滇东南含锡难处理铅锌矿选矿关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国滇东南地区拥有丰富的矿产资源,富含锡、银、铟、铅、锌、钨、铜等有价金属,滇东南多金属矿床主要分布在个旧、白牛厂、都龙3个矿区。本论文以云南蒙自白牛厂含锡难处理铅锌硫化矿物为研究对象,全面详细地考察了各种硫化矿物的浮选行为以及锡矿物的浮选性能,在此基础上,对此类矿石的浮选分离流程结构进行了设计,形成了滇东南含锡难处理铅锌矿选矿关键技术,并成功用于生产实践,为矿山实际生产提供理论指导和可行依据。
     对白牛厂铅锌硫化矿的硫化矿物方铅矿、铁闪锌矿、磁黄铁矿黄铁矿和毒砂浮选行为进行研究,基本查明了五种矿物浮选行为:丁基黄药、乙硫氮、丁铵黑药、苯胺黑药对五种矿物表现不同的捕收能力,在弱碱性条件下,使用苯胺黑药作捕获收剂,对方铅矿具有良好的选择性能;乙硫氮在高碱条件下对方铅矿捕收能力强,而对其它硫化矿物捕收能力弱;丁铵黑药选择性最差。浮选行为与矿浆电位的关系研究表明:以苯胺黑药为捕收剂,0.05-0.02mV电位区间有利于方铅矿与其它四种硫化矿分离;以乙硫氮为捕收剂,石灰调节矿浆pH=12.0,电位低于0.175V时,方铅矿可以与其它四种硫化矿物分离。应用电化学测试、红外光谱测试、循环伏安法测试等多种现代表面测试技术,研究了矿物在有捕收剂存在条件下的表面氧化机理,探讨了捕收剂与矿物表面的吸附反应和矿物表面生成物的种类。
     锡石试验研究表明,水杨羟肟酸对微细粒锡石的捕收效果好,且用量也少,但水杨羟肟酸对石英的捕收能力也很强;选择木质素作石英、方解石抑制剂,此药剂抑制效果明显,对锡石的浮选影响不大。重选分级所有溢流样,经过浓缩脱泥脱硫,通过浮选,锡精矿锡的品位45.71%,锡的回收率73.46%。采用浮选柱,锡精矿的品位可以达到42.68%,回收率82.87%。与浮选机相比,不仅选矿指标好,且工艺流程及药剂制度简单,选矿成本大大降低。重选试验结果表明,白牛厂矿由于含硫高,需脱完硫之后再重选效果比较好,锡精矿的品位和回收率都要高,大部分的硫精矿也得到了回收,有利于资源综合回收。
     针对白牛厂矿区主要产出两种不同类型的铅锌硫化矿,一种矿银含量高(100g/t),另一种矿银含量低(65g/t)。开发出了低碱电位调控浮选与高碱电位调控浮选。高碱电位调控浮选是在矿浆pH大于12,矿浆电位在130mV左右,使用黄药与乙硫氮作捕收剂,石灰作pH调整剂,使铅矿物与其它矿物达到浮选分离的目的。高碱流程药剂制度简单,但对于含银高的铅锌矿,使用此方法银的回收率低。使用苯胺黑药与乙硫氮作选铅的捕收剂,硫酸锌与亚硫酸钠作抑制剂,在低碱电位调控下选铅,银的回收率大副度提高。两种生产工艺流程铅锌都获得了较好的生产指标,2010年1-11月份二选厂主要处理含银高白羊段铅锌矿,铅精矿品位达52.62%,铅回收率83.67%,银回收率60.47%;锌精矿品位达44.70%,锌回收率93.59%。三选厂2010年6-11月份主要处理含银低的对门山段铅锌矿,铅精矿品位达56.13%,铅回收率80.15%,银回收率51.12%;锌精矿品位达45.31%,锌回收率91.24%。铅锌精选作业采用浮选柱与浮选机相比,铅精矿品位提高了8%,锌精矿品位提高5%。
     通过本论文的研究,更加全面和深刻的了解复杂硫化矿的电化学浮选行为,有助于推动电位调控浮选技术在生产实践中的应用,形成新的多金属复杂铅锌硫化矿浮选分离先进技术。
     本研究得到了中南大学产业化基地—蒙自矿冶有限责任公司的大力支持。
Southeast region of Yunnan province has abundant mineral resources, which are rich in tin, silver, indium, lead, zinc, tungsten, copper etc., southeast polymetallic deposits of Yunnan mainly locate in Gejiu, Bainiuchang and Dulong. This thesis studied on refractory lead-zinc mineral containing tin from Mengzi Bainiuchang, Yunnan province, the electrochemical flotation behavior of various sulfides and flotation performance of tin mineral were detailedly investigated. On this basis, flotation separation process of the ore has been designed and forms the key technology of mineral processing of refractoty lead-zinc sulfides containing tin of southeast region of Yunnan. The technology has successfully applied to production practice, providing theoretical guidances and feasible basises for mine practical production.
     The flotation behavior of galena, marmatite, pyrrhotite, pyrite and arsenopyrite of Bainiuchang were investigated and ascertained. Butyl xanthate, diethyldithiocarbamate, ammonium butyl aerofloat and aniline aerofloat have different collecting abilities to these five kinds of lead-zinc sulfides. On the weak basic condition, aniline aerofloat as collector has favarable selective performance to galena. On the alkaline condition, diethyldithiocarbamate have better selective performance only to galena, and the selective performance of ammonium butyl aerofloat is worst. The relationship between pulp potential and flotation behavior was studied, the results indicate that aniline aerofloat as collector, potential ranging from0.05mV to0.02mV is propitious to separate galena from the other sulfides. Diethyldithiocarbamate as collector, when lime conditions pulp pH=12.0and potential is lower than0.175V, galena can be separated from the other sulfides. Electrochemical testing, infrared spectroscopy, cyclic voltammetry testing were applied to study the oxidation mechanism of mineral surface in the presence of collector, probe into the adsorption reactions between collector and minaral surface, and their resultants on mineral surface.
     Experimental results of cassiterite show that, Benzohydroxamic acid collects micro-fine cassiterite effectively and its dosage is also small, but its collecting ability to quartz is also very strong. Ligninas inhibitor of quartz and calcite has significantly inhibitory effect, and has little effect on the flotation of cassiterite. The overflow sample of classification of gravity separation are deslimed and desulfurized by concentration. By flotation, the grade and recovery of tin concentrate reach45.71%,73.46%, respectively. With flotation collumn, the grade and recovery of tin concentrate reach42.68%,82.87%, respectively. Comparing to flotation machine, not only the mineral processing index is better but also technological process and reagent system are simpler, thus the mineral processing cost reduces greatly. The results of gravity separation indicate that the ore of Bainiuchang need to be desulfurizes before gravity separation due to its high sulfur concentration, therefore, higher grade and recovery of tin concentration can be achieved, sulfur concentration also can be recovered. These are beneficial to comprehensive recovery of resources.
     Bainiuchang mainly produces two different types of lead-zinc sulfides, one is with silver concentration of100g/t, the other is with silver concentration of65g/t. Base on these two types, potential-controlled flotations of low base and high-alkali were developed. When pulp pH is greater than12, pulp potential is about130mV, xanthate and diethyldithiocarbamate as collector and lime as regulator of pH, flotation separation of vanadium from other mineral can be achieved. The reagent system of high-alkali process is simple, but to lead-zinc ore, the recovery of silver is slow with this method. Aniline aerofloat and diethyldithiocarbamate as collector, zinc sulfate and sodium sulfite as inhibitor, under the condition of potential-controlled flotations of low base, the recovery of silver is enhanced greatly. Two production processes have gained favorable production targets of lead and zinc. In2010, the second plant mainly processed lead-zinc ore with high concentration of silver, the grade of lead concentrate reached52.62%and its recovery reached83.67%, the recovery of silver reached60.47%; the grade of zinc concentrate reached44.70%and its recovery reached93.59%. In2010, the third plant mainly processed lead-zinc ore with low concentration of silver, the grade of lead concentrate reached56.13%and its recovery reached80.15%, the recovery of silver reached51.12%; the grade of zinc concentrate reached45.31%and its recovery reached91.24%. using flotation collumn instead of flotation machine, the grade of lead concentration increased by8%, the grade of zinc concentration increased by5%.
     Through this study, the electrochemical flotation behavior of complex sulphides has been complehensively and profoundly understood, which is helpful to promote the application of potential-controlled flotation and form a new advanced technology of flotation separation of complex poly-metallic lead-zinc sulfides.
     This study was strongly supported by industrialization base of Central South University-Mengzi Mining limited liability company
引文
[1]赵福刚.我国铅锌选矿技术现状[J].有色矿冶,2007,23(6):20-25.
    [2]翟裕生.走向21世纪的矿床学[J].矿床地质,2001,20(1):10-14.
    [3]胡熙庚,有色金属硫化矿选矿[M].北京:冶金工业出版社,1992:184-245.
    [4]郭文魁,张玉华.中国铅锌矿成矿规律略图简要说明[J].地质论评,1960,1.
    [5]李洪昌,唐先礼.湖南省铅锌矿床的主要工业类型[J].地质论评,1980,5.
    [6]蔡之衡.滇东北铅锌矿床的基本地质特征与矿床成因的初步探讨[J].地质论评,1982,4.
    [7]涂光炽.我国西南地区两个别具一格的成矿带(域)[J].矿物岩石地球化学通报,2002,21(1):1-2.
    [8]张洪培,刘继顺,张宪润,等.云南蒙自白牛厂矿区找矿新突破[J].矿产与地质,2006,20(4-5):361-365.
    [9]周建平,徐克勤,华仁民, 等.滇东南锡多金属矿床成因商榷[J].云南地质,1997,16(4):309-349.
    [10]邓军,陈学明,饶轶群,等.南岭地区两种类型盆地的压实流体系统及矿化作用[J].现代地质,2004,18(1):1-7.
    [11]於崇文,蒋耀淞.云南个旧成矿区锡石—硫化物矿床原生金属分带形成的动力机制[J].地质学报,1990,64(3):226-237.
    [12]张洪培,刘继顺,李晓波,等.滇东南花岗岩与锡、银、铜、铅、锌多金属矿床的成因关系[J].地质找矿论丛,2006,20(2):87-90.
    [13]付国辉.云南都龙锡多金属矿床地质特征及成矿规律[J].西南矿产地质,1992,(2):25-37.
    [14]付国辉.滇东南都龙锡多金属矿床地质勘探工作突破性进展的回顾[J].西南矿产地质,1990,4(3):465-36.
    [15]张洪培,刘继顺,张宪润,等.云南蒙自白牛厂银多金属矿区深部找矿的新发现[J].矿产与地质,2006,20(4-5):361-365.
    [16]官容生.滇东南构造岩浆带花岗岩体的含矿性探讨[J].矿物岩石,1991,11(1):92-101.
    [17]安保华.老君山岩体特征、成因及其找矿意义探讨[J].西南矿产地质,1990,4(1):30-35.
    [18]段希祥.碎矿与磨矿[M].北京:冶金工业出版社,2008:124-128.
    [19]程德明.中国硫化铅锌矿选矿技术的现状与前景[J].广东有色金属学报,1994,4(1):6-12.
    [20]Qin W Q, He M F, Chen Y P. Improvement of flotation behavior of Mengzi lead-silver-zinc ore by pulp potential control flotation [J]. Transactions of Nonferrous Metals Society of China,2008,18(4):949-954.
    [21]陈建明,黄红军,覃文庆,等.难选铅锌硫化矿浮选新工艺的研究[J].矿冶工程,2007,27(3):41-44.
    [22]周维智.都龙锌锡矿曼家寨63号矿群选矿工艺流程设计的研究[J].有色金属设计,1996,(2):24-31.
    [23]缪以谨.都龙锡矿选矿工艺的技术经济分析[J].昆明工学院学报,1994,19(3):58-64.
    [24]祝朝晖,张乾,何玉良.滇东南白牛厂银多金属矿床成矿元素特征[J].矿物岩石地球化学通报,2005,24(4):327-332.
    [25]陈玉平,曾科,何名飞,等.使用MA捕收剂提高白牛厂铅锌矿浮选指标的研究[J].矿冶工程,2009,29(5):43-45.
    [26]胡为柏.浮选[M].北京:冶金工业出版社,1988:150-180.
    [27]邓海波,胡岳华.我国有色金属矿浮选技术进展[J].国外金属矿选矿,2001,(4):2-5.
    [28]罗开贤.凡口铅锌矿快速分选新技术工艺的试验研究与应用[J].采矿技术,2002,(9):69-76.
    [29]张笃,郑伦.凡口矿铅浮选特性研究与流程改进实践[J].有色金属(选矿部分),2004,(6):1-4.
    [30]邓传宏.铅锌浮选新技术在白牛厂银多金属矿的应用[J].有色金属设计,2006,33(2):13-21.
    [31]黎维中.难处理铅锌银硫化矿物资源综合回收的研究与实践[D].长沙:中南大学,2006:40-60.
    [32]苏思平,吴伯增.车河选矿工艺流程改造实践[J].有色金属(选矿部分),2001,(1):5-8.
    [33]柳州华锡集团,中南大学.大厂贫锡多金属硫化矿选矿关键技术研究与应用研究报告[R].柳州:柳州华锡集团,2004.
    [34]余润兰,邱冠周,胡岳华,等.脆硫锑铅矿与捕收剂作用的界面电化学[J].中国有色金属学报,2004,14(1):127-131.
    [35]赵福刚.我国铅锌矿选矿技术现状[J].有色矿冶,2007,23(6):20-25.
    [36]许时.矿石可选性研究[M].冶金工业出版社,1979.
    [37]王福良,李凤楼.方铅矿-苯胺黑药体系浮选电化学特性的研究[J].有色金属,1998,50(1):13-23.
    [38]李友权,刘蓉裳.苯胺黑药物化性质研究[J].矿冶,1994,3(4):50-54.
    [39]磨学诗,黄伟中,张雁生,等.提高多金属硫化铅锌矿浮选指标的研究[J].有色金属(选矿部分),2007,(1):9-12.
    [40]李正勤.铅锌硫化矿无氰浮选分离实践[J].有色金属(选矿部分),1986(6):3-54141.
    [41]王资.有机活化剂在菱锌矿浮选中的作用及机理[J].有色金属(选矿部分),1996,(3):13-18.
    [42]Sabamy S G, Nixon J G. The application of electrochemical methods to flotaion research [R]. London:The Inst. of Mining and Metallurgy,1953,503-518.
    [43]Salamy S G, Nixon J G. Reaction between a mercury Sur-face and some flotation reagent:on electryochemical study [J]. J.Chem,1954, (7):146-156.
    [44]Girczys J, Laskowski J. Mechanism of flotation of unactivated sphalerite with xanthates [J]. Trans. Inst. Min. Metall.,1972, (81):118-127.
    [45]Finkelstein N P, Allison S A. The chemistry of activation, deactivation and depression in the flotation of zinc sulfide:a review [C]. Fuerstenau M C. Flotation:A.M. Gandin Memorial Volume, Flotation. New York:American Institute of Mining, Metallurgical and Petroleum Engineers,1976:414-451.
    [46]Mukherjee A D, Sen P K. Flotability of sphalerite in relation to its iron content [J]. J.Mines, Metals, Fuels,1976, (10):327-334.
    [47]Clifford K L. Mechanism of lotation of unactivated sphalerite with xanthates [D]. Otah:university of otah,1971.
    [48]Finkelstein N P, Allison S A. The chemistry of activation, deactivation and depression in the flotation of zinc sulfide:a review [C]. Fuerstenau M C. Flotation:A.M. Gandin Memorial Volume, Flotation. New York:American Institute of Mining, Metallurgical and Petroleum Engineers,1976:414-451.
    [49]Chander S. A brief review of pulp potentials in sulfide flotation [J]. Mineral processing,2003, (72):141-150.
    [50]Ruonala M, Heimala S, Jounela S. Different aspects of using electrochemical potential measurements in mineral processing [J]. Mineral processing,1997, (51):97-110.
    [51]Guo H, Yen W T. Effect of cell design and electrode conguration on the efficiency of applied potential and sulde mineral fotation [J]. Minerals Engineering,2003, (16):877-880.
    [52]Woods R. Electrochemical potential controlling flotation [J]. Mineral processing, 2003,(72):151-162.
    [53]Hintikka V V, Leppinen J O. Potental control in the flotaion of sulphide minerals and precious metals [J]. Minerals Engineering,1995,8(10):1151-1158.
    [54]Labonte G, Finch J A. Behavior of redox electrodes during flotation and relationship to mineral flotabilities [J]. Minerals & Metallurgical Processing, 1990,106-109.
    [55]Richardson P E, Walker G W. The flotation of chalcocite, bornite, chalcopyrite and pyrite in an electrochemical flotation cell [R]. Cannes, France:XV International Mineral Processing Congress,1985.
    [56]Trahar, W J, Senior G D, Shannon L K. Interaction between sulphide minerals-the collectorless flotation of pyrite [J]. Int. J. Min. Process.,1994, (40): 287-321.
    [57]Yoon R. collectorless flotation of chalcopyrite and sphalerite ores by using sodium sulfide [J]. International Journal of Mineral Processing,1981, (8): 31-48.
    [58]Nagaraj D R,Wang S S, Avotins P V, et al.. Structure-activity relationships for copper depressants [J]. Trans. Inst. Min. Metall. C,1986, (95):17-26.
    [59]Chander S. Electrochemistry of sulfide flotation:growth characteristics of surface coatings and their properties, with special reference to chalcopyrit eand pyrite [J]. Int.J.Miner.Process,1991, (33):121-134.
    [60]Heimala S, Jounela S, Saari M. Flotation control with mineral electrodes [C]. Forssberg K S. XVIth International Mineral Processing Congress (Part. B). Amsterdam:Elsevier,1988:1713-1718.
    [61]Woods R. The oxidation of ethylxanthate on platinum gold,copper,and galena electrodes:relation to the mechanism of mineral flotation [J]. J.Phys.Chem.1971, (75):354-362.
    [62]Woods R. Electrochemistry of sulfide minerals-Stokemedal address [J]. Chem. Aust,1991, (58):392-395.
    [63]Woods R. Chemisorption of thiols on metal and metal sufides [C]. Bockris J O M, Conway, B E, White R E. Modern Aspects of Electrochemistry (Vol.29). New York:Plenum Press,1996:401-453.
    [64]Kowal A, Pomianowski A. Cyclic voltammetry of ethylxanthate on anatural copper sulphide electrode [J]. J.Electroanal. Chem,1973, (46):411-420.
    [65]Ralston J. E and its consequences in sulphide mineral flotation [J]. Miner. Eng, 1991, (4):859-878.
    [66]Woods R, Richardson P E. The flotation of sulfide minerals-electrochemical aspects [C]. Somasundaran P. Advances in Mineral Processing:a Half-Century of Progress in Application of Theory to Practice. New Orleans, Louisiana, USA, 1986:154-170.
    [67]Li X, Iwasaki I. An electrochemical study of sulfide mineral-grinding medium contact and its relevance to flotation [J]. Surface Analysis,1993, (3):55-78.
    [68]Richardson P E, Hu Q, Finkelstein N P, et al.. An electrochemical method for the study of the flotation chemistry of sphalerite [J]. Int. J. Min. Proc,1994, (41): 71-76.
    [69]Sabamy S G, Nixon J G. The application of electrochemicalmethods to flotaion research [R]. London:The Inst. of Mining and Metallurgy,1953,503-518.
    [70]Salamy S G, Nixon J G. Reaction between a mercury Sur-face and some flotation reagent:on electryochemical study [J]. J.Chem,1954, (7):146-156.
    [71]孙水裕,宋卫锋,王淀佐.硫化矿电位调控浮选研究现状与前景[J].1997,9(3):1-4.
    [72]王淀佐.浮选理论的新进展[M].北京:科学出版社,1992:79-135.
    [73]Luttrell G H, Yoon R H.用硫化钠时黄铜矿的无捕收剂浮选[J].国外金属矿选矿,1986,5:1-9.
    [74]Woods R硫化矿浮选的电化学[J].国外金属矿选矿,1993,4:1-28.
    [75]Finkelstein N P, Allison S A. The chemistry of activation, deactivation and depression in the flotation of zinc sulfide:a review [C]. Fuerstenau M C. Flotation:A.M. Gandin Memorial Volume, Flotation. New York:American Institute of Mining, Metallurgical and Petroleum Engineers,1976:414-451.
    [76]张芹.铅锑锌铁硫化矿电化学浮选行为及表面吸附的研究[D].长沙:中南大学,2004.
    [77]Cecile J I. Appliction of XPS in the study of sulfide mineral flotation [C]. Forssberg K S E. Flotation of Sulfide Minerals. Amsterdam:Elsevier,1985: 61-81.
    [78]Skinner W M, Prestidge C A, Smart R S C. Irradiation effects during XPS studies of copper (II) activation of zinc sulfide [J]. Surf. Int. Sci.,1996,24: 620-626.
    [79]Finkelstein N P. The activation of sulfide minerals for flotation:a review [J]. Int. J. Miner. Process,1997,52:81-120.
    [80]黎维中.难处理铅锌银硫化矿物资源综合回收的研究与实践[D].长沙: 中南大学,2006:122-123.
    [81]Li W Z, Qin W Q, Sun W, et al.. Electrodeposition of dixanthogen(TETD) on pyrite surface [J]. Trans. Nonferrous Met. SOC. China,2007, (17):154-158.
    [82]覃文庆.硫化矿物颗粒间的电化学行为和电位调控浮选技术[D].长沙:中南大学,2000:66-88
    [83]吴伯增.大厂贫锡多金属硫化矿选矿关键技术研究及应用[D].长沙:中南大学,2005:105-108.
    [84]Piantadosi C, Smart R S C. Statistical comparison of hydrophobic and hydrophilic species on galena and pyrite particles in flotation concentrates and tails [J]. International Journal of Mineral,2002, (64):43-54.
    [85]Gardner J R, Woods R. An electrochemical investigation of the natural floatability of chalcopyfite [J]. Int. J. Min. Proc,1979, (6):1-16.
    [86]Heimala S, Jounela S, Saari M. Flotation control with mineral electrodes [C]. Forssberg K S. XVIth International Mineral Processing Congress (Part. B). Amsterdam:Elsevier,1988:1713-1718.
    [87]Hintikka V, Leppinen J. Potential control in the flotation of sulphide minerals and precious metals [J]. Minerals Engineering,1995, (8):1151-1158.
    [88]Richardson P E, Hu Q, Finkelstein N P, et al.. An electrochemical method for the study of the flotation chemistry of sphalerite [J]. Int. J. Min. Proc,1994, (41): 71-76.
    [89]Rao M K Y, Natarajan, K A. Effects of electrochemical interactions among sulphide minerals and grinding medium on chalcopyrite flotation [J]. Minerals & Metallurgical Processing August,1989,146-151.
    [90]Guo H, Yen W T. Pulp potential and floatability of chalcopyrite [J]. Minerals Engineering,2003, (16):247-256.
    [91]Newell A J H, Bradshaw D J, Harris P J. The effect of heavy oxidation up on fotation and potential remedies for Merensky type sulfides [J]. Minerals Engineering,2006, (19):675-686.
    [92]Pecina E T, Uribe A, Nava F, et al.. The role of copper and lead in the activation of pyrite in xanthate and non-xanthate systems [J]. Minerals Engineering.2006, (19):172-179.
    [93]Buswell A M, Bradshaw D J, Haris P J, et al.. The use of electrochemical measure ments in the flotation of a platinum group minerals (PGM) bearing ore [J]. Minerals Engineering,2002, (15):395-404.
    [94]Ekmekci Z, Buswell M A, Bradshaw D J, et al.. The value and limitations of electrochemical measurements in flotation of precious metal ores [J]. Minerals Engineering,2005, (18):825-831.
    [95]Keith Q, Gavin H. Marmatite depression in galena flotation [J]. Minerals Engineering,2006, (19):860-869.
    [96]王淀佐.硫化矿浮选与矿浆电位[M].北京:高等教育出版社,2008:1-8.
    [97]Silva G da, Lastra M R, Budden J R. Electrochemical passivation of sphalerite during bacterial oxidation in the presence of galena [J]. Minerals Engineering, 2003, (16):199-203.
    [98]Miller J D, Li J, Davidtz J C, et al.. A review of pyrrhotite flotation chemistry in the processing of PGM ores [J]. Minerals Engineering,2005, (18):855-865.
    [99]Cecilia M V B, Almeida, Biagio F, et al.. The electrochemica lbehavior of pyrite/pyrrhotite mixtures [J]. Electroanalytical Chemistry,2003, (553):27-34.
    [100]Shi S Y, Fang Z H. Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor [J]. Mineral processing, 2005, (76):3-12.
    [101]Vermaak M K G, Venter J A, Pistorius P C. Electrochemical studies of the interaction of ethylxanthate with Pd-Bi-Te [R]. Johannesburg:South African Institute of Mining and Metallurgy,2004:167-172.
    [102]Vermaak M K G, Pistorius P C, Venter J A. Electrochemical and Raman spectroscopic studies of the interaction of ethylxanthate with Pd-Bi-Te [J]. Miner. Eng.,2005, (18):575-584.
    [103]Duran K, Taki G. Two-liquid flotation of sulphides:An electrochemical approach [J]. MineralsEngineering,2007, (20):1246-1254.
    [104]Camuzcu T, Akdemir U, Guler T. Hydrophobicity and electrochemica lbehaviour of pyrite in the presence of xanthate and Fe2+ in alkaline condition [C]. Akar A, Ipekoglu U, Cocen I, et al..10th International Mineral Processing Congress Cesme, Izmir, Turkey,2004,333-340.
    [105]Zhao W, Xu W J, Zhong S T, et al.. Desulfurization of coal by an electrochemical-reduction flotation technique [J]. J China Univ Mining & Technol,2008, (18):571-574.
    [106]Zhang Q, Hu Y H, Xu J, et al.. FTIR spectroscopic study of electrochemical flotation of jamesonite-diethyldithiocarbamate system [J]. Trans. Nonferrous Met. SOC. China,2006, (16):493-496.
    [107]NAGARAJ D R, BRINEN J S. SIMS study of adsorption of collectors on pyrite [J]. International Journal of Mineral Processing,2001, (63): 45-57.
    [108]左焕莹,沃国经.离子选择电极[J].国外金属矿选矿,1997,4:42-44.
    [109]Qin W Q, He M F, Chen Y P. Improvement of flotation behavior of Mengzi lead-silver-zinc ore by pulp potential control flotation [J]. Transactions of Nonferrous Metals Society of China,2008,18 (4):949-954.
    [110]克拉克DW等.通过充氮和硫化调浆来提高硫化铜矿物浮选回收率[J].国外金属矿选矿,2000,12:10-14.
    [111]Heimals S, Jounels S. New Potential Controlled Flotation Methods Developed by Outo Kumpu Com [R]. XVIth International Mineral Processing Congress. Cannes, France,1987
    [112]Helical S, Richardson P E. Proceedings International Symposium on Electrochemistry in Mineral and Metal Processing [M]. Electrochemistry Science,1988,170-182.
    [113]Rao S R. CIM Bulletion,1994,985:53-57.
    [114]张洪培.云南蒙自白牛厂银多金属矿床—与花岗质岩浆作用有关的超大型矿床[D].长沙:中南大学,2007:1-5.
    [115]张春红,黎应书,王金良,林知法.云南马关都龙锡锌多金属矿床成矿控制条件[J].有色金属,2008,60(4):140-143.
    [116]云南省地质矿产局第二地质大队.云南省蒙自县白牛厂银多金属矿区对门山矿段普查地质报告[R].1994,40-60.
    [117]薛步高.含锡花岗岩外带的银铅多金属矿床地质特征[J].矿产与地质,1995,9(50):499-503.
    [118]李志伟,田敏,刘和林,等.滇东南地区金矿区域成矿条件及成矿模式[J].大地构造与成矿学,2000,24(86):20-30.
    [119]於崇文,唐元骏,石平方,等.云南个旧锡-多金属成矿区内生成矿作用的动力学体系[M].武汉:中国地质大学出版社,1988:2-82.
    [120]罗君烈.滇东南锡、钨、铅锌、银矿床的成矿模式[J].云南地质,1995,14(4):319-331.
    [121]Xiong D L, Hu Y H, Qin W Q, et al.. Synthesis of glycerine-xanthate and its depressing mechanism in separation of marmatite from arsenopyrite [J]. Journal of Central South University of Technology,2006,13(6):678-682.
    [122]HE Ming-fei, QIN Wen-qing, LI Wei-zhong, ZENG Ke.Pyrite depression in marmatite flotation by sodium glycerine-xanthate [J];Transactions of Nonferrous Metals Society of China,2011,21 (5):1161-1165.
    [123]何名飞,熊道陵,陈玉平等.一种新型有机抑制剂甘油基黄原酸钠对硫化矿抑制作用机理研究[J].矿冶工程,2007,27(3):30-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700