低维锗基纳米材料掺杂改性的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锗(Ge)是最早获得应用的一种半导体材料,具有优异的物理、化学特性以及与硅基材料良好的兼容性,一直以来都是制造红外探测器、光导纤维、高速微电子器件、集成电路和热电设备的首选材料之一。随着科技的飞速发展,电子器件逐步转向集成化、多功能化和微型化,具有低维度、小尺寸的纳米器件逐渐成为微电子学和光电子学发展的新趋势。Ge的激子玻尔半径远大于硅,表明其具有更为显著的量子尺寸效应。因此,低维度和小尺寸的Ge基纳米材料将会展现出更多奇异的特性。
     一维的Ge基纳米材料具有优异的光电特性,在制备高性能的场效应晶体管、生化传感器、逻辑门和太阳能电池等方面有良好的应用前景。近年来,大量的理论和实验工作已经致力于一维Ge基纳米材料的制备、微结构表征以及物化特性分析,并取得了许多突破性的进展。尽管如此,对一维Ge基纳米材料的异质改性问题,目前仍缺乏系统的研究和深入的认识。针对这一问题,本文应用基于密度泛函理论框架的第一性原理投影缀加波方法,对完整、缺陷、表面吸附和替换掺杂的一维Ge基纳米材料(纳米线和纳米带)的微结构、稳定性、电子特性和磁性进行了系统和深入研究,得到了一些重要结论。
     (1)Al、P吸附Ge纳米线的研究。采用第一性原理投影缀加波方法,重点讨论了不同吸附构型和浓度下,Al和P表面吸附对Ge纳米线电子结构的影响,并与Al、P替换掺杂Ge纳米线的相关性质进行比较。结果表明:Al原子优先吸附于纳米线的表面八边形洞位(MO),吸附后并不破坏邻近的Ge-Ge键;而P原子则优先吸附于纳米线的表面五边形共用桥位(Bb),使其下方Ge-Ge键断裂的同时,形成了新的Ge-P-Ge键。高吸附浓度下,Al和P吸附都在纳米线能带结构中产生一条半填充的杂质诱导电子带,导致Ge纳米线出现“半导体~金属”转变;随着Al(P)吸附浓度的减小,杂质诱导电子带逐渐变平,并最终位于费米能级的下方(上方),这导致Ge纳米线又出现“金属~半导体”转变。在Al、P吸附的Ge纳米线中,杂质诱导电子带分别位于未占据电子带底部和占据电子带顶部,这与传统p型(A1)和n型(P)半导体掺杂遵循的受主和施主机制完全不同。此反常的能带调制行为产生原因可能为:杂质原子只简单的吸附于Ge纳米线表面,故主要与表面Ge原子未完全填充的悬挂键电子态相作用。此外,形成的Al-Ge键主要表现为共价键合特征,而P-Ge键则表现出共价键合和离子键合的双重特征。
     (2)过渡金属原子吸附Ge纳米线的研究。采用自旋极化的第一性原理投影缀加波方法,系统研究了10种不同3d过渡金属原子吸附的Ge纳米线的微结构、稳定性、电子特性和磁性。结果表明:Ti、V、Cr、Mn、Fe、Co、Ni、Cu和Zn原子都最优先吸附于纳米线的表面六边形洞位(HH),而Sc原子则优先吸附于纳米线表面五边形与六边形共用Ge原子上方(Top)。最稳定构型下,过渡金属吸附原子的结合能随‘d’电子数的变化趋势与3d过渡金属吸附的(8,0)碳纳米管一致,且与碳纳米管相比,过渡金属原子更容易吸附于Ge纳米线表面。具有较好导电性的金属,如Cu和Zn,与纳米线结合较弱,而Ti、V、Fe、Co和Ni则与纳米线产生较强的键合。不同种类的过渡金属原子吸附可使Ge纳米线展现出各种各样的电子特性和磁性,如非磁金属(Sc或Cu吸附),非磁半导体(Ni或Zn吸附),弱铁磁金属(Ti或V吸附),铁磁半导体(Cr吸附),以及在自旋电子学领域更具有实用价值的半金属铁磁体(Mn、Fe或Co吸附)。对于过渡金属吸附的磁性Ge纳米线而言,其磁机制主要起源于过渡金属3d轨道的自旋劈裂,与此同时,过渡金属还诱导邻近Ge原子产生少量反平行的磁化密度。对具有半金属铁磁性的Mn、Fe和Co吸附的Ge纳米线,继续采用DFT+U方法深入研究了其半金属态的稳定性范围,在考虑原子占据位库仑排斥作用的影响后,发现Mn和Co吸附纳米线的半金属态较Fe吸附纳米线的要更为充沛。
     (3)二维蜂巢Ge、完整和缺陷Ge纳米带的研究。采用第一性原理投影缀加波方法,系统研究了二维蜂巢Ge、完整和缺陷的AGeNRs和ZGeNRs的微结构、稳定性、电子特性和磁性。结果表明:稳定的二维蜂巢Ge是具有皱褶的,并表现出类似石墨烯的零带隙半导体特征,其电子和空穴能带线性地交叉于费米能级,在靠近布里渊区的K点区域,电荷载流子类似“无质量”的狄拉克费米子。完整的AGeNRs是非磁的半导体,其能隙随带宽的增加表现出一个周期性的振荡衰减花样,这使得AGeNRs按其带宽分为不同三类;完整的ZGeNRs具有稳定的反铁磁半导体基态,其能隙随带宽的增加单调减小,净自旋电荷密度主要由纳米带边缘Ge原子的π/π*电子态贡献,且相对边缘的Ge原子具有反平行的磁排列。原子缺陷(空位或空位对)的引入尽管并不能在AGeNRs中引发磁性,但仍可有效地调整纳米带的能隙。对ZGeNRs而言,原子缺陷的引入则可使其由原有的反铁磁半导体转变为反铁磁金属或铁磁金属,从而能更好用于电子传导和自旋存储设备。
     (4)过渡金属(Cr、Mn、Fe和Co)吸附的二维蜂巢Ge及其扶手椅型Ge纳米带的研究。第一性原理计算结果表明:不管是单边吸附还是双边吸附,Cr、Mn、Fe和Co都优先结合于二维蜂巢Ge的六边形洞位。根据吸附原子种类和吸附密度的不同,非磁零带隙的二维蜂巢Ge可转变为铁磁金属或反铁磁金属。对AGeNRs的吸附研究中,Cr、Mn、Fe和Co总是优先吸附于靠近纳米带边缘的六边形洞位。除Co吸附的纳米带始终保持非磁基态外,根据带宽、吸附原子种类和吸附密度的不同,Cr、Mn和Fe吸附的Ge纳米带则具有稳定的铁磁或反铁磁态。此外,Cr和Mn吸附还使一些纳米带转变为铁磁或亚铁磁的半金属,在考虑原子占据位库仑排斥作用影响后,我们发现Cr吸附的纳米带的半金属基态与Mn吸附的纳米带相比要更加充沛,故更适合用于自旋电子学设备。
     (5)N、B单掺杂和共掺杂不同形状和宽度Ge纳米带的稳定性、电子特性和磁性研究。我们的第一性原理计算结果表明:无论是AGeNRs还是ZGeNRs,边缘Ge原子总是最容易被杂质原子替代。单原子N掺杂或单原子B掺杂都可在AGeNRs中诱发“半导体~金属”过渡;然而,N和B共掺杂于AGeNRs边缘时,由于有效的电荷补偿,AGeNRs仍可保持原有的半导体性。单原子N掺杂或单原子B掺杂通常可使具有反铁磁半导体性质的ZGeNRs转变为铁磁半导体,此“反铁磁~铁磁”转变主要由局域于纳米带掺杂边缘的π/π*电子态的扰动引起;一些单原子掺杂的ZGeNRs还可以表现出半金属铁磁性质。双原子掺杂(无论N-N, B-B和N-B构型)于ZGeNRs的两个边缘时,ZGeNRs原有的反铁磁简并被破坏,最终转变为非磁半导体。总体而言,N掺杂、B掺杂以及N-B共掺杂的AGeNRs和ZGeNRs在Ge基的纳米电子学器件方面,如场效应晶体管,负微分电阻和自旋过滤器等,具有潜在的实际应用。
Germanium (Ge), a tranditional semiconductor material, has been used for various applications, such as infrared detector, optical fiber, high-speed microelectronic devices, integrated circuits and thermoelectric material etc., due to its excellent physics and chemistry properties as well as good compatibility with silicon-based materials. With the rapid development of science and technology, the electronic devices need to be high-integrated, multi-functionalized and miniaturized. At the same time, nanoscale devices with low dimensions and small sizes have gradually become the new trend for the development in fields of microelectronics and optoelectronics. The exciton Bohr radius of Ge is far greater than that of silicon, indicating that obvious quantum size effect will appear in Ge. Therefore, Ge-based nanomaterials should posses much more unique properties.
     One-dimensional (1D) Ge-based nanomaterials have excellent photoelectric characteristics thus show a well prospect in applications of high-performance field-effect transistors (FETs), biochemical sensors, logic gates and efficient solar batteries. Recently, a lot of theoretical and experimental researches have been devoted to the synthesis, microstructure characterization and physicochemical characteristics analysis of1D Ge nanomaterials and finally achieved many breakthroughs. Nevertheless, the property-modification for1D Ge-based nanomaterials through hetero atom remains to be less exploited, thus needing to be systematically investigated and deeply understood. In this study, using first-principles projected-augmented wave (PAW) method, we pay special attention to the microstructure, stability, electronic and magnetic properties of the perfect, defected, adsorbed and doped Ge nanowires/nanoribbons. The principal conclusions are shown as follows:
     (1) Al and P adsorption on Ge nanowires. Using first-principles calculations, the electronic properties of Al and P adsorbed Ge nanowires with different configurations and concentrations have been extensively studied and the corresponding results been compared with those of Al and P doped nanowires. Al adatom prefers to bind on the hollow site surrounded by a surface octagon ring (MO) of Ge nanowire and does not break the adjacent Ge-Ge bond after adsorption, while P adatom prefers to bind on the bridge site shared by two surface pentagons (Bb) of Ge nanowire, and breaks the beneath Ge-Ge bond to form a new Ge-P-Ge bond. At higher adsorption concentration, an impurity-induced electronic band appears and crosses the Fermi level, thus resulting in a "semiconductor-metal" transition in Ge nanowires. With decreasing of Al (P) adsorption concentration, the impurity-induced electronic band becomes flat and eventually locates below (above) the Fermi level, thus leading a "metal-semiconductor" transition in Ge nanowires. In Al (P) adsorbed wire, the impurity-induced electronic band is located closer to conduction band (valence band), which does not follow the traditional acceptor (donor) mechanism in p-type (n-type) doped semiconductors. Such a reverse behavior is explained by the fact that the adatom is simply adsorbed on the surface of the wire, thus only interacts with the unoccupied electronic states from the dangling bonds of surface Ge atoms. In addition, the formed Al-Ge bonds mainly display a covalent bonding character, while the formed P-Ge bonds display both covalent bonding and ionic bonding characters.
     (2)3d transition-metal (TM) atoms adsorption on Ge nanowires. The microstructure, stability, electronic and magnetic properties of ten kinds of3d TM atoms adsorbed Ge nanowires have been investigated by spin-polarized first-principles PAW method. Except that Sc prefers to bind on the top site of the mutual Ge atom which belongs to the surface pentagons and hexagons of the wire, other TM atoms all prefer to bind on the hollow site of surface hexagon (HH) of the wrie. The variation trend of binding energies with'd'electron number agrees well with that of3d TM atoms adsorbed (8,0) carbon nanotubes, and by comparison, all TM atoms also form stronger bonding on Ge nanowires than on carbon nanotubes. Good conducting metals, such as Cu and Zn, can form weak bonding with the wire, whereas those such as Ti, V, Fe, Co and Ni have relative larger binding energies. Various types of wires can be obtained depending on the adatom species, including nonmagnetic (NM) metals (Sc or Cu adsorption) and semiconductors (Ni or Zn adsorption), weak ferromagnetic (FM) metals (Ti or V adsorption), FM semiconductors (Cr adsorption) and more interesting the FM half-metals (Mn, Fe or Co adsorption) which have potential application in spintronics. The magnetism of these wires originates mainly from spin-split of the TM-3d states, and the TM atom also induces some anti-parallel charge density around its adjacent Ge atoms. Furthermore, using DFT+U method, we also considered the effect of on-site Coulomb interaction on the stability of the three FM half-metallic wires and found the half-metallic ground state of Mn-or Co-adsorbed wire is more robust than that of Fe-adsorbed one.
     (3) The study of two-dimensional (2D) honeycomb Ge, perfect and defected Ge nanoribbons. The microstructure, stability, electronic and magnetic properties of2D honeycomb Ge, perfect and defected armchair Ge nanoribbons (AGeNRs) and zigzag Ge nanoribbons (ZGeNRs) have been studied in detail by using first-principles PAW calculations. The stable2D honeycomb Ge sheet is slightly buckled and shows semi-metallic character. Its electron and hole bands linearly across at the Fermi level thus the carriers behave like "massless" Dirac fermion near the K point in the Brillouin zone (BZ). The perfect AGeNRs are NM semiconductors with their band gaps exhibit a periodically oscillatory damping as the ribbon width increases, thus making AGeNRs to be classified into three types. The perfect ZGeNRs have stable antimagnetic (AFM) semiconducting ground state with their band gaps monotonously decrease as ribbon width increases. Their net spin charge densities are mainly localized at the edge Ge atoms and contributed by π/π*electronic states, and the spin states at opposite edges have different spin orientations. The band gaps of AGeNRs can be efficiently tuned by atomic defect (vacancy or di-vacancy) at different positions though no magnetism is introduced. The ZGeNRs can become AFM or FM metals by introducing atomic defect, thus can be well used in electronic conduction and spin storage.
     (4) TM (Cr, Mn, Fe and Co) atoms adsorption on2D honeycomb Ge and AGeNRs. The results indicate that, all TM atoms considered prefer to adsorb on the hollow site of hexagon of2D Ge whether in single-sided or double-sided adsorption cases, and NM semi-metallic2D Ge finally changes to be either FM or AFM metals depending on both TM species and coverage. For AGeNRs, the most preferential adsorption site is the hollow site of hexagon at the ribbon edge. Except for Co adsorption remaining NM state, Cr-, Mn-and Fe-adsorbed AGeNRs all possess FM state or AFM state according to ribbon width, TM species and coverage. Through Cr or Mn adsorption, some AGeNRs can also become FM or ferrimagnetic (FIM) half-metals. Moreover, considering the effect of on-site Coulomb interaction, we found the half-metallic ground state of Cr-adsorbed ones is more robust than that of Mn-adsorbed one thus can be suitable for spintronic devices.
     (5) The stability, electronic and magnetic properties of N, B doped and co-doped AGeNRs and ZGeNRs. Our first-principles calculation results show that, for both AGeNRs and ZGeNRs, edge Ge atoms are always easy to be substituted. Single N-doping and single B-doping can introduce a "semiconductor-metal" transition in AGeNRs, while N and B co-doped AGeNRs also remain its semiconducting character due to the effective charge compensation. Single N-doping or single B-doping usually makes AFM ZGeNRs to be FM semiconductors, and the "AFM-FM" transition originates from the perturbation of π/π*electronic states which localized at the ribbon edges. Some single impurity doped ZGeNRs also exhibit half-metallic properties. Double atom substitution (regardless of N-N, B-B, and N-B configurations) at the edges of ZGeNRs removes the spin-polarization at both edges and transforms them into NM semiconductors. Overall, N, B doped and co-doped AGeNRs and ZGeNRs have potential applications in Ge-based nanoelectronic devices, such as FETs, negative differential resistances (NDR) and spin filters (SF) etc.
引文
[1]施利毅.纳米材料[M].上海:华东理工大学出版社,2007:1-3.
    [2]马洪磊,薛成山.纳米半导体[M].北京:国防工业出版社,2009:3-8.
    [3]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:27-48.
    [4]郭子政,时东陆.纳米材料和器件导论[M].北京:清华大学出版社,2010:7-14.
    [5]王吉坤,何霭平.现代锗冶金[M].北京:冶金工业出版社,2005:58-360.
    [6]郝润蓉,方锡义,钮少冲.无机化学丛书(第三卷)[M].北京:科学出版社,1998:325-377.
    [7]Wu Y, Yang P. Germanium nanowire growth via simple vapor transport [J]. Chem. Mater.,2000,12(3):605-607.
    [8]Ross F M, Tromp R M, Reuter M C. Transition states between pyramids and domes during Ge/Si island growth [J]. Science,1999,286:1931-1934.
    [9]Stoffel M, Denker U, Kar G S, Sigg H, Schmidt O G. Extented wavelength region of self-assembled Ge/Si(001) islands capped with Si at different temperatures [J]. Appl. Phys. Lett.,2003,83(14):2910-2912.
    [10]Voigtlaender B. Growth of Ge quantum dots on SiO2/Si(111) [J]. Surf. Sci. Rep., 2001,43:127-254.
    [11]Brunner K, Si/Ge nanostructures [J]. Rep. Prog. Phys.,2002,65(1):27-72.
    [12]Heath J R, Goues F K. A liquid solution synthesis of single crystal germanium quantum wires [J]. Chem. Phys. Lett.,1993,208(3-4):263-268.
    [13]Morales A M, Lieber C M. A Laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science,1998,279(5348):208-211.
    [14]Zhang Y F, Tang Y H, Wang N, Lee C S, Bello I, Lee S T. Germanium nanowires sheathed with an oxide layer [J]. Phys. Rev. B,2000,61(7): 4518-4521.
    [15]Gu G, Burghard M, Kim G T, Dusberg G S, Chiu P W, Krstic V, Roth S, Han W Q. Growth and electrical transport of germanium nanowires [J]. J. Appl. Phys., 2001,90(11):5747-5751.
    [16]Wang D, Dai H. Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition [J]. Angew. Chem. Int-Ed.,2002, 114(24):4977-4980.
    [17]Hanrath T, Korgel B A. Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals [J]. J. Am. Chem. Soc.,2002, 124(7):1424-142.
    [18]Mathur S, Shen H, Sivakov V, Werner H. Germanium nanowires and core-shell nanostructures by chemical vapor deposition of [Ge(C5H5)2] [J]. Chem. Mater., 2004,16(12):2449-2456.
    [19]Kamins T I, Li X, Williams R S, Liu X. Growth and structure of chemically vapor deposited Ge nanowires on Si substrates [J]. Nano Lett.,2004,4(3):503-506.
    [20]Lu X, Fanfair D D, Johnston K P, Korgel B A. High yield solution-liquid-solid synthesis of germanium nanowires [J]. J. Am. Chem. Soc.,2005,127(45): 15718-15719.
    [21]Zheng W P, Sheng D, Douglas H L. Straight single-crystalline germanium nanowires and their patterns grown on sol-gel prepared gold/silica substrates [J]. Solid State Commun.,2005,134(4):251-255.
    [22]叶好华,叶志镇,黄靖云,吴贵斌,赵炳辉,涂江平,侯崑.氧化铝模板法制备Ge纳米线[J].半导体学报,2003,24(2):173-176.
    [23]Han W O, Wu L J, Zhu Y M, et al. In-situ growth of crystalline Ge nanowires by using nanotubes as template [J]. Microsc. Microanal.,2005,11(2):1506-1507.
    [24]Nguyen P, Ng H T, Meyyappan M. Growth of individual vertical germanium nanowires [J]. Adv. Mater.,2005,17(5):549-553.
    [25]Woodruff J H, Ratchford J B, Goldthorpe I A, Mclntyre P C, Chidsey C E D. Vertically oriented germanium nanowires grown from gold colloids on silicon substrates and subsequent Gold Removal [J]. Nano Lett.,2007,7(6):1637-1642.
    [26]Kholod A N, Shaposhnikov V L, Sobolev, N, Borisenko V E, D'Avitaya F A, Ossicini S. Orientation effects in the electronic and optical properties of germanium quantum wires [J]. Phys. Rev. B,2004,70(3):035317-5.
    [27]Kagimura R, Nunes R W, Chacham H. Structures of Si and Ge nanowires in the subnanometer range [J]. Phys. Rev. Lett.,2005,95(11):115502-4.
    [28]Harris C, O'Reilly E P. Nature of the band gap of silicon and germanium nanowires [J]. Physica E,2006,32(1-2):341-345.
    [29]Beckman S P, Han J, Chelikowsky J R. Quantum confinement effects in Ge [110] nanowires [J]. Phys. Rev. B,2006,74(16):165314-5.
    [30]Logan P, Peng X. Strain-modulated electronic properties of Ge nanowires:A first-principles study [J]. Phys. Rev. B,2009,80(11):115322-7.
    [31]Peng X, Logan P. Electronic properties of strained Si/Ge core-shell nanowires [J]. Appl. Phys. Lett.2010,96(14):143119-4.
    [32]Zhang C, de Sarkar A, Zhang R Q. Inducing novel electronic properties in [112] Ge nanowires by means of variations in their size, shap and strain: A first principles computational study [J]. J. Phys.:Condens. Matter,2012,24(1): 015301-8.
    [33]Bruno M, Palummo M, Marini A, Sole R D, Olevano V, Kholod A N, Ossicini S. Excitons in gremanium nanowires:Quantum confinement, orientation, and anisotropy effects within a first-principles approach [J]. Phys. Rev. B,2005, 72(15):153310-4.
    [34]Bruno M, Palummo M, Ossicini S, Sole R D. First-principles optical properties of silicon and germanium nanowires [J]. Surf. Sci.,2007,601(13):2707-2711.
    [35]Peelaers H, Partoens B, Peeters F M. Properties of B and P doped Ge nanowires [J]. Appl. Phys. Lett.,2007,90(26):263103-3.
    [36]Peelaers H, Partoens B, Peeters F M. First-principles study of doped Si and Ge nanowires [J]. Physica E,2008,40(6):2169-2171.
    [37]Medaboina D, Gade V, Patil S K R, Khare S V. Effect of structure, suface passivation, and doping on the electronic properties of Ge nanowires:A first-principles study [J]. Phys. Rev. B,2007,76(20):205327-7.
    [38]Arantes J T, Silva A J R, Fazzio A. Structure, electronic, and magnetic properties of Mn-doped Ge nanowires by ab initio calculations [J]. Phys. Rev. B,2007, 75(11):115113-6.
    [39]Pang Q, Zhang J M, Zhang Y, Ji V, Xu K W. Properties of bare passivated and doped germanium nanowire:A density-fucntional theory study [J]. Comput. Mater. Sci.,2010,49(3):682-690.
    [40]Pang Q, Zhang Y, Zhang J M, Xu K W, Ji V. Adsorption of Ge nanowire with 3d transition metals:A density-functional theory study [J]. Mater. Chem. Phys., 2010,124(1-2):1113-1120.
    [41]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [42]汪信,刘孝恒.纳米材料科学简明教程[M].北京:化学工业出版社,2010:141-145.
    [43]Geim A K, Novoselov K S. The rise of graphene [J]. Nat. Mater.,2007,6: 183-191
    [44]Castro Neto A K, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronic properties of graphene [J]. Rev. Mod. Phys.2009,81(1):109-162.
    [45]Avouris P, Chen Z, Perebeinos V, Carbon-based electronics [J]. Nat. Nanotechnol., 2007,2:601-605
    [46]Li D, Kaner R B. Graphene-based materials [J]. Science,2008,320:1170-1171.
    [47]Rogers J A. Making graphene for macroelectronics [J]. Nat. Nanotechnol.,2008, 3:254-255.
    [48]Service R F. Carbon sheets an atom thick give rise to graphene dreams [J]. Science,2009,324(5929):875-877.
    [49]Brumfiel G Graphene gets ready for the Big time. Nature,2009,458:390-391.
    [50]Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals [J]. Proc. Natl. Acad. Sci. USA, 2005,102:10451-10453.
    [51]Berger C, Song Z M, Li X B, et al. Electronic confiment and coherence in patterned epitaxial graphene [J]. Science,2006,312(5777):1191-1196.
    [52]李旭,赵卫峰,陈国华.石墨烯的制备与表征研究[J].材料导报,2008,22(8):48-52.
    [53]De Heer W A, Berger C, Wu X S, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G. Epitaxial graphene [J]. Solid State Commun.,2007,143(1-2):92-100.
    [54]Sungjin P, Rodney S R Chemical methods for the production of graphenes [J]. Nat. Nanotechnol.,2009,4:217-224.
    [55]Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets [J]. Nature,2007,446:60-63.
    [56]Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science,2008,321(5887):385-388.
    [57]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature,2005,438:197-200.
    [58]Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the klein paradox in graphene [J]. Nat. Phys.,2006,2:620-625.
    [59]Zhang Y, Tan Y, Stormer H, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature,2005,438:201-204.
    [60]Katsnelson M I, Novoselov K S. Graphene:New bridge between condensed matter physics and quantum electrodynamics [J]. Solid State Commun.,2007, 143(1-2):3-13.
    [61]Ci L, Xu Z, Wang L, Gao W, Ding F. Kelley K F, Yakobson B I, Ajayan P M. Controlled nanocutting of graphene [J]. Nano. Res.2008,1(2):116-122.
    [62]Son Y W, Cohen M L, Louie S G. Half-metallic graphene nanoribbons [J]. Nature,2006,444:347-349.
    [63]Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons [J]. Phys. Rev. Lett.,2006,97(21):216803-4.
    [64]Yang Li, Park C H, Son Y W, Cohen M L, Louie S G. Quasiparticle energies and band gaps in graphene nanoribbons [J]. Phys. Rev. Lett.,2007,99(18):186801-4.
    [65]Barone V, Hod O, Scuseria G E. Electronic structure and stability of semiconducting graphene nanoribbons [J]. Nano Lett.,2006,6(12):2748-2754.
    [66]Hod O, Barone V, Peralta J E. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons [J]. Nano Lett.,2007,7(8):2295-2299.
    [67]Kan E J, Li Z, Yang J L, Hou J G. Half-metallicity in edge-modified zigzag graphene Nanoribbons [J]. J. Am. Chem. Soc.,2008,130(13):4224-4225.
    [68]Lebegue S, Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory [J]. Phys. Rev. B,2009,79(11):115409-4.
    [69]Houssa M, Pourtois G, Afanas'ev V V, Stesmans A. Electronic properties of two-dimensional hexagonal germanium [J]. Appl. Phys. Lett.2010,96(8): 082111-3.
    [70]Cahangirov S, Topsakal M, Akturk E, hin H, Ciraci S. Two-and one-dimensional honeycomb structures of silicon and germanium [J]. Phys. Rev. Lett.,2009,102(23):236804-4.
    [71]Garcia J C, de Lima D B, Assali L V C, Justo J F. Group IV Graphene-and graphane-like nanosheets [J]. J. Phys. Chem. C,2011,115(27):13242-13246.
    [72]Liu C C, Feng W, Yao Y. Quantum spin Hall effect in silicene and two-dimensional germanium [J]. Phys. Rev. Lett.,2011,107(7):076802-4.
    [73]Liu C C, Feng W, Yao Y. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin [J]. Phys. Rev. B, 2011,84(19):195430-11.
    [74]Cahangirov S, Topsakal M, Ciraci S. Armchair nanoribbons of silicon and germanium honeycomb structures [J]. Phys. Rev. B,2010,81(19):195120-6.
    [75]Han W Q, Wu L. Zhu Y, Strongin M. In-situ formation of ultrathin Ge nanobelts bonded with nanotubes [J]. Nano Lett.,2005,5(7):1419-1422.
    [76]Nakano H, Mitsuoka T, Harada M, et al. Soft Synthesis of Single-Crystal Silicon Monolayer Sheets [J]. Angew. Chem. Int-Ed.,2006,45(38):6303-6306.
    [77]Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B. Epitaxial growth of a silicene sheet [J]. Appl. Phys. Lett.2010,97(22):223109-2.
    [78]Kim U, Kim L, Park Y, Lee K Y. Yim S Y, Park J G, Ahn H G, Park S H, Choi H J. Synthesis of Si nanosheet by chemical vapor deposition process and their blue emissions [J]. ACS Nano,2011,5(3):2176-2181.
    [79]Okamoto H, Sugiyama Y, Nahano H. Synthesis and modification of silicon nanosheets and other silicon nanomaterials [J]. Chem. Eur. J.,2011,17(36): 9864-9887.
    [80]Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B, Lay G L Graphene-like silicon nanoribbons on Ag(110):A possible formation of silicone [J]. Appl. Phys. Lett.,2010,96(18):183102-3.
    [81]De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B, Lay G L. Evidence of grapheme-like electronic signature in silicene nanoribbons [J]. Appl. Phys. Lett., 2010,96(26):261905-3.
    [82]De Padova P, Quaresima C, Olivieri O, Perfetti P, Lay G L. Strong resistance of silicene nanoribbons towards oxidation [J]. J. Phys. D:Appl. Phys.,2011,44(31): 312001.
    [83]曾谨言.量子力学[M].北京:科学出版社,2000,1.
    [84]Dirac P A M. The principles of quantum mechanics [M]. Oxford:Clarendon Press,1958,1.
    [85]张跃,谷景华,尚家香,马岳.计算材料学基础[M].北京:北京航空航天大学出版社,2007,1.
    [86]陈舜麟.计算材料学[M].北京:化学工业出版社,2005,1-8.
    [87]Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys.,1992,64(4):1045-1097.
    [88]Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium [J]. Phys. Rev. B, 1994,49(20):14251-14269.
    [89]Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J. Phys.:Condens. Matter,2002,14(11):2717-2744.
    [90]熊家炯.材料设计[M].天津:天津大学出版社,2000:2-30.
    [91]Martin R M, Electronic structure:basic theory and practical methods [M]. Cambridge:Cambridge University Press,2004.
    [92]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M].北京:清华大学出版社,1984:6-11.
    [93]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [94]Born M, Huang K. Dynamical theory of crystal lattices [M]. London:Oxford University Press,1954.
    [95]Hartree D R. The wave mechanics of an atom with a non-Coulomb central field [J]. Proc. Cam. Phil. Soc.,1928,24(5):89-110.
    [96]Fork V. Noherungsmethode zur Losung des quantenmechanischen mehrkorper problems [J]. Z. Phys.,1930,61:209.
    [97]Chelikowsky J R, Louie S G. Quantum theory of real materials [M]. Kluwer Academy Press,1989:1-11.
    [98]Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev.,1964, 136(B 13):864-871.
    [99]Thomas L H, The calculation of atomic field [J]. Proc. Camb. Phi. Soc.,1927, 23(2):542-548.
    [100]Fermi E. A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements [J]. Z. Phys.,1928,48:73-79.
    [101]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev.,1965,140(4A):1133-1138.
    [102]Slater J C, Wilson T M, Wood J H. Comparison of several exchange potentials for electrons in the Cu+ ion [J]. Phys. Rev.,1969,179:28-38
    [103]Hedin L, Lundqvist B L. Explicit local exchange-correlation potentials [J]. J. Phys. C,1971,4(14):2064.
    [104]Ceplerley D M, Alder B J. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett.,1980,45(7):566-569.
    [105]Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B,1981,23(10): 5048-5079.
    [106]Lee C, Yang W, Parr R C. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B,1988,37(2): 785-789.
    [107]Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A,1988,38(6):3098-3100.
    [108]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B,1992,45(23):13244-13249.
    [109]Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms molecules solids and surfaces:applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B,1992, 46(11):6671-6687.
    [110]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett.,1996,77(18):3865-3868.
    [111]Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys. Rev. Lett.,1985,55(22):2471-2474.
    [112]Burke K, Gross E K U. Density functionals:Theory and applications [M]. Berlin: Springer,1998,116-146.
    [113]Hedin L, Lundqvist S. Solid State Physics [M]. New York:Academic press,1969, 23:1.
    [114]B. Holm. Total energies from GW calculations [J]. Phys. Rev. Lett.,1999,83(4), 788-791.
    [115]Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators: Hubbard U instead of Stoner I[J]. Phys. Rev. B,1991,44(3):943-954.
    [116]Liechtenstein A I, Anisimov V I, Zaanen J. Density-functional theory and strong interactions:Orbital ordering in Mott-Hubbard insulators [J]. Phys. Rev. B,1995, 52(8):R5467-5470.
    [117]Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P. Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study [J]. Phys. Rev. B,1998,57(3):1505-1509.
    [118]Hamann D R, Schluter M, Chiang C. Norm-conserving pseudopotential [J]. Phys. Rev. Lett.,1979,43(20):1494-1497.
    [119]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B,1990,41(11):7892-7895.
    [120]Bochl P E. Projector augmented-wave method [J]. Phys. Rev. B,1994,50(24): 17953-17979.
    [121]Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave Method [J]. Phys. Rev. B,1999,59(3):1758-1775.
    [122]Feynman R P. Forces in molecules [J]. Phys. Rev.,1939,56(4):340-343.
    [123]Hellmann H. Einfuhrung in die Quantumchemie [M]. Leipzig:Deuticke,1937.
    [124]Pulay P. Convergence acceleration of iterative sequences, the case of scf iteration [J]. Chem. Phys. Lett.,1980,73(2):393-398.
    [125]Teter M P, Payne M C, Allan D C. Solution of Schrodinger's equation for large systems [J]. Physical Review B,1989,40(18):12255-12263.
    [126]Press W H, Flannery B P, Teukolsky S A, Vetterling W T. Numerical Recipes: The art of scientific computing [M]. Cambridge:Cambridge University Press, 1986.
    [127]Davidson E R, Dicrcksen In G H F, Wilson S. NATO Science Series C: Mathematical and Physical Sciences [M]. New York: Plenum Advanced Study Institute,1983,113:95-98.
    [128]Wood D M, Zunger A. A new method for diagonalising large matrices [J]. J. Phys. A:Math. Gen.,1985,18(9):1343-1359.
    [129]Kresse G, Hafner J. Ab initio molecular dynamics for liquid metal [J]. Phys. Rev. B,1993,47(1):558-561.
    [130]Kresse G, Furthmuler J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B,1996,54(16): 11169-11186.
    [131]Kresse G, Furthmuler J. Efficient of ab initio total-energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci,1996, 6(1):15-50.
    [132]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev. B,1976,13(12):5188-5192.
    [133]Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals [J]. Phys. Rev. B,1989,40(6):3616-3621.
    [134]Fu C L, Ho K M. First-principles calculation of the equilibrium ground-state properties of transition metals:Applications to Nb and Mo [J]. Phys. Rev. B, 1983,28(10):5480-5486.
    [135]Blochl P E, Jepsen O, Andersen O K. Improved tetrahedron method for Brillouin-zone integrations [J]. Phys. Rev. B,1994,49(23):16223-16233.
    [136]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [137]Lauhon L J, Gudiksen M S, Wang D, Lieber C M. Epitaxial core-shell and core-multishell nanowire heterostructures [J]. Nature,2002,420:57-61.
    [138]Wu Y, Fan R, Yang P. Block-by-Block growth of single-crystalline Si/SiGe superlattice nanowires [J]. Nano Lett.,2002,2(2):83-86.
    [139]Sun X H, Didychuk, Sham T K, Wong N B. Germanium nanowires:synthesis, morphology and local structure studies [J]. Nanotechnology 2006,17(12): 2925-2930.
    [140]Greytak A B, Lauhon L J, Gudiksen M S, Lieber C M. Growth and transport properties of complementary germanium nanowire field-effect transistors [J]. 2004,84(21):4176-4178.
    [141]Zhang L, Tu Rtan, Dai H. Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors [J]. Nano Lett.,2006,6(12):2785-2789.
    [142]Ahn Y H, Park J. Efficient visible light detection using individual germanium nanowire field effect transistors [J]. Appl. Phys. Lett.,2007,91(16):162102-3.
    [143]Wang D, Wang Q, Javey A, Tu R, Dai H. Kim H, McIntyre P C, Krishnamohan T, Saraswat K C. Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics [J]. Appl. Phys. Lett.,2003,83(12):2432-2434.
    [144]Cui Y, Wei Q, Park H, Lieber C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science,2001, 293(5533):1289-1292
    [145]Huang Y, Duan X, Cui Y, Lauhon L J, Kim K H, Lieber C M. Logic gates and computation from assembled nanowire building blocks [J]. Science,2001, 294(5545):1313-1317.
    [146]Alguno A, Usami N, Ujihara T, Fujiwara K, Sazaki G, Nakajima K, Shiraki Y. Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure [J]. Appl. Phys. Lett.,2003,83(6):1258-1260.
    [147]Kamenev B V, Sharma V, Tsybeskov L, Kamins T I. Optical properties of Ge nanowires grown on Si(100) and (111) substrates:Nanowire-substrate heterointerfaces [J] Phys. Status Solidi A,2005,202(14):2753-2758.
    [148]Wang D, Chang Y L, Wang Q, Cao J, Farmer D B, Gordon R G, Dai H J. Surface chemistry and electrical properties of germanium nanowires [J]. J. Am. Chem. Soc.,2004,126(37):11602-11611.
    [149]Durgun E, Akman N, Ataca C, Ciraci S. Atomic and electronic structures of doped silicon nanowires:A first-principles study [J]. Phys. Rev. B,2007,76(24): 245323-8.
    [150]Durgun E, Akman N, Ciraci S. Functionalization of silicon nanowires with transition metal atoms [J]. Phys. Rev. B,2008,78(19):195116-12.
    [151]Iori F, Degoli E, Palummo M, Ossicini S. Novel optoelectronic properties of simultaneously n-and p-doped silicon nanostructures [J]. Superlattices Microstruct.2008,44(4-5):337-347.
    [152]Kittel. Introduction to solid state physics [M].1976, John Wiley & Sons, p.40.
    [153]Bader R. Atoms in molecules:A quantum theory [M]. New York:Oxford University Press,1990.
    [154]Binasch G, Grunberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange [J]. Phys. Rev. B,1989,39(7):4828-4830.
    [155]Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Greuzet G, Friederich A, Chazelas J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices [J]. Phys. Rev. Lett.,1988,61(21):2472-2475.
    [156]田民波.磁性材料[M].北京:清华大学出版社,2001,319-343.
    [157]de Groot R A, Mueller F M, Van Engen P G, Buschow K H J. New class of materials:Half-metallic ferromagnets. [J]. Phys. Rev. Lett.,1983,50(25): 2024-2027.
    [158]Park Y D, Hanbicki A T, Erwin S C, Hellberg C S, Sullivan J M, Mattson J E, Ambrose T F, Wilson A, Spanos G, Jonker B T. A group-IV ferromagnetic semiconductor: MnxGe1-x [J]. Science,2002,295(5555):651-654.
    [159]Cho S, Choi S, Hong S C, Kim Y, Ketterson J B, Kim B J, Kim Y C, Jung J H. Ferromagnetism in Mn-doped Ge [J]. Phys. Rev. B,2002,66(3):033303-3.
    [160]Li A P, Wendelken J F, Shen J, Feldman L C, Thompson J R, Weitering H H. Magnetism in MnxGe1-x semiconductors mediated by impurity band carriers [J]. Phys. Rev. B,2005,72(19):195205-9.
    [161]Tsui F, He L, Ma L, Tkachuk A, Chu Y S, Nakajima K, Chikyow T. Novel Germanium-Based Magnetic Semiconductors [J]. Phys. Rev. Lett.,2004,91(17): 177203-4.
    [162]Stroppa A, Picozzi S, Continenza A, Freeman A F. Electronic structure and ferromagnetism of Mn-doped group-IV semiconductors [J]. Phys. Rev. B,2003, 68(15):155203-9.
    [163]Zhao Y J, Shishidou T, Freeman A J. Ruderman-Kittel-Kasuya-Yosida-like Ferromagnetism in MnxGe1-x [J].2003,90(4):047204-4.
    [164]Da Silva A J R, Fazzio A, Antonelli A. Stabilization of substitutional Mn in silicon-based semiconductors [J]. Phys. Rev. B,2004,70(19):193205-4.
    [165]Moore C E. Atomic energy levels [M]. Washington DC:U. S. National Bureau of Standards,1971.
    [166]Durgun E, Dag S, Ciraci S, Gulseren O. Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes [J]. J. Phys. Chem. B,2004, 108(2):575-582.
    [167]Picozzi S, Continenza A, Freeman A J. First-principles characterization of ferromagnetic Mn5Ge3 for spintronic applications [J]. Phys. Rev. B,2004,70 235205.
    [168]Paul A, Sanyal B. Chemical and magnetic interactions in Mn-and Fe-codoped Ge diluted magnetic semiconductors [J]. Phys. Rev. B,2009,79(21):214438-5.
    [169]Nordlund K, Keinonen J, Mattila T. Formation of ion irradiation induced small-scale defects on graphite surfaces [J]. Phys. Rev. Lett.,1996,77(4): 699-702.
    [170]Peres N M R, Guinea F, Castro Neto A H. Electronic properties of disordered two-dimensional carbon [J].2006,73(12):125411.
    [171]Yazyev O V, Helm L. Defect-induced magnetism in graphene [J]. Phys. Rev. B, 2007,75(12):125408-5.
    [172]Wakabayashi K. Numerical study of the lattice vacancy effects on the single-channel electron transport of graphite ribbons [J]. J. Phys. Soc. Jpn.,2002, 71(10):2500-2504.
    [173]Palacios J J, Fernandez-Rossier J, Brey L. Vacancy-induced magnetism in graphene and graphene ribbons [J]. Phys. Rev. B,2008,77(19):195428-14.
    [174]Topsakal M, Akturk E, Sevincli H, Ciraci S. First-principles approach to monitoring the band gap and magnetic state of a graphene nanoribbon via its vacancies [J]. Phys. Rev. B,2008,78(23):235435-6.
    [175]Huang B, Liu F, Wu J, Gu B L, Duan W. Suppression of spin polarization in graphene nanoribbons by edge defects and impurities [J]. Phys. Rev. B,2008, 77(15):153411-4.
    [176]Sevincli H, Topsakal M, Durgun E, Ciraci S. Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons [J]. Phys. Rev. B,2008,77(19):195434-7.
    [177]Nakada K, Fujita M, Dresselhaus G, Dreselhaus M S. Edge state in graphene ribbons:Nanometer size effect and edge shape dependence [J]. Phys. Rev. B, 1996,54(24):17954-17961.
    [178]Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons [J]. Nat. Mater.,2009,8: 235-242.
    [179]Cervantes-Sodi, Csanyi G, Piscanec S, Ferrari A C. Edge-functionalized and substitutionally doped graphene nanoribbons:Electronic and spin properties [J]. Phys. Rev. B,2008,77(16):165427-13.
    [180]Wang M, Li C M. Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons [J]. Nanoscale,2011,3(5):2324-2328.
    [181]Novikov D S. Transverse Field Effect in Graphene Ribbons [J]. Phys. Rev. Lett., 2007,99(5):056802-4.
    [182]Ritter C, Makler S S, Latge. Energy-gap modulations of graphene ribbons under external fields:A theoretical study [J]. Phys. Rev. B,2008,77(19):195443-5.
    [183]Raza H, Kan E C. Armchair graphene nanoribbons:Electronic structure and electric-field modulation [J]. Phys. Rev. B,2008,77(24):245434-5.
    [184]Huang B, Yan Q, Zhou G, Wu J, Gu B L, Duan W, Liu F. Making a field effect transistor on a single graphene nanoribbon by selective doping [J]. Appl. Phys. Lett.,2007,91(25):253122.
    [185]Martins T B, Miwa R H, Da Silva A J R, Fazzio A. Electronic and transport properties of boron-doped graphene nanoribbons [J]. Phys. Rev. Lett.,2007,98(): 196803-4.
    [186]Martins T B, Da Silva A J R, Miwa R H, Fazzio A. σ-and π-defects at graphene nanoribbon edges:Building spin filters [J]. Nano Lett.,2008,8(8):2293-2298.
    [187]Yu S S, Wen Q B, Zheng W T, Jiang Q. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges [J]. Carbon,2008,46(3):537-543.
    [188]Rigo V A, Martins T B, Da Silva A J R, Fazzio A, Miwa R H. Electronic, structural, and transport properties of Ni-doped graphene nanoribbons [J]. Phys. Rev. B,2009,79(7):075435-9.
    [189]Dutta S, Pati S K. Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions [J]. J. Phys. Chem. B,2008,112(5):1333-1335.
    [190]Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y. Spin and band-gap engineering in doped graphene nanoribbons [J]. Phys. Rev. B,2008,78(15): 155427-6.
    [191]Zheng X H, Rungger I, Zeng Z, Sanvito S. Effects induced by single and multiple dopants on the transport properties in zigzag-edged graphene nanoribbons [J]. Phys. Rev. B,2009,80(23):235426-8.
    [192]Biel B, Blase X, Triozon F, Roche S. Anomalous doping effects on charge transport in graphene nanoribbons [J]. Phys. Rev. Lett.,2009,102(9):096803-4.
    [193]Ren H, Li Q X, Luo Y, Yang J L. Graphene nanoribbon as a negative differential resistance device [J]. Appl. Phys. Lett.,2009,94(17):173110-3.
    [194]Zheng X H, Wang R N, Song L L, Dai Z X, Wang X L, Zeng Z. Impurity induced spin filtering in graphene nanoribbons [J]. Appl. Phys. Lett.,2009, 95(12):123109-3.
    [195]Li Y F, Zhou Z, Shen P W, Chen Z F. Spin gapless Semiconductor-Metal-Half-metal properties in nitrogen-doped zigzag graphene nanoribbons [J]. ACS Nano,2009,3(7):1952-1958.
    [196]Wang M, Huang W, Chan-Park M B, Li C M. Magnetism in oxidized graphenes with hydroxyl groups [J]. Nanotechnology,2011,22(10):105702-6.
    [197]Wang M, Li C M. Magnetism in graphene oxide [J]. New J. Phys.,2010,12: 083040-9
    [198]Wang M, Li C M. Negative differential resistance in oxidized zigzag graphene nanoribbons [J]. Phys. Chem. Chem. Phys.,2011,13(4):1413-1418.
    [199]Nduwimana A, Wang X O. Energy gaps in supramolecular functionalized graphene nanoribbons ACS Nano,2009,3(7):1995-1999.
    [200]Nduwimana A, Musin R N, Smith A M, Wang X Q. Spatial carrier confinement in core-shell and multishell nanowire heterostructures [J]. Nano Lett.,2008,8(10) 3341-3344.
    [201]Nduwimana A, Wang X Q. Charge carrier separation in modulation doped coaxial semiconductor nanowires [J]. Nano Lett.,2009,9(1):283-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700