基于卟啉、富勒烯及混杂卟啉酞菁三明治型配合物的二元体系的设计、合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉酞菁类化合物以及三明治型稀土卟啉酞菁配合物具有独特的光学、电学、磁学性质,它们在分子电子学、分子信息存储和非线性光学上具有广泛潜在的应用价值,因此,可以作为拥有广阔的应用前景的新型的功能材料。卟啉以及酞菁化合物属于环状四吡咯化合物,其中的四个吡咯或异吲哚氮原子可以和金属元素络合而形成多种多样的配合物。当和稀土元素,锕系元素以及主族元素In, Sn, As, Sb, Bi等离子半径较大金属配位时,倾向于形成八配位的三明治型双层或三层配合物。因为两个或三个共轭大环配体在三明治型配合物中的距离很近,所以具有非常强的分子内π-π相互作用,使得这类配合物具有非常特殊的光电功能性质和应用前景,例如可以作为电致变色显示材料、场效应晶体管材料、气体传感材料以及光合作用反应中心“特殊对”的结构模型。
     光学活性的四吡咯大环衍生物和许多生物学过程相关,并且在很多工业方面具备广泛的应用潜力,从而激起了学者们极大的研究热情。近几十年来在太阳能转化、电致发光、以及能力传递和电子转移等领域得到广泛的应用。基于此,我们设计合成了一系列含卟啉、卟啉酞菁混杂三明治型配合物并对其性能进行了研究,为寻找新的太阳能电池材料奠定了理论基础和开辟了新的方向。以下是本文的主要工作:
     1、苯醚键相联的C60-卟啉二元化合物的合成、电化学和光谱性质研究
     设计合成了一系列苯醚键相连的C60-卟啉二元化合物及其金属锌配合物:H2Por-P-C60、H2Por-M-C60、H2Por-O-C60、ZnPor-P-C60、ZnPor-M-C60和ZnPor-O-C60,通过质谱、元素分析和核磁共振氢谱对它们的结构进行了表征。基态的电子吸收光谱和电化学研究表明在这些二元体系中C60和卟啉之间存在明显的相互作用。荧光光谱研究表明卟啉单元的荧光几乎被C60单元完全淬灭,并且它们之间的连接位置对荧光淬灭的效率具有显著影响。
     2、卟啉修饰的卟啉酞菁混杂三明治配合物中:连接位置决定的荧光淬灭过程研究
     设计并合成了三种新型的三明治型混杂卟啉酞菁稀土钇双层配合物。在三明治中卟啉一侧的meso-位苯环的邻、间、对位通过酯键分别连接了一个自由卟啉。对这三种化合物以及参比化合物四(4-叔丁基苯)卟啉H2TBPP (1)和[1,4,8,11,15,18,22,25-八(丁氧基)酞菁][四(4-叔丁基苯)卟啉]钇双层配合物HY[Pc(α-OC4H9)8](TBPP) (2)通过稳态光谱和瞬态光谱进行了光物理性质的研究。荧光光谱显示:卟啉和三明治在间位、对位通过酯键连接的化合物中,卟啉的荧光完全被淬灭,。而邻位连接的化合物中,卟啉的荧光是部分淬灭。这说明连接位置对荧光淬灭过程有决定性的影响。我们进一步用密度泛函理论(DFT)方法计算和模拟了化合物3-5的结构。化合物3-5中卟啉和三明治之间的空间构型是不同的,3是“交叉型”,而4,5分别是“开贝壳”和“闭贝壳型”。因此连接位置的不同决定了空间构型的不同,进而决定了分子内荧光淬灭过程的不同。
     3、卟啉修饰的卟啉酞菁混杂三明治化合物中:连接位置决定的荧光淬灭过程研究
     利用飞秒激光Z扫描技术研究了三种新型的三明治型混杂卟啉酞菁稀土钇双层配合物1-3的三阶非线性光学性质,在三明治型配合物中卟啉一侧的meso-位苯环的邻、间、对位通过酯键分别连接了一个自由卟啉。为了比较研究,也在同样的条件下对参比化合物HY[Pc(α-OC4H9)8](TBPP) (4)进行了测试。这些配合物都显示强的反饱和吸收(RSA)性质,但在飞秒级别的时间范围内遵循RSA-SA-RSA-SA-RSA的变化规律。例如,在光强7.48-8.39 GW·cm-2作用下,对位、间位连接1和2保持RSA的时候,配合物3已经出现了饱和吸收翻转,这表明它们连接位置影响配合物的三阶非线性。
     4、C60修饰的卟啉酞菁混杂三明治化合物:合成、表征和光物理性质研究
     一种新型的C60连接的卟啉酞菁混杂三明治化合物被设计、合成和表征。为了合成C60连接的卟啉酞菁混杂三明治化合物首先通过苯醚键在卟啉的meso位上连接C60,然后用这种卟啉和稀土盐[Y(acac)3]·nH2O反应得到半三明治[YⅢ(acac)(Por)] (Por= C60-连接的卟啉;acac=乙酰丙酮),然后再和[1,4,8,11,15,18,22,25-八(丁氧基)酞菁][H2{Pc(α-OC4H9)8}]反应得到目标产物,这种合成路径具有较高的产率。光物理研究显示,在400nm同时激发C60和[HYPcPor]单元,产生从[HYPcPor]到C60的光致电子转移,电荷分离态的寿命可达τ>1 ns。
Owing to the unique optical, electrical, and properties, associated with the intriguing intramolecularπ-πinteractions, porphyrins, phthalocyanines, as well as sandwich type rare complexes, as a novel functional materials, have been expected to be widely potential application in materials science, such as in molecular electronics, molecular information storage, and nonlinear optics, etc. Phthalocyanines and porphyrins belong to a cyclic tetrapyrrole family in which the four isoindole or pyrrole nitrogen atoms are able to complex with a range of metal ions. With large metal centers which favor octa-coordination (e.g. rare earths, actinides, group 4 transition metals, and main group elements such as In, Sn, As, Sb, and Bi), sandwich-type complexes in the form of double- and triple-deckers can be formed. Due to the intramolecularπ-πinteractions and the intrinsic nature of the metal centers, these novel complexes display characteristic features, which cannot be found in their non-sandwich counterparts, enabling them to be used in different areas. They are versatile materials for electrochromic displays, field effect transistors, gas sensors and as structural and spectroscopic models for the special pair found in the bacterial photosynthetic reaction centers.
     Due to their fundamental importance in many biological processes, porphyrins (Pors) have been extensively studied in view of biomimetic synthetic models over the past few decades. So, in this paper, we described the synthesis of a series of new Pors and Mixed (Phthalocyaninato)(porphyrinato) Yttrium(III) Double-decker Complexes with novel photophysical properties. Our research work has been focused on the synthesis, characterization, optical properties, and photophysical properties of these macrocyclic tetrapyrrole compounds include the following four parts:
     1. Synthesis, Electrochemical and Spectroscopic Properties of C60-Porphyrin Dyads with Different Phenyl Ether Linkage
     A series of C60-porphyrin dyads, connected by phenyl ether linkage of one meso-phenyl group of the porphyrin moiety on para, meta, and ortho positions, respectively, together with their zinc complexes have been designed and synthesized. All of these compounds were characterized by means of MALDI-TOF mass spectrometry, elemental analysis, and 1H NMR. The electronic absorption spectroscopic and electrochemical studies show that there is a considerable interaction between the two chromophores in the ground state of these dyads. The fluorescence spectroscopic study reveals that the emission of porphyrin moiety is efficiently quenched by C60 moiety, and the quenching efficiency is higher when the C60 linked at the ortho position of meso-phenyl ring than that linked at para or meta positions, indicating the linkage dependence of the intramolecular interaction between the two chromophores in these dyads.
     2. Linkage Dependence of Intramolecular Fluorescence Quenching Process in Porphyrin-appended Mixed (Phthalocyaninato)(porphyrinato) Yttrium(III) Double-decker Complexes
     Three novel mixed (phthalocyaninato)(porphyrinato) yttrium double-decker complexes appended with one metal free porphyrin chromophore at the para, meta, and ortho position, respectively, of one meso-phenyl group of the porphyrin ligand in the double-decker unit through ester linkage,3-5, have been designed, synthesized, and spectroscopically characterized. The photophysical properties of these three isomeric tetrapyrrole triads were comparatively investigated along with the model compounds metal free tetra(4-butyl)porphyrin H2TBPP (1) and mixed [1,4,8,11,15,18,22,25-octa(butyloxyl)phthalocyaninato] [tetra(4-butyl)-porphyrinato] yttrium double-decker complex HY[Pc(a-OC4H9)g](TBPP) (2) by steady-state and transient spectroscopic methods. The fluorescence of the metal free porphyrin moiety attached through ester linkage at the meta and ortho position of one meso-phenyl group of porphyrin ligand in the double-decker unit in triads 4 and 5 is effectively quenched by the double-decker unit, which takes place in several hundred femtoseconds. However, the fluorescence of the metal free porphyrin moiety attached at the para position of one meso-phenyl group of porphyrin ligand in the double-decker unit in triad 3 is only partially quenched, clearly revealing the effect of the position of porphyrin-substituent on the photophysical properties of the triads. Furthermore, the molecular structures of 3-5 were simulated using density functional theory (DFT) calculations. It was found that the relative orientation between the metal free porphyrin moiety and the double-decker unit for compound 3 is crossed, while those for compounds 4 and 5 are open- and closed-shellfish-like, respectively, which is suggested to be responsible for their different intramolecular fluorescent quenching efficiency.
     3. Porphyrin Porphyrin-appended Mixed (Phthalocyaninato)(porphyrinato) Yttrium(Ⅲ) Double-decker Complexes:Effect of Connecting Position of Nonlinear Optical Properties
     Three novel mixed (phthalocyaninato)(porphyrinato) yttrium double-decker complexes appended with one metal free porphyrin chromophore at the para, meta, and ortho position, respectively, of one meso-phenyl group of the porphyrin ligand in the double-decker unit through ester linkage,1-3, as well as mixed [1,4,8,11,15,18,22,25-octa(butyloxyl)phthalocyaninato][tetra(4-butyl)-porphyrinato] yttrium double-decker complex HY[Pc(α-OC4H9)8](TBPP) (4) have been investigated by the open-aperture fs Z-scan technique. The third-order nonlinear optical (NLO) properties of these tetrapyrrole triads reveal their strong RSA properties with the nonlinear absorption shifting in the trace of RSA-SA-RSA-SA-RSA at femtosecond timescale. Interestingly, at the intensity of 7.48-8.39 GW/cm2 the triads 1 and 2 with a metal free porphyrin chromophore appended at the para and meta position, respectively, of one meso-phenyl group of the porphyrin ligand in the double-decker unit still remain at a characteristic response of RSA. In contrast, the triad 3 with a metal free porphyrin chromophore appended at the ortho position has already shown a trend of SA peak at the same intensity range, confirming the effect of the position of porphyrin-substituent on the photopysical properties of the triads..
     4. C60-modified Mixed (Phthalocyaninato)(porphyrinato) Yttrium(Ⅲ) Double-decker Complex:Synthesis, Characterization, and Photophysical Properties
     A novel mixed (phthalocyaninato)(porphyrinato) yttrium(Ⅲ) double-decker complex covalently linked with C60 chromophore at the para position of one meso-phenyl group of the porphyrin ligand by phenyl ether linkage has been designed and synthesized by treatment of the half-sandwich yttrium complex [YⅢ(acac)(Por)], generated in situ from [Y(acac)3]·nH2O (acac=acetylacetonate) and the C60-appended free base porphyrin (3), with 1,4,8,11,15,18,22,25-octa(butyloxyl)phthalocyanine under reflux in TCB in good yield. The photophysical properties of this novel dyad containing the C60 and mixed (phthalocyaninato)(porphyrinato) yttrium(Ⅲ) double-decker components were investigated by steady-state and transient spectroscopic methods. Comparative studies over the electronic absorption spectra document that there is no considerable electronic interaction between the C60 and mixed (phthalocyaninato)(porphyrinato) yttrium(Ⅲ) double-decker components in steady-state. Time-resolved absorption spectra of this dyad reveal a photoinduced electron transfer from the {HY[Pc(α-OC4H9)g](Por)} to C60 moiety upon irradiation at 400 nm, which excites both C60 and {HY[Pc(α-OC4H9)8](Por)} components, resulting in a charge-separated state with a lifetime longer than 1 ns.
引文
[1]Fischer, H. et al. Die Chemie des pyrrols. [M] Vol 2, part 1, Akad. Verlagsges; Leipzig. 1937,158.
    [2]Zaleski, J. Porphyrin. [J] Z. Physiol. Chem.1902,37,54.
    [3]Wong, C. P.; Venteicher, R. F.; Horrocks Jr., W. D. Lanthanide porphyrin complexes. Potential new class of nuclear magnetic resonance dipolar probe. [J] J. Am. Chem. Soc., 1974,96,7149-7150.
    [4]Wong, C. P.; Horrocks Jr., W. D. New metalloporphyrins. Thorium and yttrium complexes of tetraphenylporphin. [J] Tetrahedron Lett.,1975,16,2637-2640.
    [5]计亮年,彭小彬,黄锦汪.金属卟啉配合物模拟某些金属酶的研究进展[J]自然科学进展,2002,12,120-129.
    [6]Sessler, J. L.; Weghorn, S. J. Expanded, Contracted & Isomeric Porphyrins. [M] Pergamon:Oxford, U. K.,1997.
    [7]李德平,胡静.血卟啉类化合物诊治肿瘤的研究进展及应用[J]中国生化药物杂志,2003,24,162-163.
    [8]杨新国,孙景志,汪茫,陈红征,黄骥.卟啉类光电功能材料的研究进展[J]功能材料,2003,34,113-117.
    [9](a) Uyeda, N.; Kobayashi, T.; Suito, E.; Harada, Y.; Watanabe. M. Molecular image resolution in electron microscopy. [J] J. Appl. Phys.1972,43,5181-5189. (b) Kobayashi, T.; Isoda, S. Lattice Images and Molecular Images of Organic Materials. [J] J. Mater. Chem.1993,3,1-14.
    [10]Eley, D. D. Phthalocyanines as Semiconductors. [J] Nature 1948,162,819-819.
    [11](a) Schramm, C. J.; Stojakovic, D. R.; Hoffman, B. M.; Marks, T. J. New Low-Dimensional Molecular Metals:Single-Crystal Electrical Conductivity of Nickel Phthalocyanine Iodide. [J] Science,1978,200,47-48. (b) Marks, T. J. Electrically Conductive Metallomacrocyclic Assemblies. [J] Science,1985,227,881-889.
    [12]Bott, B.; Jones, T. A. A highly sensitive NO2 sensor based on electrical conductivity changes in phthalocyanine films. [J] Sensors and Actuators,1984,5,43-53.
    [13]Vartanyan, A. T. Poluprovodnikovye Svoistva Organicheskikh Krasitel. [J] Zh. Fiz Khim.1948,22,769-774.
    [14]Law, K. Y. Organic photoconductive materials:recent trends and developments. [J] Chem. Rev.1993,93,449-486.
    [15]Tang, C. W. Two-layer organic photovoltaic cell. [J] Appl. Phys. Lett.1986,48, 183-185.
    [16]Nazeeruddin, M. K.; Humphry-Baker, R.; Gratzel, M.; Murrer, B. A. Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. [J] Chem. Commun.1998,719-720.
    [17]Wohrle, D.; Tennigkeit, B.; Elbe, J.; Kreienhoop, L.; Schnurffeil, G Various Porphyrins and Aromatic Tetracarboxylic Acid Diimides in Thin Film pln-Solar Cells [J] Mol. Cryst. Liq. Cryst.1993,228,221-226.
    [18]王朝晖,衷庆华,熊轶嘉,孙亚,孔繁敖.酞菁锌分子激发态的超快内转移和振动弛豫[J]化学物理学报,1998,11,15-19.
    [19]De la Torre, G.; Vazquez. P.; Agullo-Lopez, F.; Torres, T. Phthalocyanines and related compounds:organic targets for nonlinear optical applications. [J] J. Mater. Chem.1998, 8,1671-1683.
    [20]Shirk, J. S.; Lindle, J. R.; Bartoli, F. J. Boyle, M. E. Third-order optical nonlinearities of bis(phthalocyanines). [J] J. Phys. Chem.1992,96,5847-5852.
    [21]陈仕艳,刘云圻,黄学斌,邱文丰,朱道本.酞菁在分子材料器件方面的研究进展[J]自然科学进展,2004,14,125-131.
    [22]Leznoff, C. C.; Lever; A. B. P. Phthalocynines:properties and applications. [M] Volumes 1-4, New York:VCH,1989.
    [23]Borisenkova, S. A. New aspects of the heterogeneous catalysis of thiol oxidation by phthalocyanines. [J] Petroleum Chem.1991,31,379-398.
    [24]Bennett, W. E.; Broberg, D. E.; Baenziger, N. C. Crystal structure of stannic phthalocyanine, an eight-coordinated tin complex. [J] Inorg. Chem.1973,12,930-936.
    [25]Kirin, I. S.; Moskalev, P. N.; Makashev, Y. A. Formation of phthalocyanines of rare-earth elements. [J] Russ. J. Inorg. Chem.1965,10,1065-1066.
    [26]De Cian, A.; Moussavi, M.; Fischer, J.; Weiss, R. Synthesis, structure, and spectroscopic and magnetic properties of lutetium(Ⅲ) phthalocyanine derivatives: LuPc2.CH2Cl2 and [LuPc(OAc)(H2O)2].H2O.2CH3OH. [J] Inorg. Chem.1985,24, 3162-3167.
    [27]Lux, F.; Dempf, D.; Graw, D. Diphthalocyaninato-thorium(Ⅳ) and -uranium (Ⅳ). [J] Angew. Chem. Int. Ed.1968,7,819-820.
    [28]Bouvet, M.; Simon, J. Electrical properties of rare earth bisphthalocyanine and bisnaphthalocyanine complexes. [J] Chem. Phys. Lett.1990,172,299-302.
    [29]Ng, D. K. P.; Jiang, J. Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes. [J] Chem. Soc. Rev.1997,26,433-442.
    [30]姜建壮,吴基培,刘伟,谢经雷,孙思修.对称的二层及三层三明治型金属酞菁配合物的研究进展.[J]化学通报.1999,2-10.
    [31]Gieren, A.; Hoppe, W. X-Ray crystal structure analysis of bisphthalocyaninatouranium(Ⅳ). [J] Chem. Commun.1971,413-415.
    [32]Koike, N.;Uekusa, H.; Ohashi, Y.; Harnoode, C.; Kitamura, F.; Ohsaka, T.; Tokuda, K. Relationship between the Skew Angle and Interplanar Distance in Four Bis(phthalocyaninato)lanthanide(Ⅲ) Tetrabutylammonium Salts ([NBun4][LnⅢPc2]; Ln = Nd, Gd, Ho, Lu). [J] Inorg. Chem.1996,35,5798-5804.
    [33]Buchler, J. W.; De Cian, A.; Fischer, J.; Kihn-Botulinski, M.; Paulus, H.; Weiss, R. Metal complexes with tetrapyrrole ligands.40. Cerium(Ⅳ) bis(octaethylporphyrinate) and dicerium(Ⅲ) tris(octaethylporphyrinate):Parents of a new family of lanthanoid double-decker and triple-decker molecules. [J] J. Am. Chem. Soc.1986,108,3652-3659.
    [34]Collin, G. C. S.; Schiffrin, D. J. The electrochromic properties of lutetium and other phthalocyanines. [J] J. Electroanal. Chem.1982,139,335-369.
    [35]Frampton, C. S.; O'Connor, J. M.; Peterson, J. I. M.; Silver, J. Enhanced colours and properties in the electrochromic behaviour of mixed rare-earth-element bisphthalcoyanines. [J] Displays,1988,9,174-178.
    [36]Capobianchi, A.; Paoletti, A. M.; Pennesi, G.; Rossi, G.; Panero, S. Electrochromism in sandwich-type diphthalocyanines:electrochemical and spectroscopic behaviour of bis(phthalocyaninato)titanium(IV) (Ti(Pc)2) film. [J] Synth. Met.1995,75,37-42.
    [37]McKeown, N. B. Out of the Blue:Recent advances in the applications of phthalocyanines. [J] Chemistry and Industry 1999,92-98.
    [38]Andre, J. J.; Holczer, K.; Petit, P.; Riou, M. T.; Simon, J. Electrical and magnetic properties of thin films and single crystals of bis(phthalocyaninato) lutetium. [J] Chem. Phys. Lett.1985,115,463-466.
    [39]Padilla, J.; Hatifield, W. E. Magnetic and electrical properties of sandwich-like lanthanide phthalocyanines. [J] Synth. Met.1989,29,45-50.
    [40]Padilla, J.; Hatifield, W. E. Correlation between π-orbital overlap and conductivity in bis-phthalocyaninato lanthanides. [J] Inorg. Chim. Acta.1991,185.131-136.
    [41]Souto, J.; Aroca, R.; Desaja, J. A. Gas Adsorption and Electrical Conductivity of Langmuir-Blodgett Films of Terbium Bisphthalocyanine. [J] J. Phys. Chem.1994,98, 8998-9001.
    [42]Trometer, M.; Even, R.; Simon, J.; Dubon, A.; Laval, J. Y.; Germain, J. P.; Maleysson, C.; Pauly, A.; Robert, H. Lutetium bisphthalocyanine thin films for gas detection. [J] Sens. Actuators B Chem.1992,8,129-135.
    [43]Simon, J.; Sirlin, S. Mesomorphic molecular materials for electronics, opto- electronics, iono-electronics:octaalkylphthalocyanine derivatives. [J] Pure Appl. Chem.1989,61, 1625-1629.
    [44]Guillaud, G.; Al Sadoun, M.; Maitrot, M.; Simon, J.; Bouvet, M. Field-effect transistors based on intrinsic molecular semiconductors. [J] Chem. Phys. Lett.1990,167,503-506.
    [45]Clarisse, C.; Riou, M. T.; Gauneau, M.; Le Cntellec, M. Field-Effect Transistor with Diphthalocyanine Thin Film. [J] Electron. Lett.1988,24,674-675.
    [46]Toupance, T.; Ahsen, V.; Simon, J. Iono-electronics:crown ether substituted lutetium bisphthalocyanines. [J] J. Chem. Soc. Chem. Commun.1994,75-76.
    [47](a) Nicholson, M. M.; Pizzarello, F. A. Effects of the Gaseous Environment on Propagation of Anodic Reaction Boundaries in Lutetium Diphthalocyanine Films. [J] J. Electrochem Soc.1980,127,2617-2620. (b) Nicholson, M. M.; Weismuller, T. P. The Role of Oxygen in the Redox Chemistry of Luterrium Diphthalocyanine. [J] J. Electrochem Soc.1984,131,2311-2313.
    [48]Trojan, K. L.; Kendall, J. L.; Kepler, K. D.; Hatfield, W. E. Strong exchange coupling between the lanthanide ions and the phthalocyaninato ligand radical in bis(phthalocyaninato)lanthanide sandwich compounds. [J] Inorg. Chim. Acta.1992, 198-200,795-803.
    [49](a) Adler, A. D.; Longo, F. R.; Shergalis, W. Mechanistic Investigations of Porphyrin Syntheses.Ⅰ. Preliminary Studies on ms-Tetraphenylporphinl. [J] J. Am. Chem. Soc.1964, 86,3145-3149. (b) Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. A simplified synthesis for meso-tetraphenylporphine. [J] J. Org. Chem.1967, 32,476-476.
    [50]Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. Rothemund and Adler-Longo reactions revisited:synthesis of tetraphenylporphyrins under equilibrium conditions. [J] J. Org. Chem.1987,52,827-836.
    [51]Arsenault, G. P.; Bullock, E.; MacDonald, S. F.; Pyrromethanes and Porphyrins Therefrom. [J] J. Am. Chem. Soc.,1960,82,4384-4389.
    [52]Adler, A. D.; Longo, F. R. On the preparation of metalloporphyrins. [J] J. Inorg. Nucl. Chem.1970,32,2443-2445.
    [53]Linstead, R. P.; Lowe, A. R. Phthalocyanines. Part Ⅲ. Preliminary Experiments on the Preparation of Phthalocyanines from Phthalonitrile. [J] J. Chem. Soc.1934,1022-1027.
    [54]Joyner, R. D.; Kenney, M. E. Phthalocyaninosilicon Compounds. [J] Inorg. Chem.1962, 1,236-238.
    [55]Gould, S. J. [M] Ever Since Darwin. Reflections in Natural History; W. W. Norton:New York,1977; p 91.
    [56]Ciamician, G. [J] The photochemistry of the future. Science 1912,36,385-394.
    [57]Gust, D.; Moore, T. A. Intramolecular photoinduced electrontransfer reactions of porphyrins. [M] In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:New York,1999; pp 153-190.
    [58]Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. [J] Chem. Rev.1992,92,435-461.
    [59]Balzani, V.; Moggi, L.; Scandola, F. Towards a supramolecular photochemistry:Assembly of molecular components to obtain photochemical molecular devices. [M] In Supramolecular Photochemistry; Balzani, V., Ed.; D. Reidel:Dordrecht,1987; pp 1-28.
    [60]Gust, D.; Moore, T. A.; Moore, A. L. Molecular mimicry ofphotosynthetic energy and electron transfer. [J] Acc. Chem. Res.1993,26,198-205.
    [61]Meyer, T. J. Chemical approaches to artificial photosynthesis. [J] Ace. Chem. Res.1989, 22,163-170.
    [62]Kuciauskas, D.; Liddell, P. A.; Lin, S.; Stone, S.; Moore, A. L.; Moore, T. A.; Gust, D. Photoinduced electron transfer in carotenoporphyrin-fullerene triads:Temperature and solvent effects. [J] J. Phys. Chem. B 2000,104,4307-4321.
    [63]Kuciauskas, D.; Liddell, P. A.; Lin, S.; Stone, S.; Moore, A. L.; Moore, T. A.; Gust, D. Photoinduced electron transfer in carotenoporphyrin-fullerene triads:Temperature and solvent effects. [J] J. Phys. Chem. B 2000,104,4307-4321.
    [64]Gust, D.; Mathis, P.; Moore, A. L.; Liddell, P. A.; Nemeth, G. A.; Lehman, W. R.; Moore, T. A.; Bensasson, R. V.; Land, E. J.; Chachaty, C. Energy transfer and charge separation in carotenoporphyrins. [J] Photochem. Photobiol.1983,37, S46.
    [65]Moore, T. A.; Gust, D.; Mathis, P.; Mialocq, J.-C.; Chachaty, C.; Bensasson, R. V.; Land, E. J.; Doizi, D.; Liddell, P. A.; Lehman, W. R.; Nemeth, G. A.; Moore, A. L. Photodriven charge separation in a carotenoporphyrin-quinone triad. [J] Nature (London) 1984,307, 630-632.
    [66]Liddell, P. A.; Kuciauskas, D.; Sumida, J. P.; Nash, B.; Nguyen, D.; Moore, A. L.; Moore, T. A.; Gust, D. Photoinduced charge separation and charge recombination to a triplet state in a carotene-porphyrin-fullerene triad. [J] J. Am. Chem. Soc.1997,119,1400-1405.
    [67]Gust, D.; Moore, T. A.; Moore, A. L.; Kuciauskas, D.; Liddell, P. A.; Halbert, B. D. Mimicry of carotenoid photoprotection in artificial photosynthetic reaction centers: Triplet-triplet energy transfer by a relay mechanism. [J] J. Photochem. Photobiol. B: Biol.1998,43,209-216.
    [68]Gust, D. Very small arrays. Nature (London) 1997,386,21-22.
    [69]Hsiao, J.-S.; Krueger, B. P.; Wagner, R. W.; Johnson, T. E.; Delaney, J. K.; Mauzerall, D. C.; Fleming, G. R.; Lindsey, J. S.; Bocian, D. F.; Donohoe, R. J. Soluble synthetic multiporphyrin arrays.2. Photodynamics of energy-transfer processes. [J] J. Am.Chem. Soc.1996,118,11181-11193.
    [70]Wagner, R. W.; Lindsey, J. S. A molecular photonic wire. [J] J. Am. Chem. Soc.1994,116, 9759-9760.
    [71]Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan, V.; Bocian, D. F. Molecular optoelectronic gates. [J] J. Am. Chem. Soc.1996,118,3996-3997.
    [72]Kuciauskas, D.; Liddell, P. A.; Lin, S.; Johnson, T. E.; Weghorn; S.J.; Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. An artificial photosynthetic antenna-reaction center complex. [J] J. Am. Chem. Soc.1999,121,8604-8614.
    [73]Girolami, G. S.; Hein, C. L.; Suslick, K. S. A Zirconium Bis(porphyrinate) Sandwich Complex with an Appended Quinone. [J].Angew. Chem. Int. Ed. Engl.1996,35, 1223-1225.
    [74]Xu, H.; Chen, H.; Shi, M.; Bai, R.; Wang, M. A novel donor-acceptor heterojunction from single-walled carbon nanotubes functionalized by erbium bisphthalocyanine. [J] Materials Chemistry and Physics,2005,94,342-346.
    [75]Ballesteros, B.; Torre, G.; Sharer, A.; Hausmann, A.; Herranz, M. A.; Guldi, D. M.; Torres, T. Lanthanide(III) Bis(phthalocyaninato)-[60]Fullerene Dyads:Synthesis, Characterization, and Photophysical Properties. [J] Chem. Eur. J.2010,16,114-125.
    [76]Bian, Y.; Chen, X.; Wang, D.; Choi, C.-F.; Zhou, Y.; Zhu, P.; Ng, D. K. P.; Jiang, J.; Weng, Y.; Li, X. Porphyrin-Appended Europium(Ⅲ) Bis(phthalocyaninato) Complexes: Synthesis, Characterization, and Photophysical Properties. [J] Chem. Eur. J.2007,13, 4169-4177.
    [1]Accorsi, G.; Armaroli, N.; Taking Advantage of the Electronic Excited States of [60]-Fullerenes. [J] J. Phys. Chem. C,2010,114,1385-1403.
    [2](a) Imahori, H.; Umeyama, T. Donor-Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion. [J] J. Phys. Chem. C,2009,113,9029-9039 (b) Gust, D.; Moore, T. A.; Moore, A. L. Molecular mimicry of photosynthetic energy and electron transfer. [J]. Acc. Chem. Res.,1993,26,198-205.
    [3](a) Vivo, P.; Vuorinen, T.; Chukharev, V. Multicomponent Molecularly Controlled Langmuir-Blodgett Systems for Organic Photovoltaic Applications. [J] J. Phys. Chem. C.,2010,114,8559-8567. (b) Weiss E A, Tauber M J, Kelley R F, et al. Resist-Free Patterning of Surface Architectures in Polymer-Based Microanalytical Devices. [J] J. Am. Chem. Soc.,2005,127,842-850. (c) Liu, Y.; Summers, M. A.; Edder, C. Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells. [J] Adv. Mater.,2005,17,2960-2964. (d) Shao, Y.; Yang, Y. Efficient Organic Heterojunction Photovoltaic Cells Based on Triplet Materials. [J] Adv. Mater., 2005,17,2841-2844.
    [4]Kadish, K. M.; Smith, K. M.; Guilard, R.; [M] The Porphyrin Handbook. New York: Academic Press,1999.
    [5]Zhang Hong-Yu(张鸿宇), Wang Li-Guang(王利光), Zhang Xiu-Mei(张秀梅), et al. Electronic structure and conductance of fullerene C60. [J]Acta Physica Sinica. (Wuli Xuebao),2008,57, (10),6271-6276
    [6](a) Smirnov, A. Y.; Mourokh, L. G..; Ghosh, P. K. et al. High-Efficiency Energy Conversion in a Molecular Triad Connected to Conducting Leads. [J] J. Phys. Chem. C, 2009,113,21218-21224. (b) Imahori, H.; Sakata, Y. Donor-Linked Fullerenes: Photoinduced electron transfer and its potential application. [J] Adv. Mater.,1997,9, 537-546. (c) Prato, M. Fullerene chemistry for materials science applications. [J] J. Mater. Chem.,1997,7,1097-1109. (d) Martin, N.; Sanchez, L.; Illescas, B. et al. C60-Based Electroactive Organofullerenes. [J] Chem. Rev.,1998,98,2527-2548. (e) Imahori, H.; Sakata, Y Fullerenes as Novel Acceptors in Photosynthetic Electron Transfer. [J] Eur. J. Org. Chem.,1999,2445-2457
    [7](a) Guldi, D. M.; Martin, N. Fullerene architectures made to order; biomimetic motifs-design and features. [J] J. Mater. Chem.,2002,1978-1992. (b) Guldi, D. M. Fullerenes:three dimensional electron acceptor materials. [J] Chem. Commun.,2000, 321-327. (c) Guldi, D. M.; Prato, M. Excited-State Properties of C60 Fullerene Derivatives. [J] Acc. Chem. Res.,2000,33,695-703. (d) Gust, D.; Moore, T. A.; Moore, A. L. Photochemistry of supramolecular systems containing C60. [J] J. Photochem. Photobiol. B.,2000,58,63-71. (e) Gust, D.; Moore, T. A.; Moore, A. L. Mimicking Photosynthetic Solar Energy Transduction. [J] Acc. Chem. Res.,2001,34,40-48.
    [8](a) Nobukuni, H.; Tani, F.; Shimazaki, Y. et al. Anisotropic high electron mobility and photodynamics of a self-assembled porphyrin nanotube including C60 molecules. [J] J. Phys. Chem. C,2009,113,19694-19699. (b) Guldi, D. M.; Neta, P.; Asmus, K. D. Electron-Transfer Reactions between C60 and Radical Ions of Metalloporphyrins and Arenes. [J] J. Phys. Chem.,1994,98,4617-4621. (c) Guldi, D. M.; Asmus, K. D. Electron Transfer from C76 (C2v') and C78 (D2) to Radical Cations of Various Arenes: Evidence for the Marcus Inverted Region. [J] J. Am. Chem. Soc.,1997,119,5744-5745. (d) Imahori, H.; Hagiwara, K.; Akiyama, T.; Aoki, M. et al. The small reorganization energy of C60 in electron transfer. [J] Chem. Phys. Lett.,1996,263,545-550.
    [9](a) Fukuzumi, S.; Guldi, D. M. [M] Electron Transfer in Chemistry.,2001,2,270-337. (b) Imahori, H.; Guldi, D. M.; Tamaki, K. et al. Charge Separation in a Novel Artificial Photosynthetic Reaction Center Lives 380 ms. [J] J. Am. Chem. Soc.,2001,123, 6617-6628.
    [10]Guldi, D. M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. [J] Chem. Soc. Rev.,2002,31,22-36.
    [11]Kadish, K. M.; Smith, K. M.; Guilard, R. [M] The Porphyrin Handbook, San Diego, CA: Academic Press,2000
    [12]Diederich, F.; Kessinger, R. Templated Regioselective and Stereoselective Synthesis in Fullerene Chemistry. [J] Acc. Chem. Res.,1999,32,537-545.
    [13](a) Imahori, H.; Yamada, H.; Guldi, D. M. Exceptionally Strong Electronic Communication through Hydrogen Bonds in Porphyrin-C60 Pairs. [J] Angew. Chem. Int. Ed.,2006,45,4637-4641. (b) Panddon-Row, M. N. Investigating long-range electron-transfer processes with rigid, covalently linked donor-(norbornylogous bridge)-acceptor systems. [J] Acc. Chem. Res.,1994,27,18-25. (c) Closs, G. L.; Piotrowiak, P.; Maclnnis, J. M. et al. Determination of long-distance intramolecular triplet energy-transfer rates. Quantitative comparison with electron transfer. [J] J. Am. Chem. Soc.1988,110,2652-2653. (d) Yan, X.; Weng, M.; Zhang, M. et al. Intermolecular and intramolecular energy and electron transfer reactions between porphyrin and fluorescein. [J] Dyes and Pigments,1997,35,87-99. (e) Cho, H. S.; Jeong, D. H.; Yoon, M, C. et al. Excited-State Energy Transfer Processes in Phenylene-and Biphenylene-Linked and Directly-Linked Zinc(II) and Free-Base Hybrid Diporphyrins. [J] J. Phys. Chem. A.,2001,105,4200-4210.
    [14](a) Adler, A. D.; Longo, F. R.; Shergalis, W. Mechanistic Investigations of Porphyrin Syntheses.Ⅰ. Preliminary Studies on ms-Tetraphenylporphin. [J] J. Am. Chem. Soc., 1964,86,3145-3149. (b) Adler, A. D.; Longo, F. R.; Finarelli, J. D. et al. A simplified synthesis for meso-tetraphenylporphine. [J] J. Org.Chem.,1967,32,476-476. (c) Lindsey, J. S.; Hsu, H. C.; Schreiman, I. C. Synthesis of tetraphenylporphyrins under very mild conditions. [J] Tetrahedron Lett.1986,27,4969-4970. (d) Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C. et al. Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions. [J] J. Org. Chem.,1987, 52,827-836.
    [15]FAN Su-Hua(凡素华),YANG Sen-Gen(杨森根),WU Zhen-Yii(吴振奕),et al. Synthesis and Characterization of Covalently Linked Porphyrin-fullerene Compounds. [J] Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao),2006,66(07),1299-1302.
    [16](a) Lo, P. C.; Leng, X.; Ng, D. K. P Hetero-arrays of porphyrins and phthalocyanines. [J] Coord. Chem. Rev.,2007,251,2334-2353. (b) Burrell, A. K.; Officer, D. L.; Plieger, P. G. et al. Synthetic Routes to Multiporphyrin Arrays. [J] Chem. Rev.,2001,101, 2751-2796.
    [17](a) Maggini, M.; Scorranom, G. et al. Addition of azomethine ylides to C60:synthesis, characterization, and functionalization of fullerene pyrrolidines. [J] J. Am. Chem. Soc., 1993,115,9798-9799. (b) Prato, M.; Maggini, M. Fulleropyrrolidines:A Family of Full-Fledged Fullerene Derivatives. Acc.Chem. Res.,1998,31,519-526.
    [18](a) Kuciauskas, D.; Lin, S.; Seely, G. R. et al. Energy and Photoinduced Electron Transfer in Porphyrin-Fullerene Dyads. [J] J. Phys. Chem.1996,100,15926-15932. (b) Imahori, H.; Sakata, Y. Synthesis of Closely Spaced Porphyrin-Fullerene. [J] Chem. Lett., 1996,199-200. (c) Imahori, H.; Hagiwara, K.; Akiyama, T. et al. Synthesis and Photophysical Property of Porphyrin-Linked Fullerene. [J] Chem. Lett.,1995,265-266.
    [19](a) Imahori, H.; Hagiwara, K.; Aoki, M. Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C60 Dyads. [J] J. Am. Chem. Soc., 1996,118,11771-11782. (b) Maggini, M.; Karlsson, A.; Scorrano, G.; et al. Ferrocenyl fulleropyrrolidines:a cyclic voltammetry study. [J] J. Chem. Soc., Chem. Commun., 1994,589-590
    [20]Tkachenko, N. V.; Lemmetyinen, H.; Sonoda, J. et al. Ultrafast Photodynamics of Exciplex Formation and Photoinduced Electron Transfer in Porphyrin-Fullerene Dyads Linked at Close Proximity. [J] J. Phys. Chem. A.,2003,107,8834-8844.
    [21]Akimoto, S.; Yamazaki, T.; Yamazaki, I. Excitation relaxation of zinc and free-base porphyrin probed by femtosecond fluorescence spectroscopy. [J] Chem. Phys. Lett., 1999,309,177-182.
    [22]Chosrowjan, H.; Tanigichi, S.; Okada, T. Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin. [J] Chem. Phys. Lett.,1995,242,644-649.
    (1)a) Smith, K. M., Ed.; [M] Porphyrins and Metalloporphyrins, Elsevier:Amsterdam, 1975. b) Dolphin, D., [M] Ed.; The Porphyrins, Academic Presss:New York,1978. c) Leznoff, C. C., Lever, A. B. P., [M] Eds.; Phthalocyanines:Properties and Applications, VCH Publishers:New York, Vol.1-4,1989-1996. d) Mckeown, N. B. [M] Phthalocyanine Materials:Synthesis, Structure and Function, Cambridge University Press:Cambridge,1998. e) Jiang, J., [M] Ed.; Advances in Functional Phthalocyanine Materials, In Structure and Bonding, Mingos, D. M. P., Ed.; Springer-Verlag:Heidelberg, Struct. Bond.2010, Vol.135. f) Kadish, K. M., Smith, K. M., Guilard, R., [M] Eds.; The Porphyrin Handbook, Academic Press:San Diego,2000; Vols.1-10,2003; Vols.11-20.
    (2)a) Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. X-ray structure analysis of a membrane protein complex:Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis [J] J. Mol. Biol.1984,180,385-398. b) Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. [J] Nature 1985,318,618-624. c) Deisenhofer, J.; Michel, H. The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis. [J] Science.1989,245,1463-1473. d) Allen, J. P.; Feher, G.; Yeates, T.O.; Rees, D. C.; Deisenhofer, J.; Michel, H.; Huber, R. [M] Proc. Natl. Acad. Sci. U.S.A.1986,83,8589-8593. e) Barber, J.; Andersson, B. Nature 1994, 370,31-34. f) Xiong, J.; Fischer, W. M.; Inoue, K.; Nakahara, M.; Bauer, C. E. Molecular Evidence for the Early Evolution of Photosynthesis. [J] Science.2000,289, 1724-1730.
    (3)a) Ng, D. K. P.; Jiang, J. Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes. [J] Chem. Soc. Rev.1997,26,433-442. b) Jiang, J.; Kasuga, K.; Arnold, D. P. [M] In Supramolecular Photo-Sensitive and Electroactive Materials, Nalwa, H. S., Ed.; Academic Press:New York,2001; pp 113-210. c) Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. [J] Coord. Chem. Rev.2006,250,424-448. d) Jiang, J.; Ng, D. K. P. A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res.2009,42,79-88. e) Buchler, J. W.; Ng, D. K. P. [M] In The Porphyrin handbook. Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:San Diego,2000; Vols.3, pp 245-294. f) Weiss, R.; Fischer, J. [M] In The Porphyrin handbook. Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego,2003; Vols.16, pp 171-246.
    (4)a) Liu, Z.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Molecular Memories That Survive Silicon Device Processing and Real-World Operation. [J] Science 2003,302, 1543-1545. b) Shirk, J. S.; Lindle, J. R.; Bartoli, F. J.; Boyle M. E. Third-order optical nonlinearities of bis(phthalocyanines). [J] J. Phys. Chem.,1992,96,5847-5852. c) Mendonca, C. R.; Gaffo, L.; Misoguti, L.; Moreira, W. C.; Oliveira Jr., O. N.; Zilio, S. C. Characterization of dynamic optical nonlinearities in ytterbium bis-phthalocyanine solution. [J] Chem. Phys. Lett.2000,323,300-304. d) Chen, Y.; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes. [J] J. Am. Chem. Soc.2005,127,15700-15701. e) Bai, M.; Bao, M.; Ma, C.; Arnold, D. P.; Choi, M. T. M.; Ng, D. K. P.; Jiang, J. New dimeric supramolecular structure of mixed (phthalocyaninato)(porphyrinato)europium(III) sandwiches: preparation and spectroscopic characteristics. [J] J. Mater. Chem.2003,13,1333-1339.
    (5)a) Chou, J. H.; Nalwa, H. S.; Kosal, M. E.; Rakow, N. A.; Suslick, K. S. [M] In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego,2000; Vol.6, pp 43-132. b) Flow, S. R. [M] In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:San Diego,2003; Vol. 19, pp 179-190. c) De la Torre, G.; Bottari, G.; Hahn, U.; Torres, T. [M] In Structure and Bonding, Mingos, D. M. P., Ed.; Springer-Verlag:Heidelberg, Struct. Bond.2010,135, 1-44. d) Li, X.; Wang, H.; Wu, H. In Structure and Bonding, Mingos, D. M. P., [M] Ed.; Springer-Verlag:Heidelberg, Struct. Bond.2010,135,229-274.
    (6)a) Gust, D.; Moore, T. A. [M] In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:San Diego,2000; Vol.8, pp 153-190. b) Gust, D.; Moore, T. A.; Moore A. L. Mimicking Photosynthetic Solar Energy Transduction. [J] Acc. Chem. Res.2001,34,40-48. c) Aratani, N.; Kim, D. Osuka, A. Discrete Cyclic Porphyrin Arrays as Artificial Light-Harvesting Antenna. [J] Acc. Chem. Res.2009,42, 1922-1934. d) Wasielewski M. R. Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems. Acc. Chem. Res.2009,42,1910-1921. e) De la Escosura, A.; Martinez-Diaz, M. V.; Guldi, D. M.; Torres, T. Stabilization of Charge-Separated States in Phthalocyanine-Fullerene Ensembles through Supramolecular Donor-Acceptor Interactions. [J] J. Am. Chem. Soc.2006,128,4112-4118. f) D'Souza, F.; Subbaiyan, N. K.; Xie, Y.; Hill, J. P.; Ariga, K.; Ohkubo, K.; Fukuzumi, S. Anion-Complexation-Induced Stabilization of Charge Separation. [J] J. Am. Chem. Soc.,2009,131,16138-16146. g) Holten, D.; Bocian, D. F.; Lindsey, J. S. Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices. [J] Acc. Chem. Res.2002,35,57-69. h) Kim, D.; Osuka, A. Directly Linked Porphyrin Arrays with Tunable Excitonic Interactions. [J] Acc. Chem. Res.2004,37,735-745. i) Guo, M.; Yan, X.; Goodson III, T. Electron Mobility in a Novel Hyper-branched Phthalocyanine Dendrimer. [J] Adv. Mater.2008,20,4167-4171.
    (7)a) Lo, P. C.; Leng, X.; Ng, D. K. P. Hetero-arrays of porphyrins and phthalocyanines. [J] Coord. Chem. Rev.2007,251,2334-2353. b) Soares, A. R. M.; Martinez-diaz, M. V.; Bruckner, A.; Pereira, A. M. V. M.; Tome, J. P. A.; Alonso, C. M. A.; Faustino, M. A. F.; Neves, M. G. P. M. S.; Tome, A. C.; Silva, A. M. S.; Cavaleiro, J. A. S.; Torres, T.; Guldi, D. M. Synthesis of Novel N-Linked Porphyrin-Phthalocyanine Dyads. [J] Org. Lett.2007,9,1557-1560. c) Kameyama, K.; Satake, A.; Kobuke, Y. Light-harvesting composites of directly connected porphyrin-phthalocyanine dyads and their coordination dimmers. [J] Tetrahedron Lett.2004,45,7617-7620. d) Tome, J. P. C.; Pereira, A. M. V. M.; Alonso, C. M. A.; Neves, M. G. P. M. S.; Tomes, A. C.; Silva, A. M. S.; Cavaleiro, J. A. S.; Martinez-diaz, M. V.; Torres, T.; Rahman, G.M. A.; Ramey, J.; Guldi, D. M. Synthesis and Photophysical Studies of New Porphyrin-Phthalocyanine Dyads with Hindered Rotation. [J] Eur. J. Org. Chem.2006, 257-267. e) Ali, H.; van Lier, J. E. An efficient method for the synthesis of C-C connected phthalocyanine-porphyrin oligomers. [J] Tetrahedron Lett.2009,50, 1113-1116.
    (8)a) Winters, M. U.; Dahlstedt, E.; Blades, H. E.; Wilson, C. J.; Frampton, M. J.; Anderson, H. L.; Albinsson, B. Probing the Efficiency of Electron Transfer through Porphyrin-Based Molecular Wires. [J] J. Am. Chem. Soc.2007,129,4291-4297. b) Cho, H. S.; Rhee, H.; Song, J. K.; Min, C. K.; Takase, M.; Aratani, N.; Cho, S.; Osuka, A.; Joo, T.; Kim, D. Excitation Energy Transport Processes of Porphyrin Monomer, Dimer, Cyclic Trimer, and Hexamer Probed by Ultrafast Fluorescence Anisotropy Decay. [J] J. Am. Chem. Soc.2003,125,5849-5860. c) Peng, X.; Aratani, N.; Takagi, A.; Matsumoto, T.; Kawai, T.; Hwang, I. W.; Ahn, T. K.; Kim, D.; Osuka, A. A Dodecameric Porphyrin Wheel. [J] J. Am. Chem. Soc.2004,126,4468-4469. d) Li, X.; Ng, D. K. P. Self-Assembly of meso-Pyridylporphyrins and Zinc Phthalocyanines Through Axial Coordination. [J] Eur. J. Inorg. Chem.2000,1845-1848. e) Li, X.; Zhou, Q. F.; Tian, H. J.; Xu, H. J.; Synthesis and photophysical properties of porphyrin-phthalocyanine heterodimer linked by piperazine. [J] Chin. J. Chem.1998, 16,97-108. f) Li, L.; Shen, S.; Yu, Q.; Zhou, Q.; Xu, H. Photoinduced electron transfer and charge separation in anthraquinone-substituted porphyrin-phthalocyanine heterodimer. [J] J. Chem. Commun.1991,619-620.
    (9)a) Capobianchi, A.; Ercolani, C.; Paoletti, A. M.; Pennesi, G.; Rossi, G.; Chiesi-Villa, A.; Rizzoli, C. Interligand carbon-carbon sigma-bond breaking and repair in a "stapled" bis(phthalocyaninato)titanium complex. Synthesis, characterization, and electrical conductivity properties of oxidation products of bis(phthalocyaninato)titanium(Ⅳ) and bis(phthalocyaninato)tin(Ⅳ) and x-ray crystal structure of [Pc2Ti](I3)0.66. [J] Inorg. Chem.1993,32,4605-4611. b) Galmiche, L.; Mentec, A.; Pondaven, A.; L'Her, M. Charge transfer complexes between carbazole and lutetium bisphthalocyanine. [J] New J. Chem.2001,25,1148-1151. c) Collman, J. P.; Kendall, J. L.; Chen, J. L.; Collins, K. A.; Marchon, J. C. Formation of Charge-Transfer Complexes from Neutral Bis(porphyrin) Sandwiches. [J] Inorg. Chem.,2000,39,1661-1667. d) Girolami, G. S.; Hein, C. L.; Suslick, K. S. A Zirconium Bis(porphyrinate) Sandwich Complex with an Appended Quinone. [J] Angew. Chem.1996,108,1310-1312; Angew. Chem. Int. Ed. Engl.1996,35,1223-1225. (f) Buchler, J. W.; Heinz, G Cerium(1V) Sandwich Complexes with Porphyrin Ligands Linked by Aliphatic and Quinone-Containing Bridges [J] Chem. Ber.,1996,129,1073-1081.
    (10)Bian, Y.; Chen, X.; Wang, D.; Choi, C.-F.; Zhou, Y.; Zhu, P.; Ng, D. K. P.; Jiang, J.; Weng, Y.; Li, X. Porphyrin-Appended Europium(III) Bis(phthalocyaninato) Complexes: Synthesis, Characterization, and Photophysical Properties. [J] Chem. Eur. J.2007,13, 4169-4177.
    (11)Ballesteros, B.; Torre, G.; Sharer, A.; Hausmann, A.; Herranz, M. A.; Guldi, D. M.; Torres, T. Lanthanide(III) Bis(phthalocyaninato)-[60]Fullerene Dyads:Synthesis, Characterization, and Photophysical Properties. [J] Chem. Eur. J.2010,16,114-125.
    (12)Wang, R.; Li, R.; Li, Y.; Zhang, X.; Zhu, P.; Lo, P C.; Ng, D. K. P.; Pan, N.; Ma, C.; Kobayashi, N.; Jiang, J. Controlling the Nature of Mixed (Phthalocyaninato)(porphyrinato) Rare-Earth(iii) Double-Decker Complexes:The Effects of Nonperipheral Alkoxy Substitution of the Phthalocyanine Ligand. [J] Chem. Eur. J.2006,12,1475-1485.
    (13)Zhang, Y.; Cai, X.; Yao, P.; Xu, H.; Bian, Y.; Jiang, J. Location of the Hole and Acid Proton in Neutral Nonprotonated and Protonated Mixed (Phthalocyaninato)(porphyrinato) Yttrium Double-Decker Complexes:Density Functional Theory Calculations. [J] Chem. Eur. J.2007,13,9503-9514.
    (14)Bao, M.; Bian, Y.; Rintoul, L.; Wang, R.; Arnold, D. P.; Ma C.; Jiang, J. Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes:(Part 10) The infrared and Raman characteristics of phthalocyanine in heteroleptic bis(phthalocyaninato) rare earth complexes with decreased molecular symmetry. [J] Vib. Spectrosc.2004,34, 283-291.
    (15)Zhang, X.; Muranaka, A.; Lv, W.; Zhang, Y.; Bian, Y.; Jiang, J.; Kobayashi, N. Optically Active Mixed Phthalocyaninato-Porphyrinato Rare-Earth Double-Decker Complexes:Synthesis, Spectroscopy, and Solvent-Dependent Molecular Conformations. [J] Chem. Eur. J.2008,14,4667-4674.
    (16)a) Yan, X.; Holten. D. Photophysics of a cerium(IV)-porphyrin sandwich complex: picosecond deactivation via neutral exciton or charge-transfer excited states. [J] J. Phys. Chem.1988,92,409-414. b) Ishii, K.; Ohba, Y.; Iwaizumi, M.; Yamauchi. S. Studies on Monomers and Dimers of Y(Ⅲ) and La(Ⅲ) Porphyrin Complexes by Time-Resolved Electron Paramagnetic Resonance. [J] J. Phys. Chem.1996,100, 3839-3846. c) Yoshinoand, K.; Lee, S. B.; Sonoda, T.; Kawagishi, H.; Hidayat, R.; Nakayama, K.; Ozaki, M.; Ban, K.; Nishizawa, K.; Ohta, K.; Shirai, H. Optical properties of substituted phthalocyanine rare-earth metal complexes. [J] J. Appl. Phys. 2000,88,7137-7143.
    (17)a) Murov, S. L.; Carmichael, I.; Hug, G. L. [M] Handbook of Photochemistry,2nd ed.; Marcel Dekker:New York,1993. b) Tsuchiya, S. Specific emission spectra observed in dodecaphenylporphyrin. [J] Chem. Phys. Lett.1990,169,608-610. c) Gentemann, S.; Medforth, C. J.; Forsyth, T. P.; Nurco, D. J.; Smith, K. M.; Fajer, J.; Holten, D. Photophysical Properties of Conformationally Distorted Metal-Free Porphyrins. Investigation into the Deactivation Mechanisms of the Lowest Excited Singlet State. [J] J. Am. Chem. Soc.1994,116,7363-7368. d) Yan, X. Z.; Goodson III, T.; Imaoka, T.; Yamamoto, K. Up-Converted Emission in a Series of Phenylazomethine Dendrimers with a Porphyrin Core. [J] J. Phys. Chem. B.2005,109,9321-9329. e) Xu, W.; Chen, H.; Wang. Y.; Zhao, C.; Li, X.; Wang, S.; Weng, Y.Photoinduced Electron and Energy Transfer in Dyads of Porphyrin Dimer and Perylene Tetracarboxylic Diimide. [J] ChemPhysChem.2008,9,1409-1415. f) Seybold, P. G.; Gouterman, M. [M] J. Mol. Spectrosc.,1969,31,1-13.
    (18)Zhang, Y.; Zhang, X.; Liu, Z.; Bian, Y.; Jiang, J. Structures and Properties of 1,8,15,22-Tetrasubstituted Phthalocyaninato-Lead Complexes:The Substitutional Effect Study Based on Density Functional Theory Calculations. [J] J. Phys. Chem. A. 2005,109,6363-6370.
    (19)Cai, X.; Zhang, Y.; Qi, D.; Jiang, J. Density Functional Theory Study on the Semiconducting Properties of Metal Phthalocyanine Compounds:Effect of Axially Coordinated Ligand. [J] J. Phys. Chem. A.2009,113,2500-2506.
    (20)Qi, D.; Zhang, Y.; Cai, X.; Jiang, J.; Bai, M. Inner hydrogen atom transfer in benzo-fused low symmetrical metal-free tetraazaporphyrin and phthalocyanine analogues:Density functional theory studies. [J] J. Mol. Graph. Mod.2009,27, 693-700.
    (21)Ma, R.; Guo, P.; Cui, H.; Zhang, X.; Nazeeruddin, M. K.; Grtzel, M. Substituent Effect on the Meso-Substituted Porphyrins:Theoretical Screening of Sensitizer Candidates for Dye-Sensitized Solar Cells. [J] J. Phys. Chem. A,2009,113,10119-10124.
    (22)Zhang, Y.; Cai, X.; Qi, D.; Yao, P.; Bian, Y; Jiang, J. Methyloxy Substituted Heteroleptic Bis(phthalocyaninato) Yttrium Complexes:Density Functional Calculations. [M] ChemPhysChem.2008,9,781-792.
    (23)Zhang, Y.; Cai, X.; Zhou, Y.; Zhang, X.; Xu, H.; Liu, Z.; Li, X.; Jiang, J. Structures and Spectroscopic Properties of Bis(phthalocyaninato) Yttrium and Lanthanum Complexes: Theoretical Study Based on Density Functional Theory Calculations. [J] J. Phys. Chem. A.2007,111,392-400.
    (24)Zhang, Y.; Cai, X.; Qi, D.; Bian, Y.; Jiang, J. Charge Transfer Properties of Bis(phthalocyaninato) Rare Earth (III) Complexes:Intrinsic Ambipolar Semiconductor for Field Effect Transistors. [M] J. Phys. Chem. C.2008,112,14579-14588.
    (25)Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. General Performance of Density Functionals. [J] J. Phys. Chem. A,2007,111,10439-10452.
    (26)Bian, Y.; Li, L.; Wang, D.; Choi, C.; Cheng, Y. Y, D.; Zhu, P.; Li, R.; Dou, J.; Wang, R.; Pan, N. Ng, D. K. P.; Kobayashi, N.; Jiang, J. Synthetic, Structural, Spectroscopic, and Electrochemical Studies of Heteroleptic Tris(phthalocyaninato) Rare Earth Complexes. [J] Eur. J. Inorg. Chem.2005,2612-2618.
    (27)Zhu, P.; Pan, N.; Li, R.; Dou, J.; Zhang, Y.; Cheng, D. Y. Y.; Wang, D.; Ng, D. K. P.; Jiang, J. Electron-Donating Alkoxy-Group-Driven Synthesis of Heteroleptic Tris(phthalocyaninato) Lanthanide(Ⅲ) Triple-Deckers with Symmetrical Molecular Structure. [J] Chem. Eur. J.2005,11,1425-1432.
    (28)Stites, J. G.; McCarty, C. N.; Quill, L. L. The Rare Earth Metals and their Compounds. Ⅷ. An Improved Method for the Synthesis of Some Rare Earth Acetylacetonates. [J] J. Am. Chem. Soc.1948,70,3142-3143.
    (29)Barnett, G. H.; Hudson, M. F.; Smith, K. M. Concerning meso-tetraphenylporphyrin purification. [J] J. Chem. Soc. Perkin. Trans.1.1975,1401-1403.
    (30)a) Little, R. G The Synthesis of Covalently Linked Tetraarylporphyrin Dimers. [J] J. Heter. Chem.1978,15,203. b) Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130, 11623-11630.
    (31)a) Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y. Sequential Energy and Electron Transfer in an Artificial Reaction Center:Formation of a Long-Lived Charge-Separated State. [J] J. Am. Chem. Soc.2000,122,6535-6551. b) Imahori, H.; Tamaki, K.; Araki, Y.; Sekiguchi, Y.; Ito, O.; Sakata, Y.; Fukuzumi, S. Stepwise Charge Separation and Charge Recombination in Ferrocene-meso,meso-Linked Porphyrin Dimer-Fullerene Triad. [J] J. Am. Chem. Soc.2002,124,5165-5174.
    (32)Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. [J] Phys. Rev. B.1988,37,785-789.
    (33)Dunning J, T. H.; Hay, P. J. [M] in Modern Theoretical Chemistry, Schaefer Ⅲ, H. F. Ed.; Plenum:New York,1976. Vol.3.1-28.
    (34)Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. [J] J. Chem. Phys.1985,82, 270-283.
    (35)Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. [J] J. Chem. Phys.1985,82,284-298.
    (36)Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. [J] J. Chem. Phys.1985, 82,299-310.
    (37)Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. [J] J. Comp. Chem. 1996,17,49-56.
    (38)Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K.N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R. Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, Revision B.05; Gaussian, Inc.:Pittsburgh, PA, 2003.
    (39)Mercury 2.2, Cambridge Crystallographic Data Centre,12 Union Road, Cambridge, England.
    (40)Wang, Q.; Li, Y.; Yan, X. Z. Rathi, M.; Ropp, M.; Galipeau, D.; Jiang, J. Organic photovoltaic cells made from sandwich-type rare earth phthalocyaninato double and triple deckers. [J] Appl. Phys. Lett.2008,93,073303-073305.
    (1)Saleh, B. E. A.; Teich, M. C. [M] Fundamentals of Photonics, Wiley, New York,1991.
    (2)Boyd, R. W. [M] Nonlinear Optics, Academic Press, San Diego, CA,1992
    (3)Zyss, J. Ed.; [M] Molecular Nonlinear Optics:Materials, Physics and Devices, Academic Press, New York,1994.
    (4)Hedekvist, P. O.; Bhardwaj, A.; Vahala, K.; Andersson, H. Advanced All-Optical Logic Gates on a Spectral Bus. [J] Appl. Optics 2001,40,1761-1766.
    (5)Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; E. Mhuircheartaigh, M. N. Nonlinear Optical Properties of Porphyrins. [J] Adv. Mater. 2007,19,2737-2774.
    (6)Torre, G.; Vazquez, P.; Agullo-Lopez, F.; Torres, T. Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. [J] Chem. Rev.2004,104,3723-3750.
    (7)Unnikrishnan, K. P.; Thomas, J.; Nampoori, V. P. N.; Vallabhan C. P. G. Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique. [J] Appl. Phys. B.2002,75,871-874.
    (8)De Boni, L.; Gaffo,L;. Misoguti, L.; Mendonca, C.R. Nonlinear absorption spectrum of ytterbium bis-phthalocyanine solution measured by white-light continuum Z-scan technique. [J] Chemical Physics Letters 2006,419,417-420.
    (9)Unnikrishnan, K. P.; Thomasl, J.; Nampoori, V. P. N.; Vallabhan, C. P. G. Nonlinear absorption in certain metal phthalocyanines at resonant and near resonant wavelengths. [J] Optics Communications.2003,217,269-274.
    (10)Ceyhan, T.; Ozdag, M. A.; Salih, B.; Erbil, M. K.; Elmal1, A.; Ozkaya, A. R.; Bekaroglu, O. Synthesis, Characterization, Nonlinear Absorption and Electrochromic Properties of Double-Decker Octakis(mercaptopropylisobutyl-POSS) phthalocyanina tolanthanide(Ⅲ) Complexes [J] Eur. J. Inorg. Chem.2008,4943-4950.
    (11)Saydam, S.; Yilmaz, E.; Bagci, F.; Yaglioglu, H. G.; Elmali, A.; Bekir Salih, Bekaroglu, O. Synthesis, Characterization, Electrochemical, and Optic Limiting Properties of Novel CoⅡ, CuⅡ, and Double-Decker LuⅢ Phthalocyanines. [J] Eur. J. Inorg. Chem. 2009,2096-2103.
    (12)Unnikrishnan, K. P.; Thomas, J.; Paul, B.; Kurian, A.; Gopinath, P.; Nampoori, V. P. N.; Vallabhan, C. P. G. Nonlinear Absorption and Optical Limiting In Solutions Of Some Rare Earth Substituted Phthalocyanines. [J] J. Nonlinear Opt. Phys. Mater,2001,10, 113-121.
    (13)Yaglioglu, H. G.; Arslan, M.; Abdurrahmanoglu, S.; Unver, H.; Elmali, A.; Bekaroglu, O. The nonlinear refraction and nonlinear absorption in 4-(4,6-diaminopyrimidin-2-ylthio) substituted double-decker Lu(III) phthalocyanine. [J] J. Phys. Chem. Solids. 2008,69,161-167.
    (14)Ceyhan, T.; Yaglioglu, G.; Unver, H.; Salih, B.; Erbil, M. K.; Elmali, A.; Bekaroglu, O. Synthesis, Characterization and Optical Limiting Properties of Novel Ball-type Four tert-Butylcalix[4]arene Bridged Double-decker Lutetium(Ⅲ) and Indium(Ⅲ) Phthalocyanines. [J] Macroheterocycles.2008,1,44-49.
    (15)Huang, W.; Li, Y.; Xiang, H.; Yang, H.; Gong, Q.; Huang, Y.; Huang, C.; Jiang, J. Ultrafast third-order optical nonlinearity of several sandwich-type phthalocyaninato and porphyrinato europium complexes. [J] Chin. Phys,2005,14,2226-2230.
    (16)Zhang, X.; Li, Y.; Qi, D.; Jiang, J.; Yan, X.; Bian, Y. Linkage Dependence of Intramolecular Fluorescence Quenching Process in Porphyrin-Appended Mixed (Phthalocyaninato)(Porphyrinato) Yttrium(Ⅲ) Double-Decker Complexes. [J] J. Phys. Chem. B,2010,114 (41),13143-13151.
    (17)Auger, A.; Blau, W. J.; Burnham, P. M.; Chambrier, I.; Cook, M. J.; Isare, B.; Nekelson, F.; O'Flaherty, S. M. Nonlinear absorption properties of some 1,4,8,11,15,18,22,25-octaalkylphthalocyanines and their metallated derivatives. [J] J. Mater. Chem.2003, 13,1042-1047.
    (18)Henari, F. Z.; Blau, W. J.; Milgrom, L. R.; Yahioglu, G.; Phillips, D.; Lacey, J. A. Third-order optical non-linearity in Zn(Ⅱ) complexes of 5,10,15,20-tetraarylethynyl-substituted porphyrins. [J] Chem. Phys. Lett.1997,267,229-233.
    (19)Wen, T. C.; Chen, S. P.; Tsai, C. Y. Substituted tetra-2,3-pyrazinoporphyrazinino copper(II) complexes:synthesis and nonlinear optical refractive and absorptive properties. [J] Synth. Met.1998,97,105-112.
    (20)Barbosa Neto, N. M.; Oliveira, S. L.; Misoguti, L.; Mendonca, C. R.; Goncalves, P. J.; Borissevitch, I. E.; Dinelli, L. R.; Romualdo, L. L.; Batista, A. A.; Zilio. S. C. Singlet excited state absorption of porphyrin molecules for pico- and femtosecond optical limiting application. [J] J. Appl. Phys.2006,99,123103-123106.
    (21)Notaras, E. G. A.; Fazekas, M.; Doyle, J. J.; Blau, W. J.; Senge, M. O. A2B2-type push-pull porphyrins as reverse saturable and saturable absorbers. [J] Chem. Commun. 2007,2166-2168.
    (22)Sutherland, R. L. [M] Handbook of Nonlinear Optics, Marcel Dekker, New York, USA 2003.
    [1]a) Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. [J] Chem. Rev.,1992,92,435-461. b) Balzani, V.; Scandola, F. [M] Supramolecular Photochemistry, Ellis Horwood, New York,1991. c) Gust, D.; Moore, T. A.; Moore, A. L. Molecular mimicry of photosynthetic energy and electron transfer. [J] Acc. Chem. Res.,1993,26,198-205.
    [2]Gust, D.; Moore, T. A.; Moore, A. L. Mimicking Photosynthetic Solar Energy Transduction. [J] Acc. Chem. Res.,2001,34,40-48.
    [3]Weiss, E. A.; Tauber, M. J.; Kelley, R. F.; Ahrens, M. J.; Ratner, M. A.; Wasielewski, M. R. Conformationally Gated Switching between Superexchange and Hopping within Oligo-p-phenylene-Based Molecular Wires. [J] J. Am. Chem. Soc.,2005,127, 11842-11850.
    [4]Lo, P. C.; Leng, X.; Ng, D. K. P. Hetero-arrays of porphyrins and phthalocyanines. [J] Coord. Chem. Rev.,2007,251,2334-2353.
    [5]Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. X-ray structure analysis of a membrane protein complex:Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. [J] J. Mol. Biol.,1984,180,385-398.
    [6]Hutter, M. C.; Hughes, J. M.; Reimers, J. R.; Hush, N. S. Modeling the Bacterial Photosynthetic Reaction Center.2. A Combined Quantum Mechanical/Molecular Mechanical Study of the Structure of the Cofactors in the Reaction Centers of Purple Bacteria. [J] J. Phys. Chem. B.,1999,103,4906-4915.
    [7]a) Buchler, J. W.; Ng, D. K. P. [M] In The Porphyrin handbook. Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:San Diego,2000; Vols.3, pp 245-294. b) Jiang, J.; Kasuga, K.; Arnold, D. P. [M] In Supramolecular Photo-Sensitive and Electroactive Materials, Ed.:Nalwa, H. S, Academic Press:New York,2001, pp 113-210. c) Jiang, J.; Ng, D. K. P. A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res.2009,42,79-88.
    [8]Weiss, R.; Fischer, J. [M] In The Porphyrin handbook, Eds.:Kadish, K. M.; Smith, K. M.; Guilard, R. Academic Press:San Diego,2003, Vols.16, pp 171-246.
    [9]Capobianchi, A.; Ercolani, C.; Paoletti, A. M.; Pennesi, G.; Rossi, G.; Chiesi-Villa, A.; Rizzoli, C. Interligand carbon-carbon sigma-bond breaking and repair in a "stapled" bis(phthalocyaninato)titanium complex. Synthesis, characterization, and electrical conductivity properties of oxidation products of bis(phthalocyaninato)titanium(IV) and bis(phthalocyaninato)tin(Ⅳ) and x-ray crystal structure of [Pc2Ti](I3)0.66. [J] Inorg. Chem.,1993,32,4605-4611.
    [10]Galmiche, L.; Mentec, A.; Pondaven, A.; L'Her, M. Charge transfer complexes between carbazole and lutetium bisphthalocyanine. [J] New J. Chem.,2001,25,1148-1151.
    [11]Collman, J. P.; Kendall, J. L.; Chen, J. L.; Collins, K. A.; Marchon, J. C. Formation of Charge-Transfer Complexes from Neutral Bis(porphyrin) Sandwiches. [J] Inorg. Chem., 2000,39,1661-1667.
    [12]Girolami, G. S.; Hein, C. L.; Suslick, K. S. A Zirconium Bis(porphyrinate) Sandwich Complex with an Appended Quinone. [J] Angew. Chem. Int. Ed. Engl.,1996,35, 1223-1225.
    [13]Buchler, J. W.; Heinz, G. Cerium(1Ⅴ) Sandwich Complexes with Porphyrin Ligands Linked by Aliphatic and Quinone-Containing Bridges [J] Chem. Ber.,1996,129, 1073-1081.
    [14]Bian, Y.; Chen, X.; Wang, D.; Choi, C. F.; Zhou, Y.; Zhu, P.; Ng, D. K. P.; Jiang, J.; Weng, Y.; Li, X. Porphyrin-Appended Europium(Ⅲ) Bis(phthalocyaninato) Complexes: Synthesis, Characterization, and Photophysical Properties. [J] Chem. Eur. J.,2007,13, 4169-4177.
    [15]Zhang, X.; Li, Y.; Qi, D.; Jiang, J.; Yan, X.; Bian, Y. Linkage Dependence of Intramolecular Fluorescence Quenching Process in Porphyrin-Appended Mixed (Phthalocyaninato)(Porphyrinato) Yttrium(Ⅲ) Double-Decker Complexes. [J] J. Phys. Chem. B.,2010,114,13143-13151.
    [16]Smirnov, A. Y.; Mourokh, L. G.; Ghosh, P. K.; Nori, F. High-Efficiency Energy Conversion in a Molecular Triad Connected to Conducting Leads. [J] J. Phys. Chem. C., 2009,113,21218-21224.
    [17]Nobukuni, H.; Tani, F.; Shimazaki, Y.; Naruta, Y.; Ohkubo, K.; Nakanishi, T.; Kojima, T.; Fukuzumi, S.; Seki, S. Anisotropic high electron mobility and photodynamics of a self-assembled porphyrin nanotube including C60 molecules. [J] J. Phys. Chem. C.,2009, 113,19694-19699.
    [18]Ballesteros, B.; Torre, G.; Sharer, A.; Hausmann, A.; Herranz, M. A.; Guldi, D. M.; Torres, T. Lanthanide(Ⅲ) Bis(phthalocyaninato)-[60]Fullerene Dyads:Synthesis, Characterization, and Photophysical Properties. [J] Chem. Eur. J.,2010,16,114-125.
    [19]Adler, A. D.; Longo, F. R.; Shergalis, W. Mechanistic Investigations of Porphyrin Syntheses.Ⅰ. Preliminary Studies on ms-Tetraphenylporphin. [J] J. Am. Chem. Soc., 1964,86,3145-3149.
    [20]Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. A simplified synthesis for meso-tetraphenylporphine. [J] J. Org.Chem.,1967,32,476-476.
    [21]Lindsey, J. S.; Hsu, H. C.; Schreiman, I. C. Synthesis of tetraphenylporphyrins under very mild conditions. [J] Tetrahedron Lett.,1986,27,4969-4970.
    [22]Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. Rothemund and Adler-Longo reactions revisited:synthesis of tetraphenylporphyrins under equilibrium conditions. [J] J. Org. Chem.,1987,52,827-836.
    [23]Maggini, M.; Scorranom, G.; Prato, M. Addition of azomethine ylides to C60:synthesis, characterization, and functionalization of fullerene pyrrolidines. [J] J. Am. Chem. Soc., 1993,115,9798-9799.
    [24]Prato, M.; Maggini, M. Fulleropyrrolidines:A Family of Full-Fledged Fullerene Derivatives. Acc. Chem. Res.,1998,31,519-526.
    [25]Wang, R.; Li, R.; Li, Y.; Zhang, X.; Zhu, P.; Lo, P. C.; Ng, D. K. P.; Pan, N.; Ma, C.; Kobayashi, N.; Jiang, J. Controlling the Nature of Mixed (Phthalocyaninato)(porphyrinato) Rare-Earth(ⅲ) Double-Decker Complexes:The Effects of Nonperipheral Alkoxy Substitution of the Phthalocyanine Ligand. [J] Chem. Eur. J.,2006,12,1475-1485.
    [26]Zhang, X.; Muranaka, A.; Lv, W.; Zhang, Y.; Bian, Y.; Jiang, J.; Kobayashi, N. Optically Active Mixed Phthalocyaninato-Porphyrinato Rare-Earth Double-Decker Complexes:Synthesis, Spectroscopy, and Solvent-Dependent Molecular Conformations. [J] Chem. Eur. J.,2008,14,4667-4674.
    [27]Imahori, H.; Hagiwara, K.; Aoki, M. Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C60 Dyads. [J] J. Am. Chem. Soc.,1996,118, 11771-11782.
    [28]Tkachenko, N. V.; Lemmetyinen, H.; Sonoda, J.; Ohkubo, K.; Sato, T.; Imahori, H.; Fukuzumi, S. J. Ultrafast Photodynamics of Exciplex Formation and Photoinduced Electron Transfer in Porphyrin-Fullerene Dyads Linked at Close Proximity. [J] Phys. Chem. A.,2003; 107,8834-8844.
    [29]Yan, X.; Holten, D. Photophysics of a cerium(IV)-porphyrin sandwich complex: picosecond deactivation via neutral exciton or charge-transfer excited states. [J] J. Phys. Chem.,1988,92,409-414.
    [30]Bilsel, O.; Rodriguez, J.; Holten, D.; Picosecond relaxation of strongly coupled porphyrin dimers. [J] J. Phys. Chem.,1990,94,3508-3512.
    [31]Yu, J.; Wang, X.; Zhang, B.; Weng, Y.; Zhang, L. Prolonged Excited-State Lifetime of Porphyrin Due to the Addition of Colloidal SiO2 to Triton X-100 Micelles. [J] Langmuir. 2004,20,1582-1586.
    [32]Chen, X.; Zhang, L.; Weng, Y.; Du, L. C.; Ye, M. P.; Yang, G. Z.; Fujii, R.; Rondonuwu, F. S.; Koyama, Y.; Wu, Y. S.; Zhang, J. P. Protein Structural Deformation Induced Lifetime Shortening of Photosynthetic Bacteria Light-Harvesting Complex LH2 Excited State. [J] Biophys. J.,2005,88,4262-4273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700