强震条件下岩质路堑边坡与预应力锚索结构的动力相互作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据对四川省内的由2008年5.12汶川8.0级地震造成的路堑边坡震害进行的调查,归纳分析了锚固边坡的震害情况。在通过室内直剪试验获得锚固体与岩体界面的抗剪强度参数的基础上,结合锚固边坡震害调查结果,对预应力锚索结构与边坡岩土体的动力相互作用机制进行了计算分析。本文的主要工作内容与结果如下:
     1)通过对岩质路堑边坡的震害情况的调查分析,发现采用锚固结构加固的边坡具有较好的抗震性能。
     2)通过直剪试验模拟了砂浆和岩石粘结面的剪切破坏过程;分析了峰值强度的影响因素及砂灰比对砂浆岩石粘结强度的影响规律,得到残余内摩擦角和残余粘聚力分别在砂灰比为0.75、0.50时取得较大值;得到砂浆与三种常见岩石的粘结强度参数。
     3)用拟静力法推导了平面滑动和圆弧滑动模式的边坡在水平地震作用下的预应力锚索内力的计算公式形如T=Af(kei)+B,得到随着水平地震影响系数的增加,锚索的锚拉力呈线性增长的变化特征。利用弹性理论推导了锚索锚固段剪应力分布公式及最大剪应力出现的位置与其影响因素,得到岩体越软,剪应力分布范围越大峰值越小;地震过程中锚固段未破坏时,最大剪应力位置保持不变(zτmax=(?)1/b,b为与锚固体直径及变形参数有关的计算参数);岩体泊松比越小、岩体与锚固体弹性模量比值越大,锚固段剪应力峰值位置越浅。
     4)利用理论分析和数值模拟方法讨论了锚固结构动力作用机制与特征,得到在地震条件下关于锚固结构和边坡的动力响应规律如下:
     ①锚固结构内力会增加,平均增加幅度约为60%,在地震过程中会加大对边坡的锚固作用;对降低坡脚处的剪应变、限制坡面位移、维护边坡稳定发挥了重要作用;锚固结构可与坡体发生很好地变形协调,改善边坡岩土体的应力状态,提高边坡中潜在滑动面或软弱结构面的抗剪强度,有利于坡体稳定。锚固结构受竖向地震作用的影响较小。
     ②就整体而言,随着岩质边坡高程的增加,水平加速度、速度、位移有垂直放大的规律;但沿坡面向上PGA放大系数呈先增大后减小规律;
     ③竖向地震作用会增大坡顶、坡脚处的剪应变,降低坡体的安全系数,但对坡体主应力、放大系数、锚固结构内力影响不大。
     本文在锚固边坡的震害调查、锚固结构与岩体界面抗剪强度参数、预应力锚索结构与边坡的动力相互作用分析方法及作用机制方面的研究工作,有助于进一步认识在强震条件下边坡锚固结构的力学作用特征,可为实际工程提供理论参考。
Based on the investigation of cutting slope damage caused by the Wenchuan 8.0 earthquake in Sichuan Province, the author mainly summarizes the anchored cutting slope earthquake damage. On the basis of getting the shear strength parameters of interface between mortar and rock through direct shear tests, and in conjunction with the results of anchored cutting slope earthquake damage investigation, dynamic interaction mechanism of cutting rock slope with prestressed anchor cable structure is calculated and analyzed. The main work content and results are as follows:
     1) The analysis of the cutting slope earthquake damage investigation shows that slope reinforced by anchor structure has better seismic performance.
     2) Through direct shear tests, simulation of the shear failure process of bonding interface between mortar and rock is carried out. Analysis of influencing factors of the peak strength and the influencing rule of sand cement ratio on shear bond strength of mortar to rock is carried out. The residual angle and the residual cohesion are greater while in the sand cement ratio of 0.75 and 0.50 respectively. Shear strength parameters of mortar to three types of rocks are obtained.
     3) In situations of considering the horizontal earthquake in plane and arc sliding destruction, the cable axial force formula is derived such as T=Af(kcl)+B by pseudo-static method which shows that cable axial increases linearly with the increase of horizontal seismic effect coefficient.With elastic theory, the paper deduces the anchoring section grout shear stress distribution formula and the location and influencing factors of maximum shear stress appears.The formula shows that the softer the rock is, the greater the shear stress distribution is and the smaller the peak shear stress is. The conclusion is obtained that under the earthquake anchoring section shear stress peak position remains unchanged while plastic—failure does not occur(zrmax=(?)V1/b, b is a parameter related to diameter, elastic module, and Possion' ratio of anchorage section).The smaller the rock Poisson's ratio is and the greater the ratio of rock's and anchoring section's elastic modulus is, the more shallow the anchoring section peak shear stress position is.
     4) By using the theoretical calculation and the numerical analysis method to analyze the dynamic mechanism and characteristics of anchor structure, the paper gets the dynamic responses of anchor structure and slop which are as follows:
     ①The internal force of anchor structure will increase, it increases by 60% or so in this paper example. The anchor structure plays an important role in reducing the shear strain increment at the toe of slope, limiting slope surface displacement, maintaining the stability of slope. The structure can well coordinate deformation with slope in the earthquake process, fully mobilize their own strength and steady ability of slope masses, and improve the slope masses stress state, which can be helpful to increase shear strength of potential sliding surface and weak structure plane in an earthquake. Compared to the horizontal seismic wave, corresponding vertical wave has little effect on the anchor structure.
     ②On the whole, with the increase of elevation, the amplification factor of horizontal acceleration, velocity, displacement increases. But the PGA amplification coefficient first increases, then decreases upwards along the slope surface.
     ③The vertical earthquakes will increase the shear strain at top of slope and toe of slope, reduce the safety factor of slope, but have little effect on the principal stress, amplification factor and internal force of anchor structure.
     In this paper, the research contains anchored slope earthquake damage investigation, shear strength parameters of bond interface between anchor structure and rock, dynamic mechanism of interaction between cutting rock slope with prestressed anchor cable structure during strong earthquakes. The research results are helpful to further understanding of the mechanical mechanism of slope with anchor structure during strong earthquakes, and can provide theoretical references for practical projects.
引文
[1]程良奎,李象范.岩土锚固土钉喷射混凝土—原理、设计与应用[M].北京:中国建筑工业出版社,2008
    [2]闫莫明,徐祯祥等.岩土锚固技术手册[M].北京:人民交通出版社,,2004
    [3]刘立平,雷尊宇,周富春.地震边坡稳定分析方法综述.重庆交通学院学报,2001,20(3):83-88.
    [4]LING HOE I, CHENG, ALEXANDER HD. Rock Slidinglnduced by Sei smic Force [J]. International Journal of Rock Mechanics and Mining Sciences. Elsevier Science Ltd 1997,34 (6):1021-1029, 0148-9062.
    [5]AUSILIO E, CONTE E, DENTE G. Seismic Stability Analysis of Reinforced Slopes, Soil Dynamics and Earth quake Engineering, Elsevier Science Ltd,2000,19(3):159-172,0267-7261.
    [6]LESHCHINSKY DOV SAN, KA-CHINA. Pseudo static Seismic Stability of Slopes Design charts [J]. Journal of Geotechnical Engineering ASCE 1994,120 (9):1514-1532,0733-9410.
    [7]SIYAHI, BILGE GOKMIRZA. Pseudo static Stability Analysis in Normally Consolidated Soil Slopes Subjected to Ear thquakes [J]. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers Turkish Chamber of Ci vil Engineers 1998,9 (DEC):457-461,0300-2721.
    [8]祁生文,伍法权,严福章等.岩质边坡动力反应分析[M].北京:科学出版社,2007
    [9]王思敬.岩石边坡动态稳定性的初步探讨[J].地质科学,1977,(4):372-376.
    [10]刘春玲,祁生文,童立强等.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(16):2730-2733
    [11]Ashford SA, Nicholas S. Simplified method for evaluating seismic stability [J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(2):119~128.
    [12]陶连金,苏生瑞,张倬元.节理岩体边坡的动力稳定性分析[J].工程地质学报,2001,9(1):32-38.
    [13]陈玲玲,陈敏中,钱胜国.岩质陡高边坡地震动力稳定分析[J].长江科学院院报,2004,21(1):33-35.
    [14]王存玉,王思敬.边坡模型振动实验研究[C]//中国科学院地质研究所编.岩体工程地质力学问题(七).北京:科学出版社,1987:65-74.
    [15]刘红帅.岩质边坡地震稳定性分析方法研究[D].哈尔滨:中国地震局工程力学研究所,2006
    [16]洪海春,徐卫亚.地震作用下岩质边坡稳定性分析综述[J].岩石力学与工程学报,2005,24(增刊:1):4827-4836
    [17]何蕴龙,陆述远.岩石边坡地震作用近似计算方法[J].岩土工程学报,1998,20(2):67-68.
    [18]秋仁东,石玉成,付长华.高边坡在水平动荷载作用下的动力响应规律研究[J].世界地震工程,2007,23(2):131-138
    [19]徐光兴,姚令侃,高召宁,等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力 学与工程学报,2008,27(3):624-632.
    [20]王思敬,薛守义.岩体边坡楔形体动力学分析[J].地质科学,1992,2:177-182
    [21]Lin Jeen Shang, Whitman RV. Earthquake induced displacement of sliding blocks [J]. Journal of Geotechnical Engineering,1986,112(1):44~59.
    [22]薛守义,王思敬,刘建中.块状岩体边坡地震滑动位移分析[J].工程地质学报,1997,5(2):131-136.
    [23]Wartman J, SeedR B, Bray JD. Shaking table modeling of seismically induced deformations in slopes [J]. Journal of Geotechnical and Geoenvironmen-tal Engineering,2005,131(5):610-622.
    [24]肖克强.地震荷载作用下顺层岩体边坡变形特征及稳定性研究[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [25]Gokhan S, Rathje EM, AsceM. Empirical predictive models for earthquake Induced sliding displacements of slopes [J]. Journal of Geotechnical and Geoenvironm ental Engineering,2008, 134(6):790~803.
    [26]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动,2005,25(1):164-171
    [27]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1993.
    [28]李天池.地震与滑坡的关系及地震滑坡预测的探讨(节录)[A].滑坡文集(第二集)[C].北京:人民铁道出版社,1979:127-132.
    [29]Steven L. Kramer. Geotechnical Earthquake Engineering [M]. New Jersey:Prentice2 Hall Inc. U. S. A,1996.
    [30]钱培风.竖向地震力和砌块抗震研究[M].北京:大地出版社,1997
    [31]黄诚,王安明,任伟中.水平向与竖向地震动的时间遇合模式对边坡动力安全系数的影响[J].岩土力学,2010,31(11):3404-3409
    [32]LING H I, LESHCHINSKY D, YOSHIYUKI M. Soil slopes under combined horizontal and vertical seismic accelerations [J]. Earthquake Engineering and Structural Dynamics,1997,26(12): 1231-1241.
    [33]黄建梁,王威中,薛宏交.坡体地震稳定性的动态分析[J].地震工程与工程振动,1997,17(4):114—122.
    [34]栾茂田,李湛,范庆来.土石坝拟静力抗震稳定性分析与坝坡地震滑移量估算[J].岩土力学,2007,28(2):224-230
    [35]董建华,朱彦鹏.地震作用下土钉支护边坡动力分析[J].重庆建筑大学学报,2008,30(6):90-95
    [36]汪鹏程,朱大勇,许强.强震作用下加固边坡的动力响应及不同加固方式的比较研究[J].合肥工业大学学报(自然科学版),2009,32(10):1503
    [37]郝振群,石崇,朱珍德.圆形洞室预应力锚索的地震动力响应[J].河海大学学报(自然科学版),2010,38(6):716-719
    [38]马天忠.地震作用下复合土钉支护边坡动力分析[D].兰州:兰州理工大学,2009
    [39]叶帅华.地震作用下框架锚杆支护边坡动力分析[D].兰州:兰州理工大学,2010
    [40]李乔,赵世春.汶川大地震工程震害分析[M].成都:西南交通大学出版社,2008
    [41]许冲,戴福初等.汶川地震滑坡灾害研究综述[J].地质论评,2010,56(6):860
    [42]肖世国.岩石高边坡开挖松弛区及加固支挡结构研究[D].成都:西南交通大学,2003.
    [43]周德培,张建经,汤涌.汶川地震中道路边坡工程震害分析[J],岩石力学与工程学报,2010,29(3):565--577.
    [44]李海光等编著.新型支挡结构设计与工程实例[M].北京:人民交通出版社,2004.
    [45]范宇洁,郑七振,魏林.预应力锚索锚固体的破坏机理和极限承载能力研究[J].岩石力学与工程学报,2005,24(15):2765-2769
    [46]饶枭宇.预应力岩锚内锚固段锚固性能及荷载传递机理研究[D].重庆:重庆大学,2007
    [47]王依群,李忠献.不同阻尼特性材料组合结构的弹塑性动力时程响应计算[J].地震工程与工程振动,1999,19(2):76-80.
    [48]张辉东,王日宣,王元丰.大型水电站厂房结构地震时程响应非线性数值模拟[J].水力发电学报,2007,26(4):96-102.
    [49]石崇,徐卫亚,周家文.二维波穿过非线性节理面的透射性能研究[J].岩石力学与工程学报,2007,26(8):1645-1654.
    [50]耿乃光,郝晋升,李纪汉,等.岩石动态杨氏模量的对比测量研究[C].第二届岩石动力学学术会议文集.武汉:武汉测绘科技大学出版社,1990.
    [51]王思敬,吴志勇,董万里等.水电工程岩体的弹性波测试[C]//国科学院地质研究所著.岩体工程地质力学问题(三).北京:科学出版社,1980:229-253
    [52]周维垣.高等岩石力学[M].北京:水利电力出版社,1990
    [53]CRESPELLANI T, MADIAIC, VANNUCCHI G. Earthquake destructiveness potential factor and slope stability [J]. Geotechnigue,1998,48(3):411-419.
    [54]沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2006
    [55]李海波,冯海鹏,刘博.不同剪切速率下岩石节理的强度特性研究[J].岩石力学与工程学报,2006,5(12):2435-2440.
    [56]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.
    [57]王义锋,郑文棠,石崇.岩质高边坡的地震时程响应分析[J].三峡大学学报(自然科学版),2008,30(3):2-3
    [58]徐景茂,顾雷雨.锚索内锚固段注浆体与孔壁之间峰值抗剪强度试验研究[J].岩石力学与工程学报,2004,23(22):3765-3769
    [59]杜景灿,周家骢等.岩质古滑坡体稳定性研究——以宝泉抽水蓄能电站龟山古滑坡体为例[J],岩土力学,2005,26(11):1794-1795
    [60]中国水利水电科学研究院.DL5073—2000水工建筑物抗震设计规范[S].北京:中国电力出版社,2000.
    [61]中华人民共和国国家标准编写组.GB50011—2001建筑抗震设计规范[S].北京:中国标准出版社,2001.
    [62]张永兴.边坡工程学[M].北京:中国建筑工业出版社,,2008
    [63]梁庆国,韩文峰等.极震区岩体地震动力破坏研究体系框架初探[J].地球科学进展,2010,25(1):43-48
    [64]Duncan J M. State of the artlimit equilibrium and finite element analysis of slopes[J]. Journal of Geotechnical and Eoenvironmental Engineering,ASCE,1996,122 (7):5772589.
    [65]沈珠江,理论土力学[M].北京:中国水利水电出版社,2000
    [66]张强勇,岩土工程强度与稳定计算及工程应用[M].北京:中国建筑工业出版社,2005
    [67]孔德森,栾茂田.岩土力学数值分析方法研究[J].岩土工程技术,2005,19(5):249-253
    [68]周先贵,曹国金.岩土力学数值方法研究进展[J].建筑技术开发,2002,29(8):15-18
    [69]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000
    [70]黄儒钦.水力学教程[M],成都:西南交通大学出版社,1997.
    [71]User's Manual of FLAC3D [R]. Itasca Consulting Group Inc,2002.
    [72]张鲁渝,郑颖人,赵尚毅,时卫民.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1):21-26.
    [73]中华人民共和国国家标准编写组.GB/T5224-2003预应力混凝土用钢绞线[S].北京:中国计划出版社,2003.
    [74]张华,陆阳,程强.岩质边坡锚杆(索)框架梁加固的数值模拟[J].公路交通科技,2008,25(1):23
    [75]杨永刚,张海燕.预应力锚索加固机理的数值模拟分析[J].煤,2009,116:45-46
    [76]谢红强,何江达,符文熹.强地震动作用下复合堆积体边坡动力响应及稳定性研究[J].中国科技论文在线,2010,,5(7):570
    [77]杜杰,冯文凯,石豫川等.汶川地震对望月寨滑坡稳定性影响研究[J].岩土力学,2010,31(3):859-862
    [78]马行东,李海波.地震动荷载作用下锚固边坡稳定性研究.第二届全国岩土与工程学术大会论文集.446-451
    [79]洪海春,徐卫亚.地震作用下岩体锚固性能研究综述与展望[J].金属矿山,2006,357(3):5-10
    [80]Clough R W. The finite element method in plane stress analysis. Proc.2nd ASCE Conference on Electronic Computation.Pittsburgh, PA,345-378, Sept.1960.
    [81]Jean-Louis Briaud, William F.Powers Ⅲ and David E.Weatherby.Should Grouted Anchors Have Short Tendon Bond Length?[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,2:110~119
    [82]A.Kilic, E.Yasar and A.G.Celik.Effect of grout properties on the pull-out load capacity offully grouted rock bolt [J].Tunnelling and underground space technolo gy,2002,17:355~362
    [83]B.Benmokrane, A.Chennouf and H.S.Mitri.Laboratory Evaluation of Cement-Based Grouts and Grouted Rock Anchors[J].International Journal of Rock Mechanics and mining Science&Geomechanics Abstracts,1995,32(7):633~642
    [84]C.D.Atis, Design and properties of high volume fly ash concrete for pavements [Ph.D.Thesis].The University of Leeds, UK,1997,342
    [85]Mahdi Moosavi and William F.Bawden.Shear strength of Portland cement grout [J]. Cement&Concrete Composites,2003,25:729-735
    [86]E.Hoek,D.F.Wood,Rock Support[J].Min.Mag,1989,282~287
    [87]M.Moosavi, A.Jafari and A.Khosravi.A laboratory study on bond failure mechanism in deformed rock bolts using a modified Hoek cell[C].Second Asian Rock Mechanics Symposium(ARMS), China,2001
    [88]A.Kilic,E.Yasar and C.D.Atis.Effect of bar shape on the pull-out capacity of fully-grouted rock bolts[J].Tunnelling and underground space technology,2003,18:1~6
    [89]A.M.Neville, Properties of Concrete[R].Unwin Brothers Ltd, London,1963,532
    [90]中华人民共和国国家标准编写组.GB50218-94工程岩体分级标准[S].北京:中国计划出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700