基于岩体断裂力学的巷道稳定性与锚喷支护机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体工程的稳定性是岩体工程中最重要的问题之一,它影响岩体工程的施工进度
    与掘支成本并且危及施工人员人身安全。但由于岩体的复杂性以及岩体力学理论远远
    滞后于工程实践,岩体的稳定性一直是没能很好解决的问题。随着我国岩体工程建设
    的力度加大,岩体力学理论已经远远满足不了岩体工程的需要。岩体是由岩块与不连
    续面组成的结构体,其破坏往往是不连续面扩展与复合的结果,不连续面在岩体中的
    分布方式及其本身的形态与力学性能是千差万别的,因此,研究不连续面对岩体力学
    性能的影响,是目前岩体力学研究的热点与难点。锚喷支护是目前在地下岩体工程中
    使用最为广泛的支护方式之一,但其对岩体力学性能加强的作用机理却不很明确,需
    要进行进一步的研究。岩体断裂力学研究岩体不连续面的扩展规律,从而可以从更深
    入地了解岩体的破坏过程。本文采用了岩体断裂力学的观点,对巷道围岩的破坏方式
    进行了解释与分析,并对锚喷支护机理进行研究。本文主要完成了以下几方面的工作:
    (1)结合巷道围岩的受力特点,系统地分析了岩体中不连续面的扩展与复合方
    式,分析了岩体中的破坏优势不连续面方位,以及受压剪、拉剪作用下岩体不连续面
    的扩展方式与复合特点。
    (2)以圆形断面巷道为例,分析了围岩中微不连续面与临空不连续面的受力特点
    及其开裂方式。从断裂力学的基本理论出发,推导了圆形断面巷道围岩的破坏区大小
    与深度的理论公式。结果认为,围岩破坏区的大小受巷道断面、地应力、岩石的断裂
    韧度、不连续面密度、长度与抗剪性能等因素的影响。
    (3)采用理论分析与数值方法,研究了喷射混凝土支护对围岩不连续面扩展的抑
    制作用,并进一步应用板裂纹的理论研究了混凝土支护层的破坏方式与处理方法。研
    究结果认为,混凝土支护对围岩内部不连续面扩展的影响较小,但对临空不连续面扩
    展的影响却较大。因此,锚喷支护中,混凝土的作用主要是抑制临空不连续面的破坏。
    混凝土厚度的变化对抑制不连续面的扩展影响较小,但其厚度越大,混凝土所能提供
    的抵抗围岩膨胀的能力也越大,混凝土层的破坏范围一般受到锚杆的影响,锚杆的间
    距越小,混凝土层的破坏范围也会越小。
    (4)通过实验的方式研究了受压作用下临空不连续面的扩展特点以及锚杆的作
    用,并采用数值方法对研究结果进行了讨论。研究结果表明,临空不连续面存在翼裂
     III
    
    
    纹破坏与剪裂纹破坏,不连续面的倾角越大,越容易扩展,小倾角不连续面更容易产
    生次生裂纹的破坏方式。锚杆的作用,提高了结构体的力学性能,降低了裂纹尖端的
    应力集中现象,提高了裂纹尖端裂纹的起裂荷载。锚杆并不改变裂纹的起裂角度,但
    使翼裂纹扩展的方向向深部偏移,从而加大了因翼裂纹而造成的剥离体的厚度,减缓
    了翼裂纹的扩展速度。数值分析的结果很好地解释了实验中所出现的情况。
    (5)采用数值方法,研究了锚杆对翼裂纹扩展的抑制作用。结果认为,锚杆对翼
    裂纹扩展的抑制作用是非常明显的,锚杆的存在使翼裂纹的应力强度因子降低,锚杆
    的强度与刚度越大,对翼裂纹尖端的应力强度因子减小量也越大。翼裂纹的长度越大,
    锚杆的作用也越明显。由此可以说明,锚杆可以大大加强岩体的残余强度。
    (6)提出了理论分析模型,研究了锚杆对拉剪作用下的不连续面的影响。并计算
    了受拉、剪以及拉剪组合几种状态下锚杆对不连续面尖端应力强度因子的降低情况。
    研究结果表明,锚杆的安装角度对锚杆的作用的影响较大。锚杆的存在,使不连续面
    从从简单的受拉或受剪的状态变成了拉剪组合状态,降低了使不连续面破坏的主要因
    素的影响,从而起到支护作用。
    (7)综合锚喷支护的特点,分析了锚杆联系链的支护机理,并在地下矿山的采准
    巷道支护中进行实践应用。结果表明,锚杆联系链在加强混凝土支护强度,加大锚杆
    支护性能,抑制不连续面的破坏等方面起了很重要的作用。而且其安装方便,使用灵
    活,支护能力大的特点很适合在地下矿山复杂地质条件下用来替代锚喷网支护。
Stability of rock mass is one of the most important problems in rock engineering. It
    affects the engineering progress, tunneling and supporting cost, and may concern the safety
    of the constructors. Because of the complexity rock mass and that theory falls behind the
    practice, the problem has not solved very well yet. With the rapid development of rock
    engineering in our country, the theories can not satisfy the need of engineering more and
    more. Rock mass is a kind of structural one which is composed by rock blocks and
    discontinuities. The failure of rock mass is usually the result of the growth and coalescence
    of the discontinuities. The distribution and state of the discontinuities and their mechanical
    characteristic has much difference. Therefore, the study of the influence of the
    discontinuities on the rock mechanics is a focus and difficult problem. Bolts and shotcrete
    supporting is one of the widely applied methods in underground rock engineering. But their
    reinforcing mechanism for the rock mass is not very clear and needs to be further studied.
    Rock fracture mechanics study the extension pattern of the discontinuities growth and
    coalescence, so it can be used to understand the failure process of the surrounding rock mass
    deeply. Based the viewpoints of rock fracture mechanics, the failure modes of the
    surrounding rock mass of the tunnels are discussed, and the reinforcing mechanism of the
    bolts and shotcrete is analyzed. The main results discussed in this thesis are as follows:
     (1) According to the loading characteristic of the surrounding rock mass of the tunnels,
    the growth and coalescence modes of the discontinuities are analyzed systematically, and
    the dominance inclination angle of discontinuities in the rock mass is discussed. The
    growing and coalescing characteristic of the compression-shear or tensile-shear mixed mode
    in rock mass is studied, too.
     (2) Taking the tunnel of the circular cross section as the example, the loading
    characteristic of micro-discontinuities and surface discontinuities surrounding the tunnels
    and their fracture modes are analyzed. Based on the theory of fracture mechanics, the
    formulations of dimension and depth of the disturbed domain are obtained. The results show
    that the dimension of disturbed domains is influenced by the cross section of tunnel, in-situ
    stress, fracture toughness of rock, spaces between the discontinuities, length and shearing
    capacity of the discontinuities.
     (3) By theoretical and numerical methods, the resisting function of the shotcerte to the
    structural plane growth is studied. Further more, the failure mode and treatment methods of
     V
    
    
    the concrete supporting layer are analyzed by the fracture theory of plates. The results imply
    that the resisting effects of the shotcrete on the inner discontinuities are less influence than
    that on the surface planes. So, the main function of the shotcrete is used to resist the growth
    of surface planes. The variety of the shotcrete thickness has little influence on the resisting
    capability of the discontinuities. However, the thicker the shotcrete is, the stronger to the
    expanding stress of surrounding rock mass will be. The failure zone in the shotcrete can be
    restricted by bolts. The smaller the distance of the bolts is, the less of the failure zone will
    be.
     (4) The growing modes of the surface discontinuities under compressive load and the
    function of the bolts are studied by the experimental methods. At the same time, the
    numerical analysis is used to verify the results. The results demonstrate that there are some
    wing cracks and secondary cracks at the tip of the surface discontinuities. With the increase
    of the inclination angle between the structural plane and the surface, the propagation
    becomes more easily. The secondary cracks may be more popular for the case of the small
    inclination angles. The role of bolts is to improve the performance of the structural mass,
    weaken the stress intensity at the c
引文
[1] 朱维申, 李术才, 陈卫忠. 节理岩体破坏机理和锚固效应及工程应用. 北京: 科
     学出版社, 2002
    [2] 唐辉明, 晏同珍. 岩体断裂力学理论与工程应用. 北京: 中国地质大学出版社,
     1993
    [3] 林韵梅等 岩石分级的理论与实践. 北京: 冶金工业出版社, 1996. 4: 289~366
    [4] Barton N., Lien R., Lunde J. Engineering classification of rock masses for the design
     of rock support. Rock Mech, 1974, 5(6): 189~236
    [5] Bieniawski, Z. T. Rock mass classification as a design aid in tunneling. Tunnels and
     Tunneling, 1988, 12(7): 1988
    [6] Hoek E., Brown E. T. Practical estimates of rock mass strength. Int. J. Rock Mech.
     Min. Sci., 1997, 34(8): 1165~1186
    [7] Goodman R. E., Taylor R. L., Brekke T. L. A model for the mechanics of jointed rock.
     J. of Soil Mech. And Found. Div., Proc. Of ASCE, 1973, 94(3): 637~659
    [8] Singh M. Applicability of a constitutive model to jointed block mass. Rock Mechanics
     and Rock Engineering, 2000, 33(2): 141~147
    [9] Sridevi J., Sitharam T. G. Analysis of Strength and Moduli of Jointed Rocks.
     Geotechnical and Geological Engineering. 2000, 18: 3~21
    [10] Hoek E. Strength of jointed rock masses. Geotechnique, 1983, 33(3): 187~223
    [11] 冯夏庭. 智能岩石力学导论. 北京: 科学出版社, 2000
    [12] 陶振宇, 赵震英, 余启华等. 裂隙岩体特性与洞群施工力学问题. 武汉: 中国地
     质大学出版社, 1993
    [13] Barton N. and Choubey V. The Shear Strength of Rock Joint in Theory and Practice.
     Rock Mech, 1977, 8(10): 1~54
    [14] 晏石林. 节理岩体等效模型的复合解析法与节理有限单元法. 武汉工业大学, 博
     士学位论文, 1998
    [15] Yang Z. Y., Chen J. M., Huang T. H. Effect of joint sets on the strength and
     deformation of rock mass models. Int. J. Rock Mech. Min. Sci., 1998, 35(1): 75~84
     103
    
    
    [16] 谭学术. 复合岩体力学理论及其应用. 北京: 煤炭工业出版社, 1995
    [17] 徐靖南, 朱维申, 白世伟. 压剪应力作用下多裂隙岩体的力学特性--本构模型.
     岩土力学, 1993, 14(4): 1~14
    [18] 程良奎, 范景伦, 韩军等. 岩土锚固. 北京: 中国建筑工业出版社, 2003
    [19] 李世辉. 隧道支护新论—典型类比分析法. 北京: 科学出版社, 1999
    [20] Li C., Stillborg B. Analytical models for rock bolts. Int. J. of Rock Mech. Min. Sci.,
     1999, 36(8): 1013~1029
    [21] Pellet F., Egger P. Analytical model for the mechanical behavior of bolted rock joints
     subjected to shearing. Rock Mech. and Rock Eng., 1996, 29(2): 73~97
    [22] 麦倜曾, 张玉军. 锚固岩体力学性质的研究. 工程力学, 1987, 4(1): 106~1162
    [23] 朱浮声, 郑雨天. 全长粘结式锚杆的加固作用机理分析. 岩石力学与工程学报,
     1996, 15(4): 333~337
    [24] Meechan, Bruce. Rock bolts. Tunnels and tunneling. 1989, 21(11): 45~46
    [25] Gurung N. 1-D analytical solution for extensible and inextensible soil/Rock
     reinforcement in pull-out tests. Geotextiles and Geomembranes, 2001, 19: 195~212
    [26] 郑颖人, 刘怀恒, 顾金才. 均质地质中锚喷支护理论与设计. 岩土工程学报, 1981,
     5(1): 57~69
    [27] Marence, M., Swoboda, G. Numerical model for rock bolts with consideration of rock
     joint movement. Rock Mech. and Rock Eng., 1995, 28(3): 145~165
    [28] Chua, K. M., Aimone, et. al. Numerical study of the effectiveness of mechanical rock
     bolts in an underground opening excavated by blasting. U. S. Symposium on Rock
     Mechanics, Tucson, 1992. 3: 285
    [29] Swoboda G. Marence M. Strohhausl S. Design of rock bolts with numerical models.
     Proceedings of the Seminar on Impact of Computational Mechanics on Engineering
     Problems, 1993. 2, 147
    [30] Swoboda G. Marence M. FEM modeling of rock bolts. Proceedings of the
     International Conference on Computer Methods and Advances in Geomechanics. Publ.
     by A. A. Balkema. 1991, 1515
    [31] Siad L. Stability analysis of jointed rock slopes reinforced by passive, fully grouted
     bolts. Computers and geotechnics. 2001, 28(5): 325~347
     104
    
    
    [32] Jewell R. A., Wroth C. P. Direct shear tests on reinforced sand. Geotechnique, 1987,
     37(1): 53~68
    [33] Knill J. L., Franklin J. A., Raybould. D. R. A study of the stress distribution around
     rock-bolt anchors. Proceedings of First Congress: International Society of Rock
     Mechanics. Lisbon. 1966. 2: 341~345
    [34] Indraratna B. Design for grouted rock bolts based on the convergence control method.
     Int. J. Rock Mech. And Min. Sci. and Geotechanical Abst, 1990, 27(4): 269~281
    [35] 朱维申, 任伟中, 张玉军等. 开挖条件下节理围岩锚固效应的模型试验研究. 岩
     土力学. 1997, 18(3): 1~7
    [36] 杨延毅, 王慎跃. 加锚节理岩体的损伤增韧止裂模型研究. 岩土工程学报, 1995,
     17(1): 9~17
    [37] 董方庭. 巷道围岩松动圈支护理论及应用技术. 北京: 煤炭工业出版社, 2001
    [38] 杨新安, 黄宏伟. 单根锚杆锚固机理的研究. 岩土力学, 1997, 18(8): 80~82
    [39] Spang K. Egger P. Action of fully-grouted bolts in jointed rock and factors of
     influence. Rock Mechanics and Rock Engineering, 1990, 23(3): 201~229
    [40] 陈荣, 杨树斌. 砂固结预应力锚杆的室内试验及锚固机理分析. 岩土工程学报,
     2000, 22(3): 235~237
    [41] 葛修润, 刘建武. 加锚节理面抗剪性能研究. 岩土工程学报, 1988, 10(1): 8~20
    [42] Kristin H. H., Bent A. Spiling bolts and reinforced ribs of sprayed concrete replace
     concrete lining. Tunnelling and Underground Space Technology, 2002, 17(4):
     403~413
    [43] 于骁中, 谯常忻, 周群力. 岩石和混凝土断裂力学. 中南工业大学出版社, 1991
    [44] Vahid Hajiabdolmajid, Peter Kaiser. Brittleness of rock and stability assessment in
     hard rock tunneling Tunnelling and Underground Space Technology, 2003, 18(1):
     35~48
    [45] Huang J., Wang Z., Zhao Y. The development of rock fracture from microfracturing to
     main fracture formation. Int. J. Rock Mech. Min. Sci. and Geotechanical Abst., 1993,
     30(7): 925~928
    [46] Li C. L., Richard P., Erling N. The stress-strain behavior of rock material related to
     fracture under compression. Engineering Geology, 1998, 49(3-4): 293~302
     105
    
    
    [47] Dyskin A. V., Germanovich L. N. A model of fault propagation in rocks under
     compression, proceedings of the 35th U. S. symposium on rock mechanics. Publ. by A.
     A. Balkema, 1995: 731-738
    [48] Dyskin A. V., Germanovinch L. N.. A model of crack growth in microcracked rock,
     Int. J. Rock Mech. Min. Sci., 1993, 30(7): 813~820
    [49] Szwedzicki T. Rock mass behaviour prior to failure. Int. J. Rock Mech. Min. Sci.,
     2003, 40(5): 573~584
    [50] Fredrich, J. T., Evans, F. Effect of grain size on brittle and semi brittle strength:
     implication for micro-mechanical modeling of failure in compression. J. Geophys.
     Res., 1990, 95: 10907~10920
    [51] Brace W F, Bombolakis E G. A note on brittle rock growth in compression. J Geophys
     Res., 1963, 68: 3709~3713
    [52] Muneo H., Navarathan V. Analysis of smooth crack growth in brittle materials.
     Mechanics of Materials, 1998, 28(1-4): 33~52
    [53] Hoek E. Brittle fracture propagation in rock under compression. Int. J. Frac., 1965,
     36(1): 137~155
    [54] Horii H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids:
     axial splitting and shear failure. J Geophys Res., 1985, 90: 3105~3125
    [55] Steif P. S. Crack extension under compressive loading. Eng. Frat Mech., 1984, 20(3):
     463~473
    [56] Luis E., Vallejo. The brittle and ductile behavior of a material containing a crack
     under mixed-mode loading, 28th U. S. Syposium on Rock Mechanics. Tucson
     Publisher, 1987: 383~390
    [57] Lauterbach B., Gross D. Crack growth in brittle solids under compression. Mechanics
     of Materials, 1998, 29(2): 81~92
    [58] Lewis R. W., Koosha B. A mixed mode rock fracture model for the prediction of crack
     path. Int. J. Num. Analy. Meth. Geome, 1999, 23: 281~294
    [59] Bobet A. The initiation of secondary cracks in compression. Eng. Frac. Mech., 2000,
     66(2): 187~219
    [60] Emmanuel E. G. Problem of mixed mode crack propagation, Martinus Nijhoff
     106
    
    
    Publishers, 1984
    [61] Horiii H., Nemat-Nasser S. Compression induced micro crack growth in brittle solids:
     axial splitting and shear failure. J. Geophys Res., 1985, 90: 3105~3125
    [62] 李海波. 花岗岩材料在动态压应力作用下力学特性的实验与模型研究. 中国科学
     院岩土力学研究所. 博士学位论文,1998
    [63] Dyskin A. V. Experiments on 3D crack growth in uniaxial compression. Int. J. Frac.,
     1994, 65(3): 101~115
    [64] Tada H, Paris P. C., Irwin G. R. The stress analysis of cracks handbook. Del Research
     Corporation, Pennsylvania, 1973
    [65] 朱伯芳. 有限单元法原理与应用. 北京: 中国水利水电出版社, 1998
    [66] Ingraffea A. R. and Heuze F. R. Finite element models for rock fracture mechanics,
     Int. J. Numer. And Analy. Methods in Geomech, 1984(4): 486~493
    [67] Shen B., Stephansson Q. Numerical analysis of mixed mode I and mode II fracture,
     Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1993, 30(7): 861~867
    [68] Belytschko T., Black T. Elastic crack growth in finite elements with minimal
     re-meshing. Int. J. Numer. Methods Eng., 1999, 45: 601~20
    [69] 黎在良, 王元汉, 李廷芥. 断裂力学中的边界数值方法. 北京: 地震出版社, 1996
    [70] Germanovich L. N. Mechanism of brittle fracture of rock with pre-existing cracks in
     compression. Pageoph, 1994, 143(1): 15~24
    [71] 朱维申, 陈卫忠, 申晋. 雁行裂纹扩展的模型试验及断裂机制研究. 固体力学学
     报, 1998, 19(4): 355~360
    [72] 李银平, 王元汉, 陈龙珠. 含预制裂纹大理岩的压剪试验分析. 岩土工程学报,
     2004, 26(1): 120~124
    [73] Robet A, Einstein H. H. Fracture coalescence in rock-type material under uniaxial and
     biaxial compression. Int Rock Mech Min Sci., 1998, 35(7): 863~888
    [74] Reyes O., Einstein H. H. Failure Mechanics of Fractured Rock fracture coalescence
     Model. Proceedings 7th Int. Con. On Rock Mech., Publ. by A. A. Balkema, 1991
    [75] Vasarhelyi B., Robert A. Modeling of crack initiation, Propagation and coalescence in
     uniaxial compression. Rock Mech Rock Eng., 2000, 33(2): 119~139
    [76] Eberhardt E., Stead D. Stimpson B., et. al. The effect of neighbouring cracks on
     107
    
    
    elliptical crack inition and propagation in unixial and triaxial stress fields. Eng. Frac.
     Mech., 1998, 64(2): 103~115
    [77] Li Y P, Tham L. G., Wang Y. H. Modified kachanov method for analysis of solids with
     multiple cracks. Engng Fract Mech., 2003, 70(9): 1115~1129
    [78] Shafique M. A. K., Marwan K. K. Analysis of mixed mode crack initiation angles
     under various loading conditions, Eng. Frac. Mech., 2000, 67(5): 397~419
    [79] Gdouts E. E. Problems of mixed mode crack propagation. Martinus Nijhoff Publishers,
     1984
    [80] Kachanov L. M. On the effective moduli of solids with cavities and cracks. Int. J. Frac,
     1993, 59: 17~21
    [81] Frantziskonis G., Tang F. F. Desai C. S. Borehole scale effects and related instabilities.
     Eng. Frac. Mech., 1991, 58(2): 377~389
    [82] Cheatham J. B. A new hypothesis to explain stability of bore-hole breakouts. Int J
     Rock Mech Min Sci and Geomech Abstr., 1993, 30(12): 1095~101
    [83] Shen B., Tan X., Li C. et. al. Simulation of borehole breakouts using fracture
     mechanics model. Proceedings of the International Symposium on Rock Stress. Publ.
     by A. A. Balkema, 1997: 289~298
    [84] Nawrocki P. A. Dusseault M. B. Modelling of damaged zones around openings using
     radius-dependent Young's modulus. Rock Mech. Rock Eng., 1995, 28(4): 227~239
    [85] Salganik R. L. Gotlib V. A. Continuum versus discontinuoum damage mechanics of
     creep caused by microcracking. Int. J. Frac., 2000, 101: 181~201
    [86] 杨挺青. 含裂纹体蠕变断裂理论及其应用研究. 力学进展, 1999, 29(2): 1~10
    [87] 周维垣, 杨延毅. 节理岩体的损伤断裂力学模型及其在坝基稳定性分析中的应用.
     水利学报, 1990, 11: 48~54
    [88] 殷有泉. 考虑损伤的节理本构模型. 工程地质学报, 1994, 2(4): 1~6
    [89] 周维垣, 剡公瑞. 岩石、混凝土类材料断裂操作过程区的细观力学研究. 水电站
     设计, 1997, 13(1): 1~9
    [90] 李广平, 陶振宇. 真三轴条件下的岩石细观损伤力学模型. 岩土工程学报, 1995,
     17(1): 24~31
    [91] Krajcinovic D. Fanella D. A micromechanical damage model for concrete. Eng. Frac.,
     108
    
    
    Mech, 1986, 25(5-6): 585~596
    [92] Janson J., Hult J. Fracture mechanics and damage mechanics, a combined approach. J.
     Mech Appl, 1977, 1: 59~64
    [93] Wong R. H. C., Lin P., Tang C. A., et. al. Creeping damage around an opening in
     rock-like material containing non-persistent joints. Eng. Frac. Mech., 2002, 69(18):
     2015~2027
    [94] Germanovich L. N. Dyskin A. V. Fracture mechanisms and instability of openings in
     compression Int J Rock Mech Min Sci., 2000, 37(1-2): 263~284
    [95] Kwon S., Wilson J. W. Investigation of the shear stress distribution around an
     excavation in rock salt. Int J Rock Mech Min Sci., 1998, 35(4-5): 464
    [96] Shen B., Barton N. The disturbed zone around tunnels in jointed rock masses. Int. J.
     Rock Mech. Min. Sci., 1997, 34(1): 17~125
    [97] Sanos A. I., Nomikos P. Tsoutrelis C. E. Stability of symmetric wedge formed in the
     roof of a circular tunnel: nonhydrostatic natural stress field. Int. J. Rock Mech. Min.
     Sci., 1999, 36(5): 687~691
    [98] Martin C. D., Read R. S., Martion J. B. Observations of brittle failure around a
     circular test tunnel. Int. J. Rock Mech. Min. Sci., 1997, 34(7): 1065~1073
    [99] Kuang J. S., Wang Y. H. A Coupling model of reinforced concrete fracture, Materials
     and Structure, 1998, 31: 602-608
    [100] 王思敬, 杨志法, 刘竹华. 地下工程岩体稳定分析. 北京: 科学出版社, 1984
    [101] Wang Y. H. The elastic and elasto-plastic fracture analysis by method of weighted
     residuals and elasto-viscoplasticity. Ph. D. Thesis, The University of Hong Kong,
     Hong Kong, 1988, 13~200
    [102] Muskhelishvili N. I. Some basic problems of mathematical theory of elasticity. The
     Netherlands, Leyden: Noordhoff, 1975
    [103] Savin G. N. Stress concentration around holes. Oxford: Pergamon Press, 1961
    [104] 柳春图, 蒋持平. 板壳断裂力学. 北京: 国防工业出版社, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700