.; Hernandez, V.; Lopez Navarrete, J. T. Tetrathiafulvalene Derivatives as NLO-phores:Synthesis, Electrochemistry, Raman Spectroscopy, Theoretical Calculations, and NLO Properties of Novel TTF-Derived Donor-π-Acceptor Dyads. [J] J. Org. Chem.2001,66,8872.
    [57]朱玉兰,阚玉和,苏忠民,周子彦,仇永清,段雪梅,C60PY/TTF(BEDT-TTF)衍生物的电子结构及二阶非线性光学性质的理论研究.分子科学学报2002,18,204.
    [58]Prato, M.; Maggini, M.; Giacometti,C.; Scorrano, G.; Sandona, G.; Farnia, G. Synthesis and electrochemical properties of substituted fulleropyrrolidines. [J] Tetrahedron 1996, 52,5221.
    [59]Martin, N.; Sanchez, L.; Sioane, C. Andreu, R.; Garin, J.; Orduna. J. Semiconducting charge transfer complexes from [60] Fullerene-tetrathiafulvalene (C60-TTF) systems. [J] Tetrahedron lett.1996,37,5979.
    [60]Guldi, D. M.; Gonzalez, S.; Martin, N.; Anton, A.; Garin, J.; Orduna, J. Efficient Charge Separation in C60-Based Dyads:Triazolino[4',5':1,2][60]fullerenes. [J] J. Org. Chem. 2000,65(7),1978.
    [61]Diaz, M. C.; Herranz, M. A.; Illescas, B. M.; Martin, N.; Godbert, N.; Bryce, M. R.; Luo, C.; Swartz, A.; Anderson, G.; Guldi, D. M. Probing Charge Separation in Structurally Different C60/exTTF Ensembles. [J] J. Org. Chem.2003,68,7711.
    [62]杨松杰,田禾.有机光致变色材料最新研究进展.[J]化工学报2003,54(4),497.
    [63]Uchida, K.; Masuda, G.; Aoi, Y.; Nakayama, K.; Irie, M. Synthesis of Tetrathiafluvalene Derivatives with Photochromic Diarylethene Moieties. [J] Chem. Lett.1999,10,1071.
    [64]Sako, K.; Kusakabe, M.; Fujino, H.; Feng, S. X.; Takemura, H.; Shinmyozu, T.; Tatemitsu, H. Synthesis and Properties of Photo-responsive Tetrathiafulvalene derivatives. [J] Synth. Met.2003,137,899.
    [65]Bennett, W. E.; Broberg, D. E.; Baenziger, N. C. Crystal structure of stannic phthalocyanine, an eight-coordinated tin complex. [J] Inorg. Chem.1973,12,930-936.
    [66]Kirin, I. S.; Moskalev, P. N.; Makashev, Y. A. Formation of phthalocyanines of rare-earth elements. [J] Russ. J. Inorg. Chem.1965,10,1065-1066.
    [67]De Cian, A.; Moussavi, M.; Fischer, J.; Weiss, R. Synthesis, structure, and spectroscopic and magnetic properties of lutetium(Ⅲ) phthalocyanine derivatives: LuPc2.CH2Cl2 and [LuPc(OAc)(H2O)2].H2O.2CH3OH. [J] Inorg. Chem.1985,24, 3162-3167.
    [68]Lux, F.; Dempf, D.; Graw, D. Diphthalocyaninato-thorium(Ⅳ) and -uranium (Ⅳ). [J] Angew. Chem. Int. Ed.1968,7,819-820.
    [69]Bouvet, M.; Simon, J. Electrical properties of rare earth bisphthalocyanine and bisnaphthalocyanine complexes. [J] Chem. Phys. Lett.1990,172,299-302.
    [70]Ng, D. K. P.; Jiang, J. Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes. [J] Chem. Soc. Rev.1997,26,433-442.
    [71]姜建壮,吴基培,刘伟,谢经雷,孙思修.对称的二层及三层三明治型金属酞菁配合物的研究进展.[J]化学通报1999,2-10.
    [72]Gieren, A.; Hoppe, W. X-Ray crystal structure analysis of bisphthalocyaninatouranium(Ⅳ). [J] Chem. Commun.1971,413-415.
    [73]Koike, N.; Uekusa, H.; Ohashi, Y; Harnoode, C.; Kitamura, F.; Ohsaka, T.; Tokuda, K. Relationship between the Skew Angle and Interplanar Distance in Four Bis(phthalocyaninato)lanthanide(Ⅲ) Tetrabutylammonium Salts ([NBu4n][LnⅢPc2]; Ln = Nd, Gd, Ho, Lu). [J] Inorg. Chem.1996,35,5798-5804.
    [74]Buchler, J. W.; De Cian, A.; Fischer, J.; Kihn-Botulinski, M.; Paulus, H.; Weiss, R. Metal complexes with tetrapyrrole ligands.40. Cerium(IV) bis(octaethylporphyrinate) and dicerium(Ⅲ) tris(octaethylporphyrinate):Parents of a new family of lanthanoid double-decker and triple-decker molecules. [J] J. Am. Chem. Soc.1986,108, 3652-3659.
    [75]Collin, G. C. S.; Schiffrin, D. J. The electrochromic properties of lutetium and other phthalocyanines. [J] J. Electroanal. Chem.1982,139,335-369.
    [76]Frampton, C. S.; O'Connor, J. M.; Peterson, J. I. M.; Silver, J. Enhanced colours and properties in the electrochromic behaviour of mixed rare-earth-element bisphthalcoyanines. [J] Displays,1988,9,174-178.
    [77]Capobianchi, A.; Paoletti, A. M.; Pennesi, G.; Rossi, G.; Panero, S. Electrochromism in sandwich-type diphthalocyanines:electrochemical and spectroscopic behaviour of bis(phthalocyaninato)titanium(Ⅳ) (Ti(Pc)2) film. [J] Synth. Met.1995,75,37-42.
    [78]McKeown, N. B. Out of the Blue:Recent advances in the applications of phthalocyanines. [J] Chemistry and Industry 1999,92-98.
    [79]Andre, J. J.; Holczer, K.; Petit, P.; Riou, M. T.; Simon, J. Electrical and magnetic properties of thin films and single crystals of bis(phthalocyaninato) lutetium. [J] Chem. Phys. Lett.1985,115,463-466.
    [80]Padilla, J.; Hatifield, W. E. Magnetic and electrical properties of sandwich-like lanthanide phthalocyanines. [J] Synth. Met.1989,29,45-50.
    [81]Padilla, J.; Hatifield, W. E. Correlation between π-orbital overlap and conductivity in bis-phthalocyaninato lanthanides. [J] Inorg. Chim. Acta.1991,185.131-136.
    [82]Souto, J.; Aroca, R.; Desaja, J. A. Gas Adsorption and Electrical Conductivity of Langmuir-Blodgett Films of Terbium Bisphthalocyanine. [J] J. Phys. Chem.1994,98, 8998-9001.
    [83]Trometer, M.; Even, R.; Simon, J.; Dubon, A.; Laval, J. Y.; Germain, J. P.; Maleysson, C; Pauly, A.; Robert, H. Lutetium bisphthalocyanine thin films for gas detection. [J] Sens. Actuators B Chem.1992,8,129-135.
    [84]Simon, J.; Sirlin, S. Mesomorphic molecular materials for electronics, opto-electronics, iono-electronics:octaalkylphthalocyanine derivatives. [J] Pure Appl. Chem.1989,61, 1625-1629.
    [85]Guillaud, G; A1 Sadoun, M.; Maitrot, M.; Simon, J.; Bouvet, M. Field-effect transistors based on intrinsic molecular semiconductors. [J] Chem. Phys. Lett.1990,167,503-506.
    [86]Clarisse, C.; Riou, M. T.; Gauneau, M.; Le Cntellec, M. Field-Effect Transistor with Diphthalocyanine Thin Film. [J] Electron. Lett.1988,24,674-675.
    [87]Toupance, T.; Ahsen, V.; Simon, J. Iono-electronics:crown ether substituted lutetium bisphthalocyanines. [J] J. Chem. Soc. Chem. Commun.1994,75-76.
    [88](a) Nicholson, M. M.; Pizzarello, F. A. Effects of the Gaseous Environment on Propagation of Anodic Reaction Boundaries in Lutetium Diphthalocyanine Films. [J] J. Electrochem Soc.1980,127,2617-2620. (b) Nicholson, M. M.; Weismuller, T. P. The Role of Oxygen in the Redox Chemistry of Luterrium Diphthalocyanine. [J] J. Electrochem Soc.1984,131,2311-2313.
    [89]Trojan, K. L.; Kendall, J. L.; Kepler, K. D.; Hatfield, W. E. Strong exchange coupling between the lanthanide ions and the phthalocyaninato ligand radical in bis(phthalocyaninato)lanthanide sandwich compounds. [J] Inorg. Chim. Acta.1992, 198-200,795-803.
    [90](a) Adler, A. D.; Longo, F. R.; Shergalis, W. Mechanistic Investigations of Porphyrin Syntheses. I. Preliminary Studies on ms-Tetraphenylporphinl. [J] J. Am. Chem. Soc.1964, 86,3145-3149. (b) Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. A simplified synthesis for meso-tetraphenylporphine. [J] J. Org. Chem.1967, 32,476-476.
    [91]Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. Rothemund and Adler-Longo reactions revisited:synthesis of tetraphenylporphyrins under equilibrium conditions. [J] J. Org. Chem.1987,52,827-836.
    [92]Arsenault, G. P.; Bullock, E.; MacDonald, S. F.; Pyrromethanes and Porphyrins Therefrom. [J] J. Am. Chem. Soc.,1960,82,4384-4389.
    [93]Adler, A. D.; Longo, F. R. On the preparation of metalloporphyrins. [J] J. Inorg. Nucl. Chem.1970,32,2443-2445.
    [94]Linstead, R. P.; Lowe, A. R. Phthalocyanines. Part Ⅲ. Preliminary Experiments on the Preparation of Phthalocyanines from Phthalonitrile. [J] J. Chem. Soc.1934,1022-1027.
    [95]Joyner, R. D.; Kenney, M. E. Phthalocyaninosilicon Compounds. [J] Inorg. Chem.1962, 1,236-238.
    [96]H. Langhals, S. Demmig; H. Huber. Rotational barriers in perylene fluorescent dyes. [J] Spectrochim. Acta,1988,44A,1189.
    [97]Seybold, G.; Wagenblast, G. New perylene and violanthrone dyestuffs for fluorescent collectors. [J] Dyes Pigm.,1989,11,303-317.
    [98]Seybold, G.; Stange, A. Fluorescent aroxysubstituted 3,4,9,10-perylenetetracarboxylic acid-diimides and their use for the concentration of lights in small areas. (BASF AG), Ger. Pat., DE 35 45 004,1987 (Chem. Abstr.,1988,108,77134c).
    [99]Rajasingh, P.; Cohen, R.; Shirman, E.; Shimon, L. J. W. and Rybtchinski, B. Selective Bromination of Perylene Diimides under Mild Conditions. [J] J. Org. Chem. 2007,72,5973-5979.
    [100]Wiirthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. [J] Chem. Commun.2004,1564-1579.
    [101]Wasielewski, M. R. Energy, Charge, and Spin Transport in Molecules and Self-Assembled Nanostructures Inspired by Photosynthesis. [J] J. Org. Chem.2006,71, 5051-5066.
    [102]Bohm, A.; Arms, H.; Henning, G.; Blaschka, P.1,7-Diaroxy-oder-arylthiosubstituierte Perylen-3,4,9,10-tetracarbonsauren, deren Dianhydride und Diimide. (BASF AG) German Pat. DE 19547209 A1,1997; Chem. Abstr.1997,127, 96569g.
    [103]Wiirthner, F.; Stepanenko, V.; Chen, Z.; Saha-Moller, C. R.; Kocher, N.; Stalke, D. Preparation and Characterization of Regioisomerically Pure 1,7-Disubstituted Perylene Bisimide Dyes. [J] J. Org. Chem.2004,69,7933-7939.
    [1]Sundstrom V.; Pullerits T.; van Grondelle R. Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. [J] J. Phys. Chem. B 1999,103,2327-46.
    [2]Webber S. E. Photon-harvesting polymers. [J] Chem. Rev.1990,90,1469-82.
    [3]Frechet J. M. Dendrimers and other dendritic macromolecules:From building blocks to functional assemblies in nanoscience and nanotechnology. [J] J. Polym. Sci. Part A Polym. Chem.2003,41,3713-25.
    [4]Imahori H. Giant multiporphyrin arrays as artificial light-harvesting antennas. [J] J. Phys. Chem. B 2004,108,6130-43.
    [5]Takahashi R.; Kobuke Y. Hexameric macroring of gable-porphyrins as a light-harvesting antenna mimic. [J] J. Am. Chem. Soc.2003,125,2372-3.
    [6]van der Boom T.; Hayes R.T.; Zhao Y.; Bushard P.J.; Weiss E.A.; Wasielewski M. R. Charge transport in photofunctional nanoparticles self-assembled from zinc 5,10,15,20-tetrakis(perylenediimide)porphyrin building blocks. [J] J. Am. Chem. Soc. 2002,124,9582-90.
    [7]Deisenhofer J.; Norris J. R. Eds. The Photosynthetic Reaction Center. San Diego, CA: Academic; 1993.
    [8]Brabec C.; Dyakonov V.; Parisi J.; Sariciftci N.S. Eds. Organic Photovoltaics. Berlin, Germany:Springer; 2003.
    [9]Balzani V. Ed. Electron Transfer in Chemistry. Weinheim, Germany:Wiley-VCH; 2001.
    [10]Wasielewski M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. [J] Chem. Rev.1992,92,435-61.
    [11]Wasielewski M.R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. [J] Acc. Chem. Res.2009,42.1910-21.
    [12]Aratani N.; Kim D.; Osuka A. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. [J] Acc. Chem. Res.2009,42,1922-34.
    [13]Gust D.; Moore T. A.; Moore A.L. Mimicking photosynthetic solar energy transduction. [J] Acc. Chem. Res.2001,34,40-8.
    [14]Holten D.; Bocian D.F.; Linsey J.S. Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices. [J] Acc. Chem. Res.2002,35,57-69.
    [15]Blanco M. J.; Jimenez M. C.; Chambron J. C.; Heitz V.; Linke M.; Sauvage J. P. Rotaxanes as new architectures for photoinduced electron transfer and molecular motions. [J] Chem. Soc. Rev.1999,28,293-305.
    [16]Zollinger H. Color Chemistry 3rd edn. Weinheim:VCH; 2003.
    [17]Xu W.; Chen H.; Wang Y.; Zhao C.; Li X.; Wang S. et al. Photoinduced electron and energy transfer in dyads of porphyrin dimer and perylene tetracarboxylic diimide. [J] ChemPhysChem 2008,9,1409-15.
    [18]Wu H.; Wang H.; Xue L.; Shi Y.; Li X. Hindered intramolecular electron transfer in room-temperature ionic liquid. [J] J. Phys. Chem. B 2010,114,14420-5.
    [19]Dimitrakopoulos C. D.; Malenfant P. R. L. Organic thin film transistors for large area electronics. [J] Adv Mater 2002,14,99-117.
    [20]Wang Y.; Chen Y.; Li R.; Wang S.; Su W.; Ma P. et al. Amphiphilic perylenetretracarboxyl diimide dimer and its application in field effect transistor. [J] Langmuir 2007,23,5836-42.
    [21]Wurthner F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. [J] Chem Commun 2004,1564-79.
    [22]Li X.; Sinks L.E.; Rybtchinski B.; Wasielewski M. R. Ultrafast aggregate-to-aggregate energy transfer within self-assembled light-harvesting columns of zinc phthalocyanine tetrakis(perylenediimide). [J] J. Am. Chem. Soc.2004,126,10810-1.
    [23]Chen Y.; Chen L.; Qi G.; Wu H.; Zhang Y.; Xue L. et al. Self-assembled organic-inorganic hybrid nanocomposite of a perylenetetracarboxylic diimide derivative and CdS. [J] Langmuir 2010,26,12473-8.
    [24]Indelli M. T.; Chiorboli C.; Scandola F.; Iengo E.; Osswald P.; Wurthner F. Photoinduced processes in self-assembled porphyrin/perylene bisimide metallosupramolecular boxes. [J] J. Phys. Chem. B 2010,114,14495-504.
    [25]Chou J. H.; Nalwa H. S.; Kosal M. E.; Rakow N. A.; Suslick K. S. Applications of porphyrins and metalloporphyrins to materials chemistry. In:Kadish K.M.; Smith K. M.; Guilard R. Editors. [M] The Porphyrin Handbook. San Diego:Academic Press; 2000; Vol.6, p.43-132.
    [26]Li X.; Wang H.; Wu H. Phthalocyanines and their analogues applied in dye sensitized solar cell. [J] Struct. Bond 2010,135,229-74.
    [27]De la Escosura A; Martinez-Diaz M. V.; Guldi D. M.; Torres T. Stabilization of charge-separated states in phthalocyanine-fullerene ensembles through supramolecular donor-acceptor interactions. [J] J. Am. Chem. Soc 2006,128,4112-8.
    [28]D'Souza F.; Subbaiyan N. K.; Xie Y.; Hill J. P.; Ariga K.; Ohkubo K. et al. Anion-complexation-induced stabilization of charge separation. [J] J. Am. Chem. Soc. 2009,131,16138-46.
    [29]Lo P. C.; Leng X.; Ng D. K. P. Hetero-arrays of porphyrins and phthalocyanines. [J] Coord. Chem. Rev.2007,251,2334-53.
    [30]Winters M. U.; Dahlstedt E.; Blades H. E.; Wilson C. J.; Frampton M. J.; Anderson H. L. et al. Probing the efficiency of electron transfer through porphyrin-based molecular wires. [J] J. Am. Chem. Soc 2007,129,4291-7.
    [31]Cho H. S.; Rhee H.; Song J. K.; Min C. K.; Takase M; Aratani N. et al. Excitation energy transport processes of porphyrin monomer, dimer, cyclic trimer, and hexamer probed by ultrafast fluorescence anisotropy decay. [J] J. Am. Chem. Soc 2003,125, 5849-60.
    [32]Peng X; Aratani N; Takagi A; Matsumoto T; Kawai T; Hwang I. W. et al. A dodecameric porphyrin wheel. [J] J. Am. Chem. Soc 2004,126,4468-9.
    [33]Li X.; Ng D. K. P. Self-assembly of meso-pyridylporphyrins and zinc phthalocyanines through axial coordination. [J] Eur. J. Inorg. Chem.2000,1845-8.
    [34]Buchler J. W.; Ng D. K. P. Metal tetrapyrrole double-and triple-deckers with special emphasis on porphyrin systems. In:Kadish K. M.; Smith K. M.; Guilard R. Editors. [M] The Porphyrin Handbook. San Diego:Academic Press; 2000; Vol.3, p.245-94.
    [35]Weiss R.; Fischer J. Lanthanide phthalocyanine complexes. In:Kadish K.M.; Smith K. M.; Guilard R. Editors. [M] The Porphyrin Handbook. San Diego:Academic Press; 2003; Vol.16, p.171-246.
    [36]Jiang J.; Ng D. K. P. A decade journey in the chemistry of sandwich-type tetrapyrrolato-rare earth complexes. [J] Acc. Chem. Res.2009,42,79-88.
    [37]Capobianchi A; Ercolani C; Paoletti A. M.; Pennesi G; Rossi G; Chiesi-Villa A. et al. Interligand carbon-carbon.sigma.-bond breaking and repair in a "stapled" bis(phthalocyaninato)titanium complex. Synthesis, characterization, and electrical conductivity properties of oxidation products of bis(phthalocyaninato)titanium(Ⅳ) and bis(phthalocyaninato)tin(Ⅳ) and x-ray crystal structure of [Pc2Ti](I3)0.66. [J] Inorg. Chem.1993,32,4605-11.
    [38]Galmiche L; Mentec A; Pondaven A; L'Her M. Charge transfer complexes between carbazole and lutetium bisphthalocyanine. [J] New J Chem 2001,25,1148-51.
    [39]Collman J. P.; Kendall J. L.; Chen J. L.; Collins K. A.; Marchon J. C. Formation of charge-transfer complexes from neutral bis(porphyrin) sandwiches. [J] Inorg. Chem. 2000,39,1661-7.
    [40]Girolami G. S.; Hein C. L.; Suslick K. S. A zirconium bis (porphyrinate) sandwich complex with an appended quinone. [J] Angew. Chem. Int. Ed.1996,35,1223-5.
    [41]Buchler J. W.; Heinz G. Metal complexes with tetrapyrrole ligands, LⅩⅫ cerium(Ⅳ) sandwich complexes with porphyrin ligands linked by aliphatic and quinone-containing bridges. [J] Chem. Ber.1996,129,1073-1081.
    [42]Bian Y.; Chen X.; Wang D.; Choi C-F; Zhou Y; Zhu P. et al. Porphyrin-appended europium(Ⅲ) bis(phthalocyaninato) complexes. Synthesis, characterization, and photophysical properties. [J] Chem. Eur. J.2007,13,4169-77.
    [43]Ballesteros B.; Torre G.; Sharer A.; Hausmann A.; Herranz M. A.; Guldi D. M. et al. Lanthanide(Ⅲ) bisphthalocyaninato-[60]fullerene dyads:Synthesis, characterization and photophysical properties. [J] Chem. Eur. J.2010,16,114-25.
    [44]Zhang X.; Li Y.; Qi D.; Jiang J.; Yan X.; Bian Y. Linkage dependence of intramolecular fluorescence quenching process in porphyrin-appended mixed (phthalocyaninato)(porphyrinato) yttrium(Ⅲ) double-decker complexes. [J] J. Phys. Chem. B 2010,114,13143-51.
    [45]Stites J. G.; McCarty C. N.; Quill L. L. The rare earth metals and their compounds. Ⅷ. An improved method for the synthesis of some rare earth acetylacetonates. [J] J. Am. Chem. Soc.1948,70,3142-3.
    [46]Rager C.; Schmid G.; Hanack M. Influence of substituents, reaction conditions and central metals on the isomer distributions of 1 (4)-tetrasubstituted phthalocyanines. [J] Chem. Eur. J.1999,5,280-8.
    [47]Little R. G. The synthesis of covalently linked tetraarylporphyrin dimers. [J] J. Heterocyclic Chem.1978,15,203-8.
    [48]Feng J.; Liang B.; Wang D.; Wu H.; Xue L.; Li X. Synthesis and aggregation behavior of perylenetetracarboxylic diimide trimers with different substituents at bay positions. [J] Langmuir 2008,24,11209-15.
    [49]Wang R.; Li R.; Li Y.; Zhang X.; Zhu P.; Lo P. C. et al. Controlling the nature of mixed (phthalocyaninato)(porphyrinato) rare-earth(III) double-decker complexes:The effects of nonperipheral alkoxy substitution of the phthalocyanine ligand. [J] Chem. Eur. J.2006, 12,1475-85.
    [50]Zhang X.; Muranaka A.; Lv W.; Zhang Y.; Bian Y.; Jiang J. et al. Optically active mixed phthalocyaninato-porphyrinato rare-earth double-decker complexes:Synthesis, spectroscopy, and solvent-dependent molecular conformations. [J] Chem. Eur. J.2008, 14,4667-74.
    [51]Zhou Y.; Zhang Y.; Wang H.; Jiang J.; Bian Y.; Muranaka A. et al. Mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes with C4 chirality: Synthesis, resolution, and absolute configuration assignment. [J] Inorg. Chem.2009,48, 8925-33.
    [52]Guyon F.; Pondaven A.; Guenot P.; L'Her M. Bis(2,3-naphthalocyaninato)lutetium(Ⅲ) and (2,3-naphthalocyaninato)- (phthalocyaninato)lutetium(Ⅲ) complexes:Synthesis, spectroscopic characterization, and electrochemistry. [J] Inorg. Chem.1994,33, 4787-93.
    [53]Zhang X.; Bian Y.; Jiang J. Synthesis, electrochemical and spectroscopic properties of C6o-porphyrin dyads with different phenyl ether linkage. [J] Chin. J. Inorg. Chem.2010, 26,1719-28.
    [1]Moser, F. H.; Thomas, A. I. [M] Phthalocyanine Compounds, Reinhold, New York, 1963.
    [2]Hanack, M.; Gul, A.; Hirsch A. Synthesis and characterization of soluble phthalocyanines:structure-property relationship. [J] Mol. Cryst. Liq. Cryst.1990,187, 365.
    [3]Chan, W. S.; Marshall, J. F.; Svensen, R. Photosensitising activity of phthalocyanine dyes screened against tissue culture cells. [J] Photochem. Photobiol.1987,45,757.
    [4]Spike, J. D. Phthalocyanines as Photosensitizers In Biological Systems And For The Photodynamic Therapy Of Tumors. [J] Photochem. Photobiol.1986,43,691.
    [5]Gregory, P. Industrial applications of phthalocyanines. [J] J. Porphyrins Phthalocyanines 2000,4,432.
    [6]Leznoff, C. C.; Lever, A. B. P. [M] Phthalocynines, Properties and Application, Vols. 1~3, VCH, New York,1989-1993.
    [7]Cook, M. J. Thin film formulations of substituted phthalocyanines. [J] J. Mater. Chem. 1996,6,677.
    [8]Schultz, H.; Lehmann, H.; Rein, M.; Hanack, M. Phthalocyaninatometal and related complexes with special electrical and optical properties. [M] Struct. Bonding.1990,74, 41.
    [9]Hanack, M.; Lang, M. Conducting stacked metallophthalocyanines and related compounds. [J] Adv. Mater.1994,6,819.
    [10]Armstrong, N. R. Phthalocyanines and porphyrins as materials. [J] J. Porphyrins Phthalocyanines 2000,4,414.
    [11]Kono, K.; Oki, S.; Yamamiya, S.; Fukuda, T. Organic Photoconductive Material and Electrophotographic Photoreceptor Using the Same. JP296677,2001 [Chem. Abstr. 2001,135,336861].
    [12]Wrobel, D.; Boguta, A.; Ion, R. M. Spectroscopic and photoelectric studies of phthalocyanines in polyvinyl alcohol for application in solar energy conversion. [J] Int. Photoenergy 2000,2,87.
    [13]Liu, Y. Q.; Hu, W. P.; Xu, Y.; Liu, S. G.; Zhu, D. B. Characterization, Second-Harmonic Generation, and Gas-Sensitive Properties of Langmuir-Blodgett Films of 1,8-Naphthalimide-tri-tert-butylphthalocyanine. [J] J. Phys. Chem. B 2000, 104,11859.
    [14]Oldham, T. C.; Phillips, D.; MacRobert, A. J. Attempts to measure sensitiser photophysics in opaque tissue. [J] J. Photochem. Photobiol. B 2001,61,129.
    [15]Katrin, K.; Nihal, A.; Tracy, C. Up-regulation of clusterin during phthalocyanine 4 photodynamic therapy-mediated apoptosis of tumor cells and ablation of mouse skin tumors. [J] Cancer Res.2000,60,5984.
    [16]Rosenthal, I. Phthalocyanines as photodynamic sensitizers. [J] Photochem. Photobiol. 1991,53,859.
    [17]Rodriguez-Morgade, M. S.; Stuzhin, P. A. The chemistry of porphyrazines:an overview. [J] J. Prophyrins Phthalocyanines 2004,8,1129.
    [18]Lukyanets, E. A. J. Porphyrins Phthalocyanines 1999,3,424.
    [19]Schukat, G.; Fanghanel, E. Synthesis, Reactions, and Selected Physico-Chemical Properties of 1,3- and 1,2-tetrachalcogenafulvalenes. [J] J. Sulfur. Rep.2003,24,1.
    [20]尹炳柱,温全武,陈铁.具有纳米尺寸的四聚四硫富瓦烯大环冠醚的合成.[J]有机化学,2005,25,188.
    [21]陈铁,刘武军,丛志奇,尹炳柱.新型四硫富瓦烯硫杂冠醚衍生物的合成.[J]有机化学,2005,25,570.
    [22]李洪启,宋燕西,彭家建,邱华玉.含四硫富瓦烯大环化合物的合成与研究进展.[J]有机化学,2007,27,1220.
    [23]Blower, M. A.; Bryce, M. R.; Devonpoa, W. Synthesis and aggregation of a phthalocyanine symmetrically - functionalized with eight tetrathiafulvalene units. [J] Adv. Mater.1996,8,63.
    [24]Cook, M. J.; Cooke, G.; Ali, J. F. A liquid crystalline tetrathiafulvalenylphthalocyanine. [J] Chem. Commun.1996,1925.
    [25]Wang, C. S.; Bryce, M. R.; Batsanov, A. S.; Howard, J. A. K. Synthesis of Pyrazinoporphyrazine Derivatives Functionalised with Tetrathiafulvalene (TTF) Units: X-Ray Crystal Structures of Two Related ttf Cyclophanes and Two Bis(1,3-Dithiole-2-Thione) Intermediates. [J] Chem. Eur. J.1997,3,1679.
    [26]Hu, Y. Y.; Shen, Y. J. Synthesis of zincic phthalocyanine derivative functionalized with four peripheral tetrathiafulvalene units. [J] J. Heterocycl. Chem.2002,39,1071.
    [27]Hu, Y. Y.; Lai, G. Q.; Shen, Y. J.; Li, Y. F. Synthesis, optical spectroscopy and electrochemistry of a D-σ-A compound derived from magnesium phthalocyanine. [J] J. Porphyrins Phthalocyanines 2004,8,1042.
    [28]Hu, Y. Y.; Lai, G. Q.; Shen, Y. J.; Li, Y. F. Synthesis, optical spectroscopy and electrochemistry of TTF-derived metallophthalocyanine complexes. [J] Dyes Pigm. 2005,66,49.
    [29]Hu, Y. Y.; Lai, G. Q.; Shen, Y. J.; Li, Y. F. Synthesis, Spectroscopy, and Electrochemistry of Metallophthalocyanines Substituted by Propylenedithiotetrathiafulvalene Derivatives. [J] Monatsh. Chem.2004,135,1167.
    [30]Hu, Y. Y.; Shen, Y. J.; Xu, X.; Li, X. H.; Li, Y. F. Synthesis, spectroscopy and electrochemistry of a new phthalonitrile derivative with substituted PDT-TTF unit. [J] J. Porphyrins Phthalocyanines 2003,7,191.
    [31]Fan-en, C.; Christensen, C. A.; FitzGerald, S.; Bryce, M. R.; Beedy, A. Synthesis of Novel Phthalocyanine-Tetrathiafulvalene Hybrids; Intramolecular Fluorescence Quenching Related to Molecular Geometry. [J] J. Org. Chem.2002,67,9130.
    [32]Sly, J.; Kagak, P.; Nolte, R. J. M. Chiral molecular tapes from novel tetra (thiafulvalene-crown-ether)-substituted phthalocyanine building blocks. [J] Chem.Commun.2005,1255.
    [33]Loosli, C.; Jia, C. Y.; Liu, S. X.; Haas, M.; Dias, M.; Levillain, E.; Neels, A.; Labat, G.; Hauser, A.; Decurtins, S. Synthesis and electrochemical and photophysical studies of tetrathiafulvalene-annulated phthalocyanines. [J] J. Org. Chem.2005,70,4988.
    [34]Becher, J.; Brimert, G.; Jeppesen, J. O.; Perderson, J. Z.; Zubarev, R.; Bjernholm, T.; Reitzel, N.; Jensen, T. R.; Kjaer, K.; Levillain, E. Tetrathiafulvaleno-Annelated Porphyrins. [J] Angew. Chem. Int. Ed.2001,40,2497.
    [35]N. Kobayashi, H. Miwa, and V. N. Nemykin, Adjacent versus Opposite Type Di-Aromatic Ring-Fused Phthalocyanine Derivatives:Synthesis, Spectroscopy, Electrochemistry, and Molecular Orbital Calculations. [J] J. Am. Chem. Soc.2002,124, 8007-8020.
    [1][M] Phthalocyanines-Properties and Applications, Vols.1-4, Eds.:C. C. Leznoff, A. B. P. Lever, VCH, New York,1989-1996.
    [2]N. B. McKeown. [M] Phthalocyanine Materials - Synthesis, Structure and Function, Cambridge University Press, New York,1998.
    [3]G. de la Torre, P. Vazquez, F. Agullo-Lopez, T. Torres. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. [J] Chem. Rev. 104(2004)3723.
    [4]J. Jiang, Ed. Advances in Functional Phthalocyanine Materials, in Structure and Bonding (Mingos, D. M. P., Series Ed.), Springer-Verlag, Heidelberg,2010, Vol.135.
    [5]Z. Ou, J. Shen, K. M. Kadish. Electrochemistry of Aluminum Phthalocyanine:Solvent and Anion Effects on UV-Visible Spectra and Reduction Mechanisms. [J] Inorg. Chem. 45 (2006) 9570.
    [6]P. Zhu, F. Lu, N. Pan, D. P. Arnold, S. Zhang, J. Jiang. Comparative Electrochemical Study of Unsubstituted and Substituted Bis (phthalocyaninato) Rare Earth (Ⅲ) Complexes. [J] Eur. J. Inorg. Chem.2004 (2004) 510.
    [7]M. Hanack, M. Lang. Conducting Stacked Metallophthalocyanines and Related Compounds. [J] Adv. Mater.6 (1994) 819.
    [8]I. Rosenthal, E. Ben-Hur. Role of Oxygen in the Phototoxicity of Phthalocyanines. [J] Int. J. Radiat. Biol.67 (1995) 85.
    [9]R. Bonnett. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. [J] Chem. Soc. Rev.24 (1995) 19.
    [10]P. Gregory, High-Technology Applications of Organic Colorants, Plenum Press:New York,1991.
    [11]R. Ao, L. Kilmmert, D. Haarer. Present limits of data storage using dye molecules in solid matrices. Adv. Mater.7 (1995) 495.
    [12]D. Birkett. Creating an information revolution. Chem. Ind.5 (2000) 178.
    [13]D. Wohrle, D. Schlettwein, G. Schnurpfeil, G. Schneider, E. Karmann, T. Yoshida, M. Kaneko, Polym. Phthalocyanines and related macrocycles for multi-electron transfer in catalysis, photochemistry and photoelectrochemistry. [J] Adv. Technol.6 (1995) 118.
    [14]D. Wrobel, A. Boguta. Study of the influence of substituents on spectroscopic and photoelectric properties of zinc phthalocyanines. [J] J. Photochem. Photobiol. A Chem. 150(2002)67.
    [15]R. Li, X. Zhang, P. Zhu, D. K. P. Ng, N. Kobayashi, J. Jiang. Electron-donating or-withdrawing nature of substituents revealed by the electrochemistry of metal-free phthalocyanines. [J] Inorg. Chem.45 (2006) 2327.
    [16]E. M. Maya, C. Garcia, E. M. Garcia-Frutos, P. Vazquez, T. Torres. Synthesis of novel push-pull unsymmetrically substituted alkynyl phthalocyanines. [J] J. Org. Chem.65 (2000) 2733.
    [17]A. de la Escosura, M. V. Martinez-Diaz, P. Thordarson, A. E. Rowan, R. J. M. Nolte, T. Torres. Donor-acceptor phthalocyanine nanoaggregates. [J] J. Am. Chem. Soc.125 (2003) 12300.
    [18]A. de la Escosura, M. V. Martinez-Diaz, D. M. Guldi, T. Torres. Stabilization of charge-separated states in phthalocyanine-fullerene ensembles through supramolecular donor-acceptor interactions. [J] J. Am. Chem. Soc.128 (2006) 4112.
    [19]Y. Zhang, P. Ma, P. Zhu, X. Zhang, Y. Gao, D. Qi, Y. Bian, N. Kobayashi, J. Jiang. 2,3,9,10,16,17,23,24-Octakis(hexylsulfonyl)phthalocyanines. Synthesis, Spectroscopic, and Electrochemical Characteristics. [J] J. Mater. Chem. doi:10.1039/cljml0295h..
    [20]T. Watanabe, T. Ama, K. Nakamoto. Matrix-isolation infrared spectra of octaethylporphyrinatomanganese (Ⅱ) and phthalocyanatomanganese (Ⅱ) and their dioxygen adducts. [J] Inorg. Chem.22 (1983) 2470.
    [21]T. G. Spiro, P. M. Kozlowski, M. Z. Zgierski. New developments in the calculation of metalloporphyrin Raman spectra via density functional theory. [J] J. Raman Spectroscopy 29 (1998) 869.
    [22]P. M. Kozlowski, A. A. Jarz(?)cki, P. Pulay. Vibrational Assignment and Definite Harmonic Force Field for Porphine.1. Scaled Quantum Mechanical Results and Comparison with Empirical Force Field. X.-Y. Li, M. Z. Zgierski. Vibrational assignment and definite harmonic force field for porphine.2. Comparison with nonresonance Raman Data. [J] J. Phys. Chem.33 (1996) 13985.
    [23]F. Lu, L. Zhang, H. Liu, X. Yan. Infrared spectroscopic characteristics of phthalocyanine in mixed [tetrakis (4-chlorophenyl) porphyrinato](phthalocyaninato) rare earth double-deckers. [J] Vib. Spectrosc.39 (2005) 139.
    [24]C. Berrios, G. I. Cardenas-Jiron, J. F. Marco, C. Gutierrez, M. S. Ureta-Zanartu. Theoretical and Spectroscopic Study of Nickel(Ⅱ) Porphyrin Derivatives. [J] J. Phys. Chem. A 111 (2007) 2706.
    [25]R. Li, D. Qi, J. Jiang, Y. Bian. Benzo-fused low symmetry metal-free tetraazaporphyrin and phthalocyanine analogs:synthesis, spectroscopy, electrochemistry, and density functional theory. [J] J. Porphyrins Phthalocyanines 14 (2010) 421.
    [26]T. Kobayashi, F. Kurokawa, N. Uyeda, E. Suito. The metal-ligand vibrations in the infrared spectra of various metal phthalocyanines. [J] Spectrochimica Acta Part A 26 (1970)1305.
    [27]M. P. Sammes. The infrared spectrum of phthalocyanine:assignment of N-H modes. [J] J.C.S. Perkin Ⅱ(1972)160.
    [28]J. Jiang, M. Bao, L. Rintoul, D. P. Arnold. Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na) phthalocyaninato and porphyrinato rare earth complexes. [J] Coord. Chem. Rev.250 (2006) 424.
    [29]M. Bao, R. Wang, L. Rintoul,D. P. Arnold, J. Jiang. Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Part 14. The infrared and Raman characteristics of phthalocyanine in "pinwheel-like" homoleptic bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato] rare earth(III) double-decker complexes. [J] Vib. Spectrosc.40 (2006) 47.
    [30]W. Su, M. Bao, J. Jiang. Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes:Part 12. The infrared characteristics of phthalocyanine in heteroleptic bis(phthalocyaninato) rare earth complexes. [J] Vib. Spectrosc.39 (2005) 186.
    [31]M. Bao, Y. Bian, L. Rintoul, R. Wang, D. P.. Arnold, C. Ma, J. Jiang. Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes:(Part 10) The infrared and Raman characteristics of phthalocyanine in heteroleptic bis(phthalocyaninato) rare earth complexes with decreased molecular symmetry. [J] Vib. Spectrosc.34 (2004) 283.
    [32]M. Bao, N. Pan, C. Ma, D. P. Arnold, J. Jiang. Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes:Part 4. The infrared characteristics of phthalocyanine in heteroleptic tris(phthalocyaninato) rare earth complexes. [J] Vib. Spectrosc.32 (2003) 175.
    [33]F. Lu, M. Bao, C. Ma, X. Zhang, D. P. Arnold, J. Jiang. Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Part 3. The effects of substituents and molecular symmetry on the infrared characteristics of phthalocyanine in bis(phthalocyaninato) rare earth complexes. [J] Spectrochimica Acta Part A.59 (2003) 3273.
    [34]J. Jiang, D. P. Arnold, H. Yu. Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na) phthalocyaninato and porphyrinato rare earth complexes. [J] Polyhedron 18 (1999) 2129.
    [35]X. Zhang, Y. Zhang, J. Jiang. Isotope effect in the infrared spectra of free-base phthalocyanine and its N,N-dideuterio-derivative:density functional calculations. [J] Vib. Spectrosc.33 (2003) 153.
    [36]X. Zhang, Y. Zhang, J. Jiang. Towards clarifying the N-M vibrational nature of metallo-phthalocyanines::Infrared spectrum of phthalocyanine magnesium complex: density functional calculations. [J] Spectrochim. Acta Part A 60 (2004) 2195.
    [37]X. Zhang, M. Bao, N. Pan, Y. Zhang, J. Jiang. IR and Raman Vibrational Assignments for Metal-free Phthalocyanine from Density Functional B3LYP/6-31G (d) Method. [J] Chin. J. Chem.22 (2004) 325.
    [38]Z. Liu, X. Zhang, Y. Zhang, R. Li, J. Jiang. Theoretical investigation of the molecular, electronic structures and vibrational spectra of a series of first transition metal phthalocyanines. [J] Spectrochim. Acta Part A.67 (2007) 1232.
    [39]C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. [J] Phys. Rev. B.37 (1988) 785.
    [40]A. D. Becke. Density-functional thermochemistry. Ⅲ. The role of exact exchange. [J] J. Chem. Phys.98 (1993) 5648.
    [41]P. J. Hay, W. R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. [J] J. Chem. Phys.82 (1985) 299.
    [42]T. H. Jr. Dunning, P. J. Hay. [M] In Modern Theoretical Chemistry. (Ed.:H. F. Schaefer Ⅲ), Plenum, New York,1976, Vol.3, Page 1-28.
    [43]G. O. Jones, P. Liu, K. N. Houk, S. L. Buchwald. Computational Explorations of Mechanisms and Ligand-Directed Selectivities of Copper-Catalyzed Ullmann-Type Reactions. [J] J. Am. Chem. Soc.132 (2010) 6205.
    [44]C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch. Using redundant internal coordinates to optimize equilibrium geometries and transition states. [J] J. Comput. Chem.17 (1996) 49.
    [45]NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 12, Aug 2005, Editor:Russell D. Johnson Ⅲ, http://srdata.nist.gov/cccbdb
    [46]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Jr. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.05; Gaussian, Inc.:Pittsburgh, PA,2003.
    [47]A. Aroca, R.E. Clavijo, C. A. Jennings, G. J. Kovacs, J. M. Duff, R. O. Loutfy. Vibrational spectra of lutetium and ytterbium bis-phthalocyanine in thin solid films and SER (R) S on silver island films. [J] Spectrochim. Acta,45A (1989) 957.
    [48]M. L. Rodriguez-Mendez, R. Aroca, J. A. Desaja. Spectroscopic and electrochemical properties of thin solid films of yttrium bisphthalocyanine. [J] Spectrochim. Acta,49A (1993) 965.
    [49]G. Ostendorp, H. Homborg. Darstellung und Eigenschaften der Diphthalocyaninate des Yttriums und Indiums. [J] Z. Anorg. Allg. Chem.622 (1996) 1358.
    [50]G. Ostendorp, H. Homborg. Darstellung und spektroskopische Eigenschaften der gemischtvalenten Di(phthalocyaninato)lanthanide(Ⅲ). [J] Z. Anorg. Allg. Chem.622 (1996)1222.
    [51]G. Ostendorp, H. Homborg. Synthesis, Properties And Crystal Structure Of Di(Phthalocyaninato)Lanthanum(Ⅲ), A Partially Oxidized Semiconductor. [J] Z. Naturforsch.50b (1995) 1200.
    [52]M. S. Haghighi, H. Homborg. Spektroskopische Eigenschaften von Di(phthalocyaninato)metallaten(Ⅲ) der Seltenen Erden Teil 1:Elektronische Absorptionsspektren und Schwingungsspektren. [J] Z. Anorg. Allg. Chem.620 (1994) 1278.
    [53]C. Clarisse, M. T. Riou. Synthesis and characterization of some lanthanide phthalocyanines. [J] Inorg. Chim. Acta 130 (1987) 139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700