原发性免疫缺陷病的临床特征和分子特点分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分24例Wiskott-Aldrich综合征临床特征与分子特点分析
     目的:探讨来自中国23个不同家系的24例Wiskott-Aldrich综合征患儿的临床特征及分子特点。
     方法:2007年4月~2009年7月收集在重庆医科大学附属儿童医院治疗的24例疑诊Wiskott-Aldrich综合征患儿外周静脉血,采用流式细胞术(FCM)检测患儿外周血单个核细胞(PBMC)中WASP表达。扫描电镜观察患儿外周血淋巴细胞形态。PCR扩增WASP基因序列并直接双向测序分析24例患儿及亲属基因突变情况。总结确诊WAS患儿的临床资料。
     结果:24例患儿均为男性,具有典型WAS的临床特征。其中2例发生自身免疫性溶血性贫血(AIHA),1例患视网膜母细胞瘤(RB)。5例淋巴细胞扫描电镜(SEM)检查可见典型微绒毛异常。21例患儿采用FCM检测外周血PBMC的WASP表达,18例患儿WASP不表达,3例WASP部分表达。WASP基因分析在23例患儿中发现20种不同突变,包括错义突变5例,无义突变4例,缺失突变4例,插入突变3例,拼接位点突变6例,复合突变1例。其中新型突变7例。突变分布于WASP基因7个外显子和4个内含子。1例WAS患儿在WASP基因编码区未发现基因突变。3例WASP部分表达患儿WASP基因分析发现1例WASP基因第二位点突变。22例明确基因诊断的患儿的母亲及相关亲属进行WASP基因检测,在20个家系中发现23例WASP基因突变携带者。5例WAS患儿接受造血干细胞移植,移植后5例均正常表达WASP,但1例死于爆发性巨细胞病毒感染。
     结论:通过对24例WAS患儿基因分析,发现7个新型WASP基因突变位点。在中国人群中报道1例WASP基因第二位点突变。FCM检测和WASP基因分析能确诊并检出携带者,有利于WAS患儿的及时治疗和相关的遗传咨询。
     第二部分21例先天性无丙种球蛋白血症的临床特征和分子特点
     目的:分析和探讨21例先天性无丙种球蛋白血症患儿的临床特征及分子特点。
     方法:2008年3月~2010年2月收集在重庆医科大学附属儿童医院就诊的21例先天性无丙种球蛋白血症患儿及亲属外周静脉血,采用RT-PCR扩增BTK基因序列并直接双向测序分析患儿及亲属基因突变情况。对未发现BTK基因突变的患儿进一步采用PCR扩增常染色体隐性遗传无丙种球蛋白血症的相关基因,包括μHc,λ5,Igα和Igβ。收集21例先天性无丙种球蛋白血症患儿的临床资料。
     结果:21例先天性无丙种球蛋白血症患儿起病年龄0.9±0.5岁,诊断年龄6.3±3.0岁。呼吸道感染是最常见的临床表现(n=20, 95.2%),其它依次为关节炎(n=8, 38.1%),中耳炎(n=8, 38.1%),腹泻(n=6, 28.6%),皮肤感染(n=6, 28.6%)和脑膜脑炎(n=1, 4.8%)。1例患儿发生前B细胞白血病,2例患儿因反复肺炎进展为慢性肺疾病。BTK基因分析在18例患儿中发现16种不同突变,其中包括7种新型突变(del 373-441, 504 del G, 537 del C, 851 del A, 1637 G>A, 1879 T>C, del 1482-1882)。突变类型包括缺失突变6例,错义突变4例,无义突变3例,拼接位点突变5例。3例患儿未见BTK基因突变。18例BTK基因突变中10例位于酪氨酸激酶区,4例位于血小板-白细胞C激酶底物同源区,3例位于Src同源区3,1例跨越酪氨酸激酶同源区、Src同源区3、Src同源区2和酪氨酸激酶区。对BTK基因未见突变的3例患儿进行常染色体隐性遗传无丙种球蛋白血症的相关基因筛选,发现1个μHC基因的复合突变(1956 G>A, 170-175 insert C)。
     结论:通过对21例中国先天性无丙种球蛋白血症患儿分子特点分析,发现7个BTK基因的新型突变。在中国人群中首次报道μHC基因突变的临床特征。基因分析有助于先天性无丙种球蛋白血症患儿的明确诊断,有利于发现携带者和进行遗传咨询。
     第三部分IL-7Rα基因缺陷导致严重联合免疫缺陷病和Omenn综合征的临床特征和分子特点
     目的:探讨IL-7Rα基因缺陷导致严重联合免疫缺陷病和RAG1基因突变导致Omenn综合征的临床特征和分子特点。
     方法: 2008年2月~11月在重庆医科大学附属儿童医院收治3例男性患儿,均在生后早期出现反复、严重的感染,抗生素治疗效果较差。其中2例患儿全身反复出现大片红色斑丘疹、脱屑及肝脾肿大。采用PCR方法扩增患儿及父母IL-7Rα基因和RAG1/RAG2基因,PCR产物直接进行双向序列测定。采用25个TCRVβ亚家族的特异性正向引物和1个共同的Cβ反向引物扩增TCRVβ进行克隆谱型分析。采用STR分析除外母源性T细胞植入。
     结果:患儿1的免疫球蛋白IgG 686.7mg/dL,IgA 24.9 mg/dL,IgM 20.6 mg/dL, IgE 2.3IU/ml。淋巴细胞分类T淋巴细胞(CD3+) 0,B淋巴细胞(CD19+)58%,NK细胞(CD16+CD56+)42%。基因分析患儿为IL-7Rα基因的复合杂合突变(638 C>T;IVS4(+1)G>A),父母均为携带者。第4内含子剪接位点突变(IVS4(+1)G>A)为首次报道的突变类型。RT-PCR检测发现患儿IL-7RαmRNA表达明显降低。患儿IL-7RαcDNA经巢式PCR扩增并进行T-A克隆,测序发现外显子4出现64个核苷酸缺失(496-559 del, K158fsX160)。患儿2的免疫球蛋白IgG 1150mg/dL,IgA 80mg/dL,IgM 180mg/dL,IgE 5.4IU/ml。淋巴细胞分类T淋巴细胞(CD3+) 69%,B淋巴细胞(CD19+)3%,NK细胞(CD16+CD56+)27%。患儿3免疫球蛋白IgG 4847mg/dL(IVIG后),IgA 46mg/dL,IgM 129 mg/dL,IgE 1.2IU/ml。淋巴细胞分类T淋巴细胞(CD3+)21%,B淋巴细胞(CD19+)1%,NK细胞(CD16+CD56+)69%。PHA刺激后患儿2和3淋巴细胞增殖均极度低下。STR分析除外患儿2和3母源性T细胞植入可能。RAG1基因组DNA测序发现患儿2为RAG1基因的复合突变(G1983A, R624H; C2444T, R778W)。患儿3为RAG1基因的纯合缺失突变(del2302, I729X)。TCRVβ克隆谱型分析显示患儿2的25个TCRVβ亚家族均为单克隆或寡克隆,患儿3的14个TCRVβ亚家族为单克隆或寡克隆,11个TCRVβ亚家族极弱或缺失。
     结论:在中国人群中首次报道了2例明确基因诊断的Omenn综合征和1例IL-7Rα基因缺陷导致严重联合免疫缺陷病的临床特点和基因突变类型,发现1个RAG1基因和1个IL-7Rα基因的新型突变。
Part one Analysis of Clinical and Molecular Characteristics of Wiskott-Aldrich Syndrome in 24 Patients from 23 Unrelated Chinese Families
     Objective: In this study we analyzed the clinical, immunological and molecular characteristics of 24 children with Wiskott-Aldrich syndrome (WAS) from 23 unrelated Chinese families, in an attempt to provide information for improving the diagnosis and treatment of WAS in China.
     Methods: Totally 24 male children from 23 unrelated Chinese families admitted to Chongqing Children’s Hospital during April 2007 and July 2009 were included in this study. WASP expression in PBMCs was detected by flow cytometry(FCM). PBMCs were also examined by scanning electron microscopy(SEM). WASP gene was amplified by polymerase chain reaction (PCR) and directly sequenced to analyze mutations of the WASP gene in patients and their female relatives. The clinic findings of the children with WAS were collected and analyzed.
     Results: Twenty-four children with WAS met the clinical diagnostic criteria of WAS. Two cases suffered from autoimmune hemolytic anemia (AIHA) and one case suffered from bilateral retinoblastoma (RB). Scanning electron microscopy (SEM) in five WAS patients demonstrated abnormal lymphocytes, including the presence of sparse, blunted, or disrupted microvilli. Of the 21 cases of children with WAS, 18 cases showed no WASP expression and three cases showed partial expression of WASP. WASP gene detection was performed in the 24 patients and 20 different WASP gene mutations were detected in 23 cases, including five cases of missense mutation, four cases of nonsense mutation, four cases of deletion mutation, three cases of insert mutation, six cases of splice site mutation and one case of complex mutation. The remaining one case showed no mutation in the coding regions of the WASP gene. Of the 20 WASP gene mutations, seven were novel mutations, including a complex mutation (168 C> A; 747-748 del T; 793-797 del C; 1185 insert C; Dup 1251-1267; 1277 insert A and 1266 C> G, 1267-1269 del C). WASP gene analysis revealed a second-site mutation occurred in one of the three patients with partial expression of WASP. These mutations were distributed in seven exons (exons 1, 2, 4, 7, 8, 10, 11) and four introns (introns 1, 3, 8, 9) of the WASP gene. Genetic study for carrier status was carried out in 22 families with definite genetic diagnosis and 23 carriers of WASP mutations were identified in 20 families. Five patients underwent hematopoietic stem cell transplantation (HSCT) before 5 years old. All the five patients exhibited normal expression of WASP two months after transplantation and one case died of cytomegalovirus infection-induced interstitial lung disease following transplantation.
     Conclusion: Seven novel mutations were identified in 24 children with WAS and a second-site mutation of WASP gene was reported in China. WASP expression detected by flow cytometry and WASP gene analysis can make a definite diagnosis of WAS and identify mutation carriers, beneficial for timely treatment and genetic counseling for children with WAS.
     Part two Clinical Characteristics and Molecular Analysis of 21 Chinese Children with Congenital Agammaglobulinemia
     Objective: Congenital agammaglobulinemia is a humoral primary immunodeficiency and affected patients have extremely low levels of peripheral B cells and profound deficiency of all immunoglobulin isotypes. In this study, the phenotypes and genotypes of 21 male Chinese children with congenital agammaglobulinemia were investigated and analyzed to improve care plans.
     Methods: From March, 2008 to February, 2010, 21 Chinese children with congenital agammaglobulinemia from 21 unrelated families were enrolled into the present study. Amplification of BTK gene of the patients and relatives was carried out in four overlapping sections by RT-PCR. The candidate genes of autosomal-recessive agammaglobulinemia, includingμheavy chain,λ5, Igαand Igβwere also screened by PCR in 3 patients without mutations in the BTK gene. Clinical data of the children with congenital agammaglobulinemia were collected and analyzed.
     Results: The mean age of onset of the 21 patients was 0.9±0.5 years old and the mean age at diagnosis was 6.3±3.0 years old. Of the 21 children with congenital agammaglobulinemia showing recurrent infections, respiratory tract infection was the most common (n=20, 95.2%), followed by arthritis (n=8, 38.1%), otitis media (n=8, 38.1%), diarrhea (n=6, 28.6%), skin infection (n=6, 28.6%) and meningocephalitis (n=1, 4.8%). There were 2 cases in which chronic lung disease (CLD) was developed due to recurrent pneumonia up to the time of diagnosis and one child developed pre-B cell leukemia at 10 years old despite adequate IVIG treatment. Sixteen different mutations in the BTK gene were identified in 18 patients, including six cases of deletion mutation, four cases of missense mutation, three cases of nonsense mutation and five cases of splice site mutation. The remaining three cases had no mutation in the coding regions of the BTK gene. Of the 16 BTK gene mutations, seven novel mutations were also identified, including five deletion mutations and two missense mutations (del 373-441, 504 del G, 537 del C, 851 del A, 1637 G>A, 1879 T>C, del 1482-1882). Ten of eighteen mutations in the BTK gene were located in the TK domain, four in the PH domain, three in the SH3 domain and one spanned the TH, SH3, SH2 and TK domains. Candidate genes of autosomal-recessive agammaglobulinemia were also screened in three patients without mutations in the BTK gene. A compound heterozygosity mutation in theμHC gene was identified in one patient (1956 G>A, 170-175 insert C).
     Conclusion: Seven novel mutations of BTK gene were identified in 21 patients with congenital agammaglobulinemia. A compound heterozygosity mutation in theμHC gene with autosomal recessive inheritance was firstly reported from China. Molecular genetic test is an important tool for definitive and early diagnosis of congenital agammaglobulinemia and may contribute to accurate carrier detection and prenatal diagnosis.
     Part three Characterization of a Compound Heterozygosity Mutation of the Interleukin-7 ReceptorαGene in a Chinese Patient with Severe Combined Immunodeficiency and Recombinant Active Gene 1 Mutations in Two Patients with Omenn Syndrome
     Objective: In this study we analyzed the clinical and molecular characteristics of a patient with the interleukin-7 receptorαgene mutation and two patients with Omenn Syndrome from China.
     Methods: Three male patients admitted to Chongqing Children's Hospital during February, 2008 to Novermber, 2008 were enrolled in the present study. They all suffered from recurrent fever, persistent cough and diarrhea soon after birth and infections could not be controlled by treatment of antibiotics. In addition, two patients had the characteristics of generalized erythematous skin rash and hepatosplenomegaly. IL-7Rαand RAG1/RAG2 were amplified by PCR from genomic DNA of the patients and their parents. TCRBV-specific PCR amplifications were performed using a panel of 25 BV-specific forward primers and a common BC-specific reverse primer. Sequencing was performed directly on the PCR products in forward and reverse. The PCR products of TCRBV were analyzed by the method of genescan. Analysis of short tandem repeat (STR) was performed to rule out the possibility of graft-versus-host disease (GVHD).
     Results: The serum immunoglobulin (Ig) profile of case 1 was IgG 686.7mg/dL, IgM 20.6 mg/dL, IgA 24.9 mg/dL and IgE 2.3IU/mL. There were no T-cells but increased percentage of B-cells (58%) and NK cells (42%) present in the peripheral blood. The patient had a compound heterozygosity mutation in the interleukin-7 receptorαgene (638 C>T; IVS4(+1)G>A) and both his parents were carriers. The splice-site mutation in intron 4 of IL-7Rαwas firstly reported. The IL-7RαmRNA expression of the patient was remarkably reduced whereas the parents had relatively normal IL-7RαmRNA expression. IL-7RαcDNA of the patient was amplified by nested PCR and a 64 bp deletion was found in exon 4 of IL-7Rα. The serum Ig profile of case 2 was IgG 1150mg/dL, IgM 180mg/dL, IgA 80mg/dL and IgE 5.4IU/mL. The peripheral blood lymphocyte subset in case 2 was T lymphocyte (CD3+) 69%, B lymphocyte (CD19+) 3% and NK cells(CD16+CD56+) 27%. The serum Ig profile of case 3 was IgG 4847 mg/dL, IgM 129 mg/dL, IgA 46 mg/dL and IgE 5.4IU/mL. (The patient was administered IVIG previously). The peripheral blood lymphocyte subset in case 3 was T lymphocyte (CD3+) 21%, B lymphocyte (CD19+) 1% and NK cells (CD16+CD56+) 69%. Lymphocyte proliferative responses were markedly reduced after PHA stimulation in cases 2 and 3. Gene analysis of RAG1 and RAG2 showed that case 2 had a compound heterozygosity mutation in the RAG1 gene (1983 G>A, R624H; 2444 C>T, R778W). In case 3, a homozygous deletion mutation with a premature stop codon was identified at residue 2302 of RAG1 gene (del2302, I729X) and both his parents were carriers. The deletion mutation in RAG1 gene was a novel mutation. In case 2, 25 TCRVβsubfamilies presented monoclonal or ologoclonal peaks. Only monoclonal or ologoclonal peaks of 14 TCRVβsubfamilies were identified in case 3 and another 11 TCRVβsubfamilies were very weak or absent .
     Conclusions: This is the first report about mutations in the interleukin-7 receptorαgene and Omenn syndrome with definite gene mutation in Chinese patients and two novel mutations of IL-7Rαgene and RAG1 were identified.
引文
[1] Fischer A. Human primary immunodeficiency diseseas[J]. Immunity. 2007, 27(6):835-45
    [2] Geha RS, Notarangelo LD, Casanova JL, et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies primary immunodeficiency diseases classification committee[J]. J Allergy Clin Immunol. 2007, 120(4):776-94
    [3] Pan-Hammarstr?m and Lennart Hammarstr?m. Antibody deficiency diseases[J]. Eur J Immunol. 2008, 38(2):327-33
    [4] Ege M, Ma Y, Manfras B, et al. Omenn syndrome due to ARTEMIS mutations[J]. Blood. 2005,105(11):4179-86
    [5] Cunningham-Rundles C, Ponda PP. Molecular defects in T- and B-cell primary immunodeficiency diseases[J]. Nat Rev Immunol. 2005,5(11):880-92
    [6] Bernuth HV, Picard C, Jin Z, et al. Pyogenic bacterial infections in humans with MyD88 deficiency[J]. Science. 2008, 321(5889):691-6
    [7] Holland SM, DeLeo FR, Elloumi HZ, et al. STAT3 mutations in the hyper-IgE syndrome[J]. N Engl J Med. 2007, 357(16):1608-19
    [8] Uzel G.. The range of defects associated with nuclear factorкB essential modulator[J]. Curr Opin Allergy Clin Immunol. 2005, 5(6):513-8
    [9]杨锡强.原发性免疫缺陷病的历史、现状和展望[J].中华儿科杂志. 2004, 42(8): 561-3
    [10] Ozsahin H, Cavazzana-Calvo M, Notarangelo LD, et al. Long-term outcome following hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Group for Blood and Marrow Transplantation[J]. Blood. 2008,111(1):439-45
    [11]于洁,管贤敏,戴碧涛,等.造血干细胞移植治疗综合Wiskott-Aldrich征一例报告及文献复习[J].中华儿科杂志. 2009, 47(3): 183-8
    [12] Lee PP, Chen TX, Jiang LP, et al. Clinical and molecular characteristics of 35 Chinese children with Wiskott-Aldrich syndrome[J]. J Clin Immunol. 2009, 29(40):490-500
    [13] Wang Y, Kanegane H,Wang X , et al. Mutation of the BTK gene and clinical feature of X-linked agammaglobulinemia in mainland China[J]. J Clin Immunol. 2009,29(3):352-6
    [14]蒋利萍,徐酉华,杨锡强,等.两种新型Wiskott-Aldrich综合征蛋白基因突变的鉴定[J].中华儿科杂志. 2003, 4(8): 590-3
    [1] Wiskott A. Familarer, angeborener Morbus Werhofii[J]. Monatsschr Kinderheilkd. 1937, 68:212-16
    [2] Aldrich RA, Steinberg AG, Campbell DC, et al. Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea[J]. Pediatrics. 1954, 13(2):133-9
    [3] Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott- Aldrich syndrome[J]. Cell. 1994, 78(4): 635-44
    [4] Kolluri R, Tolias KF, Carpenter CL, et al. Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42[J]. Proc Natl Acad Sci USA .1996, 93(11):5615-8
    [5] Rivero-Lezcano OM, Marcilla A, Sameshima JH, et al. Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains[J]. Mol Cell Biol. 1995,15(10):5725-31
    [6] Snapper SB, Rosen FS. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization[J]. Annu Rev Immunol. 1999,17:905-29
    [7] Donner M, Schwartz M, Carlsson KU, et al. Hereditary X-linked thrombocytopenia maps to the same chromosomal region as the Wiskott-Aldrich syndrome[J]. Blood. 1988, 72(6):1849-53
    [8] Devriendt K, Kim AS, Mathijs G, et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia[J]. Nat Genet. 2001, 27(3):313-7
    [9] Lee PP, Chen TX, Jiang LP, et al. Clinical and molecular characteristics of 35 Chinese children with Wiskott-Aldrich syndrome[J]. J Clin Immunol. 2009, 29(40):490-500
    [10]蒋利萍,陈冠荣,刘筱梅,等.Wiskott-Aldrich综合征临床和遗传学诊断:附9例报告.临床儿科杂志.2004, 22: 586-589.
    [11] Ochs HD. The Wiskott-Aldrich syndrome [J]. Isr Med Assoc J . 2002, 4:379-84
    [12] Raskind WH, Niakan KK, Wolff J, et al. Mapping of a syndrome of X-linked thrombocytopenia with Thalassemia to band Xp11-12: further evidence of genetic heterogeneity of X-linked thrombocytopenia[J]. Blood .2000, 95(7):2262-8
    [13] Derry JM, Kerns JA, Weinberg KI, et al. WASP gene mutations in Wiskott-Aldrich syndrome and X-linked thrombocytopenia[J].Hum Mol Genet .1995, 4(7):1127-35
    [14] Fillat C, Espa?ol T, Oset M, et al. Identification of WASP mutations in 14 Spanish families with Wiskott-Aldrich syndrome[J].Am J Med Genet. 2001, 100(2):116-21
    [15] J.S. Orange, K.D. Stone, S.E. Turvey, et al. The Wiskott-Aldrich syndrome [J]. Cell.Mol.Life.Sci. 2004,61(18):2361-85
    [16] Sullivan K. E., Mullen C. A., Blaese R. M., et al. A multiinstitutional survey of the Wiskott-Aldrich syndrome[J]. J. Pediatr. 1994, 125(6): 876-85
    [17] Chien YH, Hwu WL, Ariga T, et al. Molecular diagnosis of Wiskott-Aldrich syndrome in Taiwan. J Microbiol Immunol Infect. 2004, 37(5):276-81
    [18] Zhu Q, Watanabe C, Liu T, et al.Wiskott-Aldrich syndrome/X-linked thrombo- cytopenia:WASP gene mutations, protein expression, and phenotype[J]. Blood. 1997, 90(7):2680-9
    [19] Lemahieu V, Gastier JM, Francke U, et al. Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes[J]. Hum Mutat .1999, 14(1):54-66
    [20] Ho HY, Rohatgi R, Lebensohn AM, et al.Toca-1 mediates Cdc42-dependent actinnucleation by activating the N-WASP-WIP complex[J]. Cell. 2004, 118(2): 203-216
    [21] Zhu Q,Zhang M, Blaese RM, et al. The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene[J]. Blood. 1995, 86(10):3797-804
    [22] Jin Y, Mazza C, Christie JR, et al. Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation[J]. Blood .2004, 104(13):4010-9
    [23] Schwartz M, Békássy A, Donnér M, et al. Mutation spectrum in patients with Wiskott-Aldrich syndrome and X-linked thrombocytopenia: identification of twelve different mutations in the WASP gene[J].Thromb Haemost. 1996, 75(4):546-50
    [24] Imai K, Morio T, Zhu Y, et al. Clinical course of patients with WASP gene mutations[J]. Blood . 2004, 103(2):456-64
    [25] Brooimans RA, van den Berg AJ, Tamminga RY, et al. Identification of six novel WASP gene mutations in patients suffering from Wiskott-Aldrich syndrome[J]. Hum Mutat. 2000, 15(4):386-7
    [26] Itoh S, Nonoyama S, Morio T, et al. Mutations of the WASP gene in 10 Japanese patients with Wiskott-Aldrich syndrome and X-linked thrombocytopenia[J]. Int J Hematol. 2000, 71(1):79-83
    [27] Hirschhorn R, Yang DR, Puck JM, et al. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency[J]. Nat Genet .1996, 13(3): 290-95
    [28] Stephan V, Wahn V, Le Deist F, et al. Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells[J]. N Engl J Med .1996, 335(21): 1563-7
    [29] Tone Y, Wada T, Shibata F, et al. Somatic revertant mosaicism in a patient with leukocyte adhesion deficiency type 1[J]. Blood .2007, 109(3): 1182-4
    [30] Levinson, G., and Gutman, G.A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution[J]. Mol. Biol. Evol.1987, 4(3):203-21
    [31] Oron-Karni V, Filon D, Rund D, et al. A novel mechanism generating short deletion/insertions following slippage is suggested by a mutation in the human alpha2-globin gene[J]. Hum. Mol. Genet. 1997, 6(6):881-5
    [32] Donn M. Stewart, Fabio Candotti, David L. Nelson, et al. The Phenomenon of Spontaneous Genetic Reversions in the Wiskott-Aldrich syndrome: A Report of the Workshop of the ESID Genetics Working Party at the XIIth Meeting of the European Society for Immunodeficiencies (ESID) [J]. J Clin Immunol. 2007, 27(6): 634-39
    [33] Filipovich AH, Stone JV, Tomany SC, et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program[J]. Blood . 2001, 97(6):1598-603
    [34] Ozsahin H, Cavazzana-Calvo M, Notarangelo LD, et al. Long-term outcome following hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Group for Blood and Marrow Transplantation[J]. Blood . 2008, 111(1):439-45
    [35] Pai SY, DeMartiis D, Forino C, et al. Stem cell transplantation for the Wiskott-Aldrich syndrome: a single-center experience confirms efficacy of matched unrelated donor transplantation[J]. Bone Marrow Transplant.2006, 38(10):671-9
    [36] Kobayashi R, Ariga T, Nonoyama S, et al. Outcome in patients with Wiskott-Aldrich syndrome following stem cell transplantation: an analysis of 57 patients in Japan[J]. Br J Haematol . 2006, 135(3):362-6
    [37]于洁,管贤敏,戴碧涛,等.造血干细胞移植治疗综合Wiskott-Aldrich征一例报告及文献复习[J].中华儿科杂志. 2009, 47(3): 183-8
    [1] BRUTON OC . Agammaglobulinemia[J]. Pediatrics. 1952,9(6):722-8
    [2] Nomura K, Kanegane H, Karasuyama H, et al. Genetic defect in human X-linked agammaglobulinemia impedes a maturational evolution of pro-B cells into a later stage of pre-B cells in the B-cell differentiation pathway[J]. Blood. 2000,96(2):610-7
    [3] Tsukada S, Saffran DC, Rawlings DJ, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell[J]. 1993,72(2):279-90
    [4] Vetrie D, Vorechovsky I, Sideras P, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases[J]. Nature. 1993,361(6409):226-33
    [5] Ohta Y, Haire RN, Litman RT, et al. Genomic organization and structure of Bruton agammaglobulinemia tyrosine kinase: localization of mutations associated with varied clinical presentations and course in X chromosome-linked agammaglobulinemia[J]. Proc Natl Acad Sci U S A. 1994,91(19):9062-6
    [6] Lopez Granados E, Porpiglia AS, Hogan MB, et al. Clinical and molecular analysis of patients with defects in micro heavy chain gene[J]. J Clin Invest .2002,110(7):1029-1035
    [7] Minegishi Y, Coustan-Smith E, Wang YH, et al. Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia[J]. J Exp Med. 1998, 187(1):71-77
    [8] Ferrari S, Lougaris V, Caraffi S, et al. Mutations of the Igbeta gene cause agammaglobulinemia in man[J]. J Exp Med .2007, 204(9):2047-2051
    [9] Wang Y, Kanegane H, Sanal O, et al. Novel Igalpha (CD79a) gene mutation in a Turkish patient with B cell-deficient agammaglobulinemia[J]. Am J Med Genet. 2002, 108(4):333-336
    [10] Minegishi Y, Rohrer J, Coustan-Smith E, et al. An essential role for BLNK inhuman B cell development[J]. Science .1999, 286(5446):1954-7
    [11] Lee PP, Chen TX, Jiang LP, et al. Clinical characteristics and genotype-phenotype correlation in 62 patients with X-linked agammaglobulinemia[J]. J Clin Immunol. 2010,30(1):121-31
    [12] Wang Y, Kanegane H, Wang X, et al. Mutation of the BTK gene and clinical feature of X-linked agammaglobulinemia in mainland China[J].J Clin Immunol. 2009,29(3):352-6
    [13] Brooimans RA, van den Berg AJ, Rijkers GT, et al. Identification of novel Bruton's tyrosine kinase mutations in 10 unrelated subjects with X linked agammaglobulinaemia[J]. J Med Genet. 1997,34(6):484-8
    [14] Vorechovsky I, Vihinen M, de Saint Basile G, et al. DNA-based mutation analysis of Bruton's tyrosine kinase gene in patients with X-linked agamma- globulinaemia[J]. Hum Mol Genet. 1995,4(1):51-8
    [15] Plebani A, Soresina A, Rondelli R, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study[J]. Clin Immunol. 2002,104(3):221-30
    [16] Danielian S, El-Hakeh J, Basílico G, et al. Bruton tyrosine kinase gene mutations in Argentina[J]. Hum Mutat. 2003,21(4):451
    [17] Fiorini M, Franceschini R, Soresina A, et al. BTK: 22 novel and 25 recurrent mutations in European patients with X-linked agammaglobulinemia[J]. Hum Mutat. 2004,23(3):286
    [18] Jeanpierre M. Germinal mosaicism and risk calculation in x-linked disease[J]. Am J Hum Genet. 1992,50(5):960-7
    [19] Holinski-Feder E, Weiss M, Brandau O, et al. Mutation screening of the BTK gene in 56 families with X-linked agammaglobulinemia (XLA): 47 unique mutations without correlation to clinical course[J]. Pediatrics. 1998,101(2):276-84
    [20] Hashimoto S, Tsukada S, Matsushita M, et al. Identification of Bruton's tyrosine kinase (Btk) gene mutations and characterization of the derived proteins in 35 X-linked agammaglobulinemia families: a nationwide study of Btk deficiency inJapan[J]. Blood. 1996,88(2):561-73
    [21] Vihinen M, Vetrie D, Maniar HS, et al. Structural basis for chromosome X-linked agammaglobulinemia: a tyrosine kinase disease[J]. Proc Natl Acad Sci U S A. 1994,91(26):12803-7
    [22] Zhu Q, Zhang M, Winkelstein J, et al. Unique mutations of Bruton's tyrosine kinase in fourteen unrelated X-linked agammaglobulinemia families[J]. Hum Mol Genet. 1994,3(10):1899-900
    [23] Futatani T, Miyawaki T, Tsukada S, et al. Deficient expression of Bruton's tyrosine kinase in monocytes from X-linked agammaglobulinemia as evaluated by a flow cytometric analysis and its clinical application to carrier detection[J]. Blood. 1998,91(2):595-602
    [24] Yel L, Minegishi Y, Coustan-Smith E, et al. Mutations in the mu heavy-chain gene in patients with agammaglobulinemia[J]. N Engl J Med .1996 ,335(20) :1486-93
    [25] Ferrari S, Zuntini R, Lougaris V, et al. Molecular analysis of the pre-BCR complex in a large cohort of patients affected by autosomal-recessive agamma- globulinemia[J]. Genes Immun, 2007, 8(4):325-33
    [26] Goodman PA, Wood CM, Vassilev AO, et al. Defective expression of Bruton's tyrosine kinase in acute lymphoblastic leukemia[J]. Leuk Lymphoma. 2003,44(6):1011-8
    [27] López-Granados E, Pérez de Diego R, Ferreira Cerdán A, et al. A genotype-phenotype correlation study in a group of 54 patients with X-linked agammaglobulinemia[J]. J Allergy Clin Immunol. 2005,116(3):690-7
    [1] Buckley RH, Schiff RI, Schiff SE, et al. Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants[J]. J Pediatr .1997, 130(3): 378-87
    [2] Buckley RH, Schiff SE, Schiff RI, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency[J]. N Engl J Med. 1999, 340(7): 508-16
    [3] Petrovic A, Dorsey M, Miotke J, et al. Hematopoietic stem cell transplantation for pediatric patients with primary immunodeficiency diseases at All Children’s Hospital/University of South Florida[J]. Immunol Res. 2009, 44(1-3): 169-78
    [4] Noguchi M, Yi H, Rosenblatt HM, et al. Interleukin-2 receptor gamma chainmutation results in X-linked severe combined immunodeficiency in humans[J]. Cell. 1993, 73(1): 147-57
    [5] Russell SM, Tayebi N, Nakajima H, et al .Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development[J]. Science. 1995, 270(5237): 797-800
    [6] Corneo B, Moshous D, Güng?r T, et al. Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B-severe combined immune deficiency or Omenn syndrome[J]. Blood. 2001,97(9): 2772-76
    [7] Kung C, Pingel JT, Heikinheimo M, et al. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease[J]. Nat Med. 2000, 6(3): 343-5
    [8] Puel A, Leonard WJ. Mutations in the gene for the IL-7 receptor result in T(-)B(+)NK(+) severe combined immunodeficiency disease[J].Curr Opin Immunol. 2000,12(4) : 468-73
    [9] Omenn GS. Familial reticuloendotheliosis with eosinophilia[J]. N Engl J Med.1965, 273:427-32
    [10] Villa A, Santagata S, Bozzi F , et al. Partial V(D)J recombination activity leads to Omenn syndrome[J]. Cell.1998, 93(5):885-96
    [11] Villa A, Sobacchi C, Notarangelo LD, et al.V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations[J]. Blood. 2001, 97(1):81-8
    [12] Bories JC, Cayuela JM, Loiseau Pet al. Expression of human recombination activating genes (RAG1 and RAG2) in neoplastic lymphoid cells: correlation with cell differentiation and antigen receptor expression[J]. Blood. 1991, 78(8):2053-61
    [13] Langerak AW,van Den Beemd R,Wolvers-Tettero et al. Molecular and flow cytometric analysis of the Vbeta repertoire for clonality assessment in mature TCRalphabeta T-cell proliferations[J]. Blood. 2001, 98(1):165-73
    [14]赵晓东,李秋,王墨,等. Omenn综合征一例[J].中华儿科杂志. 2001, 39(1) : 20.
    [15] Giliani S, Mori L, de Saint Basile G, et al. Interleukin-7 receptor alpha (IL-7Ralpha) deficiency:cellular and molecular bases.Analysis of clinical,immunological and molecular features in 16 novel patients[J] . Immunol Rev.2005, 203:110-26
    [16] Jo EK, Kook H, Uchiyama T, et al. characterization of a novel nonsense mutation in the interleukin-7 receptor alpha gene in a Korean patient with severe combined immunodeficiency[J]. Int J Hematol.2004, 80(4) :332-5
    [17] Puel A, Ziegler SF, Buckley RH, et al. Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency[J]. Nat Genet. 1998, 20(4):394-7
    [18] Asao H. Analysis of gammac-dependent cytokines-mediated immuno- regulation[J].Rinsho Byori.2007, 55(1):51-8
    [19] Habib T, Senadheera S, Weinberg K, et al. The common gamma chain (gamma c) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3[J]. Biochemistry. 2002, 41(27) :8725-31
    [20] Schwarz K, Gauss GH, Ludwig L, et al. RAG mutations in human B cell-negative SCID[J]. Science. 1996 , 274(5284):97-9
    [21] Santagata S, Gomez CA, Sobacchi C, et al. N-terminal RAG1 frameshift mutations in Omenn's syndrome: internal methionine usage leads to partial V(D)J recombination activity and reveals a fundamental role in vivo for the N-terminal domains[J]. Proc Natl Acad Sci U S A. 2000, 97(26):14572-7
    [22] TonegawaS. Somatic generation of antibody diversity[J]. Nature.1983, 302(5909):575-81
    [23] Oettinger MA,Schatz DG,Gorka C, et al. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination[J]. Science.1990,248(4962): 1517-23
    [24] Schatz DG,Omettinger MA,Baltimore D, et al. The V(D)J recombination activating gene, RAG-1[J]. Cell.1989, 59(6):1035-48
    [25] Ramsden DA,Baetz K, Wu GE, et al. Conservation of sequence in recombination signal sequence spacers[J]. Nucleic Acids Res.1994, 22(10):1785-96
    [26] Spanopoulou E, Zaiseva F,Wang FH, et al. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination[J]. Cell.1996, 87(2):263-76
    [27] Hiom K,Gellert M.A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage[J]. Cell.1997, 88(1):65-72
    [28] Notarangelo LD,Villa A,Schwarz K , et al. RAG and RAG defects[J]. Curr Opin Immunol.1999, 11(4):435-42
    [29] Schwarz K,Gauss GH,Ludwig L, et al. RAG mutations in human B cell-negative SCID[J]. Science. 1996, 274(5284):97-9
    [30] Corneo B,Moshous D, Gungor T, et al. Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B-severe combined immune deficiency or Omenn syndrome[J]. Blood. 2001, 97(9):2772-6
    [31] Wada T, Takei K, Kudo M, et al. Characterization of immune function and analysis of RAG gene mutations in Omenn syndrome and related disorders[J]. Clin Exp Immunol. 2000 , 119(1):148-55
    [32] Villa A, Santagata S, Bozzi F, et al. Partial V(D)J recombination activity leads to Omenn syndrome[J].Cell.1998, 93(5):885-96
    [33] Aleman K, Noordzij JG, de Groot R, et al. Reviewing Omenn syndrome[J]. Eur J Pediatr. 2001, 160(12):718-25
    [34] Ege M, Ma Y, Manfras B, et al. Omenn syndrome due to ARTEMIS mutations[J]. Blood. 2005 , 105(11):4179-86
    [35] Grunebaum E, Bates A, Roifman CM, et al. Omenn syndrome is associated with mutations in DNA ligase IV[J]. J Allergy Clin Immunol. 2008, 122(6):1219-20.
    [36] Giliani S, Bonfim C, de Saint Basile G, et al. Omenn syndrome in an infant with IL7RA gene mutation[J]. J Pediatr. 2006, 148(2):272-4
    [37] Roifman CM,Zhang J,Atkinson A, et al. Adenosine deaminase deficiency canpresent with features of Omenn syndrome[J]. J Allergy Clin Immunol. 2008, 121(4):1056-8
    [38] Gennery AR,Slatter MA,Rice J, et al. Mutations in CHD7 in patients with CHARGE syndrome cause T-B + natural killer cell + severe combined immune deficiency and may cause Omenn-like syndrome[J]. Clin Exp Immunol. 2008, 153(1):75-80
    [1] Wiskott A. Familarer, angeborener Morbus Werhofii[J]. Monatsschr Kinderheilkd. 1937, 68:212-16
    [2] Aldrich RA, Steinberg AG, Campbell DC. Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea[J].Pediatrics,1954,13 (2):133-9
    [3] Donner M, Schwartz M, Carlsson KU,et al. Hereditary X-linked thrombocytopenia maps to the same chromosomal region as the Wiskott-Aldrich syndrome[J]. Blood,1988,72(6):1849-53
    [4] Devriendt K, Kim AS, Mathijs G, et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia[J]. Nat Genet, 2001,27(3):313-7
    [5] Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell.1994, 78: 635-644
    [6] Kawai S, Minegishi M, Ohashi Y, et al.Flow cytometric determination of intracytoplasmic Wiskott-Aldrich syndrome protein in peripheral blood lymphocyte subpopulations. J Immunol Methods.2002, 260:195-205
    [7] Rivero-Lezcano OM, Marcilla A, Sameshima JH, et al. Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains[J]. Mol Cell Biol,1995,15(10):5725-31
    [8] Snapper SB, Rosen FS. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization[J]. Annu Rev Immunol,1999,17:905-29
    [9] Derry J. M., Ochs H. D., Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome[J]. Cell. 1994,78:635-644
    [10] Badolato R, Sozzani S, Malacarne F, et al. Monocytes from Wiskott-Aldrich patients display reduced chemotaxis and lack of cell polarization in response to monocyte chemoattractant protein-1 and formyl-methionyl-leucyl-phenylalanine[J]. J Immunol.1998, 161:1026-1033
    [11] Leverrier Y, Lorenzi R, Blundell MP, et al. Cutting edge: the Wiskott-Aldrich syndrome protein is required for efficient phagocytosis of apoptotic cells[J]. J Immunol.2001,166:4831-4834
    [12] Brickell PM,Katz DR,Thrasher AJ.Wiskott-Aldrich syndrome:current researchconcepts [J].Br J Haematol.1998,101(4):603-608
    [13] Cannon JL, Burkhardt JK. Differential roles for Wiskott-Aldrich syndrome protein in immune synapse formation and IL-2 production[J].J Immunol. 2004,173:1658-62
    [14] Borg C, Jalil A, Laderach D, et al. NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs [J]. Blood.2004,104:3267-3275
    [15] Lum LG, Tubergen DG, Corash L, et a1.Splenectomy in the management of the thrombocytopenia of the Wiskott-Aldrich syndrome [J].N Engl J Med. 1980,302:892-896
    [16] Tavassoli M,Aoki M.Migration of entire megakaryocytes through the marrow–blood barrier[J]. Br J Haematol.1981,48:25–29
    [17] Taizo Wada, Shepherd H. Schurman, Makoto Otsu, et al. Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc Natl Acad Sci U S A. 2001, 98(15): 8697-8702.28
    [18] Taizo Wada, Shepherd H. Schurman, G. Jayashree Jagadeesh, et al. Multiple patients with revertant mosaicism in a single Wiskott-Aldrich syndrome family. Blood. 2004,104:1270-1272
    [19] Darvasi, A., and Kerem, B. Deletion and insertion mutations in short tandem repeats in the coding regions of human genes. Eur. J. Hum. Genet.1995, 3:14-20
    [20] Oron-Karni, V., Filon, D., Rund, D., et al. A novel mechanism generating short deletion/insertions following slippage is suggested by a mutation in the human alpha2-globin gene. Hum. Mol. Genet.1997, 6:881-885
    [21] Bzymek, M., and Lovett, S.T. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc. Natl. Acad. Sci. U. S. A.2001, 98: 8319-8325
    [22] J.S. Orange, K.D. Stone, S.E. Turvey, et al. The Wiskott-Aldrich syndrome [J]. Cell.Mol.Life.Sci.2004,61:2361-2385
    [23] Sullivan K. E., Mullen C. A., Blaese R. M., et al. A multi institutional survey of the Wiskott-Aldrich syndrome[J]. J. Pediatr.1994, 125: 876-885
    [24] Dupuis-Girod S., Medioni J., Haddad E., et al. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features and outcome in a single-center cohort of 55 patients[J]. Pediatrics.2003,111: 622-627
    [25] Ochs HD. The Wiskott-Aldrich syndrome [J]. Isr Med Assoc J.2002,4:379-384
    [26] Imai K, Morio T, Zhu Y, et al. Clinical course of patients with WASP gene mutations[J]. Blood. 2004,103:456-464
    [27] Filipovich AH, Stone JV, Tomany SC, et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program[J]. Blood.2001,97(6):1598-603
    [28] Ozsahin H, Cavazzana-Calvo M, Notarangelo LD, et al. Long-term outcome following hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Group for Blood and Marrow Transplantation[J]. Blood.2008,111(1):439-45
    [29] Pai SY, DeMartiis D, Forino C, et al. Stem cell transplantation for the Wiskott-Aldrich syndrome: a single-center experience confirms efficacy of matched unrelated donor transplantation[J]. Bone Marrow Transplant. 2006, 38(10):671-9
    [30] Kobayashi R, Ariga T, Nonoyama S, et al. Outcome in patients with Wiskott-Aldrich syndrome following stem cell transplantation: an analysis of 57 patients in Japan[J]. Br J Haematol.2006,135(3):362-6
    [31]于洁,管贤敏,戴碧涛,等.造血干细胞移植治疗Wiskott-Aldrich综合征一例文献报道及文献复习[J].中华儿科杂志. 2009,47(3):183-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700