基于ADE7753的电力计量装置现场检测仪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各类电力计量装置在安装使用前必须依据相应的检测规定进行实验室首检,但在实际现场应用中,仅计量装置本身准确并不一定能最终保证电力计量的准确。在实际运行过程中,由于计量方式的不合理、运行方式的改变、电压互感器二次回路电压降过大、接线错误等原因,会造成计量误差过大,电量损失严重。现场检测仪能较直观、简便、迅速地检查和判断交流电力计量装置是否工作在正常状态,一旦发现交流电能表超差,即可及时予以调换,从而使用电单位在计量校准过程中免受停电所带来的困扰。
     本文综述了电力计量现场检测的意义,分析了电能表产生误差的原因,阐述了现场检测仪的原理;系统以MSP430F149控制器为核心,利用电能计量芯片ADE7753等,设计了电力计量装置的检测电路、时钟和数据存储等硬件模块;基于C和VHDL语言编写了系统软件,可对计量装置的一次和二次回路进行在线测量,实现了键盘输入、液晶显示、打印输出等功能。
     本设计的突出优点是采用2片电能计量芯片ADE7753同时对一次、二次回路的电压电流输入进行测量。由于ADE7753电流通道中多了HPF环节和数字积分器环节,电流通道输出数据较电压通道更稳定。因此,在对一次回路测量时将电压信号加在第1个ADE7753的电压通道,而将二次回路的电压信号加在第2个ADE7753的电流通道。实际上,由于一次、二次回路的电压都是相电压220V,这样取第2个ADE7753电流通道的输出值作为相电压的测量值会更加精确。这对提高仪表整体的精度等级是很有意义。
All kinds of power measurement before the installation must be tested in laboratory based on the corresponding inspection regulations for the first prosecution. But in actual applications, only accurate measurement system itself does not finally guarantee the measuring precise. In the actual operating process, due to measurement way of unreasonable, operation mode change, voltage transformer secondary circuit voltage drop too large and wiring error, the measurement error will be excessive and the power will loss seriously. The field monitor can check and judge the communication power metering device whether it is working in normal condition intuitively easily and quickly. Once founding the watt-hour meter error is big, we can change it in time. From this way, power customers can avoid beset by blackout in calibration process.
     This article gives an overview of the significance of the field monitor of power measurement, analyzes the reasons for the errors caused by electric energy meter, elaborates the priniple of the field monitor of power measurement. With the core of MSP430,the system takes advantage of ADE7753, and designs hardware such as clock, data store and detection circuitry and so on. Write the system software with C and VHDL, measure the first and the second circuit on line and Carried out keyboard entry, liquid crystal display and print functions like output, etc.
     The prominent advantages of the design is that with two pieces of ADE7753, we can measure the voltage, electric current of primary loop and secondary circuit at the same time. Because the current ch of ADE7753 has digital integrator and HPF, the output of it is more stable than the voltage ch. Therefore, we put the voltage signal of primary loop into the voltage ch of the first ADE7753, and put the voltage signal of secondary circuit into the current ch of the second ADE7753. For all practical purpose, the voltage of primary loop and secondary circuit is both 220V, in this way, taking the second ADE7753 current output value of the same measurements as the voltage will be more accurate. This is very meaningful to raising the whole accuracy rate of meter.
引文
[1]国家电网公司人力资源部.电能计量相关规程规范.中国电力出版社,2010.74-80
    [2]孙禔,舒开旗.电能计量新技术与应用.中国电力出版社,2010.62-74
    [3]孟凡利.运行中电能计量装置错误接线检测与分析.中国电力出版社,2006.44-50
    [4]邢道清,郭宝利,解祥艳.电能计量与电能表修校.机械工业出版社,2009.96-104
    [5]郭志大,刘卫国,贺安超等.基于CPLD的高速脉冲信号采集系统设计[J].测控技术,2011,30(2):27-29
    [6]唐亮.基于DSP的电能质量分析仪的硬件设计[D].[硕士学位论文].上海:交通大学,2008
    [7]刘学刚,张倩,张轩玮.关于电力计量设备的维护检验与管理[J].机电信息,2010,(18):12-14
    [8]林广明,黄义锋,欧阳森等.基于DSP和CPLD电能质量监测装置的设计[J].电力系统保护与控制,2009,37(18): 16-18
    [9]胡思平,郑建民.探索计量器具信息管理系统在强制检定中的应用[J].电力信息化,2007,(12):20~24
    [10]孙俊灵,刘军.基于ARM的单相电力计量装置现场监测仪实现[J].现代电子技术,2010,33(10): 9-12
    [11]孔建云,钟锐,蔡娟.基于ADE7753的高精度多功能电能计量系统[J].电子技术应用,2009,35(1):5~10
    [12]颜重光.以ADE7753等构成的电子电能表电路[J].仪表技术,2002,(6):4-11
    [13]陈志勇,李锐.电压表、电流表、功率表检定系统的研制[J].电测与仪表,2008,45(2):16-20
    [14]徐淑萍,苏小会,容晓峰等.基于EPM7128的多功能测试系统的研制[J].微计算机信息,2006,(8):11~13
    [15]王秀新.计量装置在线检测管理信息系统的研究与应用[N].华北电力大学(河北),2005.26~30
    [16]王延坤.智能化仪表“DJL-1电力计量系统在线检测仪”的研究与设计[N].烟台大学学报(自然科学与工程版),2000.7-11
    [17]王守存,马强,李建平.高压电能计量装置失准原因分析及解决措施[J].电工技术杂志,2004.18-23
    [18]和永进.如何提高电力计量的准确性[J].中小企业管理与科技,2010,(15):10-11
    [19]王艳芬,程彦华,崔杰等.主变有功、无功功率表及电流表指示不准的原因分析[J].青海电力,2007,26(3):30-34
    [20]赵鑫,蒋亮,齐兆群,李晓凯.VHDL与数字电路设计.机械工业出版社,2005.
    [21]徐爱钧IAR EWARM嵌入式系统编程与实践.北京航空航天大学出版社,2006.
    [22]郑亚民,董晓舟.可编程逻辑器件软件QuartusII国防工业出版社,2006.
    [23]郑燕,赫建国,党剑华.基于VHDL语言与Quartus Ⅱ软件的可编程逻辑器件应用与开发.国防科技出版社,2007.
    [24]周润景,图雅,张丽敏.基于Quartus Ⅱ的FPGA/CPLD数字系统设计实例.电子工业出版社,2007
    [25]胡大可.MSP430系列单片机C语言程序设计与开发.北京航空航天大学出版社,2003
    [26]郭利文,邓月明CPLD/FPGA设计与应用高级教程.北京航空航天大学出版社,2011
    [27]王诚,蔡海宁,吴继华Altera FPGA/CPLD设计.人民邮电出版社,2010
    [28]诺迪威尔(北京)科技有限公司2010.http://www.nodewell.com/pageOl.htm
    [29]武汉博宇电力设备有限公司.2009http://www.whboyu.com/index.asp
    [30]北京迪文科技有限公司.2010http://Vww.dwin.com.cn/ProOrder.aspx?id=11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700