等高绿篱—坡地农业复合系统氮素循环研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等高绿篱—坡地农业复合系统(Contour hedgerow intercropping system)作为一种有效的、可持续发展的土地利用和综合生产途径,已被推荐为我国红壤丘陵区防治水土流失、充分利用水肥光热资源、提高系统生产力的重要措施。但是这一经营方式也有一些弱点和限制因素,在不合理的经营管理下就会表现出来,影响了这一有效措施的推广应用。为此,本研究从氮素入手,采用田间监测和室内分析相结合的研究方法,对红壤丘陵区等高绿篱—坡地农业复合经营模式氮素吸收、分布和损失进行了研究,探讨了绿篱复合经营对温室效应的影响,并基于种间相互作用机理,研究了绿篱对作物的化感效应。旨在深入了解氮素在绿篱复合系统中的吸收、分布和损失特征及种间相关关系,进而寻求优化配置模式,以期为等高绿篱复合经营技术的推广应用和山地丘陵区水土保持及生态环境建设提供理论依据。经过为期2年研究,取得主要结果如下:
     (1)通过观测2年四季绿篱和作物的生长,发现坡耕地种植紫穗槐和香根草后,与玉米、小麦和蚕豆复合种植,系统土地当量比(LER)均大于1,但紫穗槐、紫穗槐/香根草、香根草3种复合经营模式之间有差异,残茬不同,LER也有所差异;与大豆复合种植,LER均小于1,尤其是大豆与紫穗槐组成的系统。
     (2)在可比面积上,紫穗槐、紫穗槐/香根草、香根草与小麦、蚕豆、玉米复合时作物吸氮量均高于单作,而与大豆复合时大豆吸氮量却低于单作。小麦相对于香根草的氮营养竞争比率(CR)略大于小麦相对于紫穗槐的CR,且CR均大于1,而小麦相对于紫穗槐/香根草的CR小于1;蚕豆相对于香根草的CR大于1,且蚕豆-大豆轮作略大于蚕豆-玉米轮作,蚕豆相对于紫穗槐、紫穗槐/香根草的CR接近于1或大于1,生长季节间有差异;玉米相对于绿篱的CR均大于1;大豆相对绿篱的CR均小于1。
     (3)不同绿篱复合及作物轮作类型差异引起农田全氮、铵态氮和硝态氮各组分时空变化显著。与试验前相比,土壤剖面全氮、铵态氮和硝态氮含量均有不同程度地降低。对于土壤铵态氮,0-100cm土壤剖面累积量减少量由大到小顺序依次为:香根草复合体系>无绿篱种植体系>紫穗槐复合体系>紫穗槐/香根草复合体系;对于小麦-玉米、蚕豆-玉米和蚕豆-大豆3种轮作方式,紫穗槐和紫穗槐/香根草复合体系及无绿篱种植体系中均以蚕豆-大豆处理减少量最多,而香根草复合体系中蚕豆-大豆处理减少量最少,其中土壤剖面铵态氮含量夏季作物收获时降低幅度明显高于冬季作物收获时。对于土壤硝态氮,土壤剖面含量在4个生长季节呈先降低后增高,尔后又降低再升高的趋势,紫穗槐、紫穗槐/香根草复合体系及无绿篱种植体系,0-100cm土壤剖面硝态氮减少量均以蚕豆-玉米处理最低,而香根草复合体系以蚕豆-大豆处理最低;土壤剖面全氮含量变化趋势与土壤剖面硝态氮含量变化趋势一致。在土壤剖面垂直方向上,土壤全氮、铵态氮和硝态氮含量均以0-40cm土层变化最大。
     (4)坡耕地单作种植紫穗槐和香根草后,一定程度上增加了土壤N_2O排放,表现为温室气体N_2O的排放源,但潜在地减小了土壤CO_2排放,表现为是温室气体CO_2的汇;与作物复合经营下土壤均表现为N_2O和CO_2的源,尤其在紫穗槐生长下效果更显著。整个玉米(大豆)季节,3种复合类型中,以紫穗槐复合体系土壤N_2O排放量最大;4种种植体系中土壤N_2O排放总量,小麦-玉米轮作均表现为最大,该结果与传统观点相左,尚需进一步研究;紫穗槐、紫穗槐/香根草和香根草复合体系及无绿篱种植体系,小麦-玉米处理土壤N_2O排放总量依次为494.81、382.27、449.73和328.84 g N hm~(-2)。坡耕地种植绿篱及轮作种植残茬,通过改变土壤氮、有机质含量,土壤温度、土壤湿度等环境因子,影响了土壤N_2O和CO_2排放,从而影响到土壤N_2O和CO_2排放通量之间的相关关系。
     (5)利用~(15)N同位素对不同复合经营模式组分氮素吸收利用、分布及土壤剖面分布的示踪研究表明,对于绿篱,紫穗槐叶、杆和根体内~(15)N原子百分超依次为:单作紫穗槐>紫穗槐复合体系>紫穗槐/香根草复合体系,香根草茎叶和根则依次为:单作香根草>紫穗槐/香根草复合体系>香根草复合体系,其中紫穗槐体内~(15)N浓度均表现为叶最大,香根草体内~(15)N浓度茎叶和根系相当。对于玉米,玉米秸秆、籽粒和根系~(15)N原子百分超基本呈现香根草复合体系>紫穗槐/香根草复合体系>紫穗槐复合体系>无绿篱种植的趋势,玉米体内~(15)N浓度以籽粒最大。
     对于土壤,所有样地表层(0-20cm)土壤~(15)N丰度均高于下层,表层土壤~(15)N丰度从高到低依次为:无绿篱种植>紫穗槐/香根草复合体系>单作香根草>香根草复合体系>单作紫穗槐>紫穗槐复合体系;整个剖面来看,紫穗槐为基础的系统,土壤~(15)N丰度依次为:紫穗槐/香根草复合体系>紫穗槐复合体系>单作紫穗槐,香根草为基础的系统,香根草复合体系>紫穗槐/香根草复合体系>单作香根草;3种复合系统土壤~(15)N丰度均低于无绿篱种植,且紫穗槐复合体系<香根草复合体系<紫穗槐/香根草复合体系。紫穗槐单作体系、香根草单作体系、紫穗槐复合体系、紫穗槐/香根草复合体系、香根草复合体系和无绿篱种植体系氮素表观回收率依次为:61.97%、66.97%、72.05%、90.53%、73.15%和77.04%;肥料氮利用率依次为:44.00%、37.72%、41.09%、51.99%、36.89%和6.03%;土壤残留率依次为17.97%、29.25%、30.96%、38.54%、36.26%和71.01%。
     (6)大豆和蚕豆为受体的模拟实验表明,紫穗槐与香根草地上部水浸液显著抑制了大豆和蚕豆种子的萌发,且随着浓度升高抑制作用加强;而根际土水浸液对种子萌发无明显影响。紫穗槐地上部水浸液对大豆幼苗和根生长有显著抑制作用,对蚕豆幼苗生长表现出一定促进作用,对蚕豆根生长具有抑制作用;香根草地上部水浸液对大豆幼苗生长无显著影响,对大豆根生长在较低浓度时有一定的促进作用,在较高浓度时具有抑制效果;对蚕豆幼苗生长有一定促进作用,对蚕豆根生长有一定抑制作用。紫穗槐和香根草根际土水浸液对大豆幼苗生长无显著影响,对蚕豆幼苗生长具有一定的促进作用。
     紫穗槐和香根草水浸液所得成分主要包括酸、酮、醛、酚、烯、醇和芳香族化合物等,其中苯甲酸及其衍生物、肉桂酸及其衍生物、低分子脂肪酸、苯甲醛、酚等为已研究的化感物质,可能在绿篱化感作用中起主要作用,但该试验在理想状况下进行的,所得结果只能供参考。此外,绿篱浸提液通过改变土壤水溶性总酚、铵态氮、有效磷、有机质、电导率等性质影响了作物生长。
     (7)综合以上研究,紫穗槐和香根草可以作为红壤丘陵区坡耕地利用的绿篱品种,而大豆不是合适的复合作物。基于系统经济效益、生态环境效益和种间相关关系,紫穗槐复合经营下,蚕豆-玉米轮作是较好的种植方式,香根草复合经营下,小麦-玉米和蚕豆-玉米2种轮作方式差异不大;紫穗槐与大豆复合种植是最差的组合模式。
Contour hedgerow agroforestry systems are important patterns of agroforestry on the slopes in hilly region,widly popularized all over the world,which shows hedgerow intercropping is suitable for soil and water conservation,soil fertility amelioration,land productivity improvement.In the surface soil,however,competition for nitrogen and water,and above the ground the competition for sunlight between the component may occur.Thus,a field experiment was conducted in the terraces based on contour hedgerow agroforestry as the over objective of the study,discusses nitrogen abosorption,ultilization, gases emissions in time and space under field conditions,and estimates the total N loss and effect of atmosphere environment.A pot experiment was also carried out to determine the allelopathic effects of A.fruticosa and Vetiver shoots and/or rhizosphere soil.The main conclusions were as follows:
     (1) The aboveground biomasses and yields of A.fruticosa and Vetiver,and wheat, fababean,maize and soybean crops were determined for 4 growing seasons in two successive years in agroforestry and cropping systems in Xianning,Hubei province, central China to analyze the effect of hedge on the growth of crops.Based on the two using hedges,land equivalent ratio(LER) was greater than 1.0 for wheat/hedge, fababean/hedge and maize/hedges intercropping regardless of hedge species,but LER was varied with hedge speices.However,in soybean/hedge intercropping was always smaller than 1.0 among three hedge intercropping systems,especially in A.fruticosa intercropping systems.
     (2) The total nitrogen uptake in A.fruticosa,Vetiver,wheat,fababean,maize and soybean was also determined in agroforestry and intercropping systems.The results showed that the nitrogen acquisition in crops decreased with time.In equivalent area, nitrogen uptake of wheat was always greater in intercropping than that in corresponding cropping system in two successive years.The similar trends were observed in faba bean/hedge and maize/hedge intercropping systems.In contrast,intercropped soybean was less than that by sole soybean,whereas nitrogen uptake by intercropped A.fruticosa was also less than that sole A.fruticosa.Based on the nitrogen uptake,the competition ratio of crop to hedge was used to assess the interspecific nitrogen competition.The competition ratio of wheat to A.fruticosa(CR_(WA)) is less than CR_(WV),both CR_(WA) and CR_(WV) are grater than 1.0,which indicates that a better utilization of the nitrogen resources by the sole wheat crops compared to the intercrop wheat crops in intercropping systems above mentioned.However,in A.fruticosa/Vetiver intercropping system,the CR is smaller than 1.0.In conformity with wheat/hedge intercropping,the competition ratio of fababean to Vetiver is always greater than 1.0,and the relatively greater CR observed in faba bean-soybean rotations,yet CR in A.fruticosa and/or A.fruticosa/Vetiver is varied in two successive years.The competition ratio of maize to hedge is greater than 1.0 in the present intercropping systems,wheareas the competition ratio of soybean to hedge is smaller than 1.0,particularly in A.fruticosa intercropping system.
     (3) Soil total nitrogen,ammonium-N and nitrate-N were significantly influenced by the present hedges and crop rotations.Total N and available N in soil decreased comparing with soil N content in the absence of hedges.Ammonium-N content in soil were followed in turn by vetiver intercropping system>No hedges>A.fruticosa intercropping system>A.fruticosa/vetvier intercropping system;among wheat-maize, faba bean-maize and faba bean-soybean rotations,the reductions of ammonium-N in soil profile were larger in A.fruticosa intercropping system,A.fruticosa/vetvier intercropping system and no hedges,whereas the opposite trend was observed in vetiver intercropping system.Moreover,ammonium-N content decreased slowly during the growth of winter wheat(faba bean) than that of summer maize(soybean).Nitrate-N in soil decreased during the the growth of winter wheat but it increased slightly during the growth of summer maize。
     (4)Soil N_2O and CO_2 fluxes were measured using the closed chamber.The results showed that conversion from cropland to A.fruticosa forestland and/or Vetiver grassland might potentially decrease the release of soil CO_2,whereas the opposite trend for the release of soil N_2O was observed.However,soil N_2O and CO_2 emissions enhanced in the presence of A.fruticosa and/or Vetiver in agroforestry systems.Soil N_2O and CO_2 fluxes were the highest in summer,and they were correlated with soil temperature in 5cm depth and moisture,but there is no significant.The effects of soil temperature in 5cm depth and moisture on soil N_2O and CO_2 fluxes were secondary to soil nitrogen content.Prehistory crops residues and species and biomass of vegetation were other important factors for soil N_2O and CO_2 emissions.And they can,in turn,influence soil nitrogen and organic matter and microbial biomass,which can further alter the magnitude of soil N_2O and CO_2 in the present environmental conditions.
     (5) ~(15)N isotopes were used to trace the N abosorption and distribution in hedge,crop, and soil profile.~(15)N atom%excess in A.fruticosa was followed in turn by sole A.fruticosa>A.fruticosa intercropping system>A.fruticosa/vetiver intercropping,for vetiver,the following in turn were sole vetiver>A.fruticosa/vetiver intercropping>vetiver intercropping system.Greater ~(15)N enrichment of A.fruticosa leaf,but ~(15)N enrichment of vetiver leaf and root were equivalent.Compared to hedge,~(15)N atom%excess of maize in turn was vetiver intercropping>A.fruticosa/vetiver intercropping>A.fruticosa intercropping system>No hedge,and greater ~(15)N enrichment of maize grain were found.
     ~(15)N abundance of surface soil in all plots were higher than those of subsoil.~(15)N abundance of surface soil in turn was no hedge>A.fruticosa/vetiver intercropping>sole vetiver>vetiver intercropping>sole A.fruticosa>A.fruticosa intercropping.Fertilizer use efficiency of sole A.fruticosa,sole vetiver,A.fruticosa intercropping,A.fruticosa/vetiver intercropping,vetiver intercropping and no hedge in turn were 44.00%,37.72%,41.09%, 51.99%,36.89%and 6.03%,respectively;for percentage of ~(15)N fertilizer,they were in turn 17.97%,29.25%,30.96%,38.54%,36.26%and71.01%.
     (6)The water extracts of the shoots of A.fruticosa and/or Vetiver affect the seed germination of soybean and faba bean and simplified vigor index(SVI),and the suppression increased with the increased concentration.The water extracts of the shoots of A.fruticosa significantly decreased seedling and root growth of soybean and root growh of fababean,wheareas enhanced seedling of faba bean to what extent.The water extracts of the shoots of Vetiver did not affect seedling of soybean and increased seedling of faba bean.The water extracts of the shoots of Vetiver in lower concentration enhanced root growth of soybean and in higher concentration suppressed root growth of soybean,and reduced root growth of faba bean to a great extent.The water extracts of the rhizosphere soil of A.fruticosa and/or Vetiver did not affect seed germination of soybean and delayed seed germination of faba bean,and did not affect seedling of soybean and improved seedling of faba bean.The water extracts of the rhizosphere soil of A.fruticosa in lower concentration enhanced root growth of soybean strongly and in higher concentration decreased root growth of soybean,and enhanced root growth of faba bean. Allelochemicals in the shoots and rhizosphere soil of hedge were analysed by gas chromatography-mass spectrometry(GC-MS).The compounds of A.fruticosa and vetiver mainly include acid,phenol,dehyde,ketone,ester and aromatic compound,and so on. The phytotoxic effects of S1-and/or R1-amended soil to the shoot length of crop might be slightly eliminated after the addition of N fertilization,but not all.
     (7) Based on estimating the environmental(greenhouse gases emission) and economic (crop yields) benefits,A.fruticosa and Vetiver should be popularized in sloplands in hilly red region,whereas soybean should be excluded in the present sytems.A combination of A.fruticosa and Vetiver improved soil N utilization,but it is not sustainable due to soil N defecicy.Based on the yields of crops and soil nutrients,faba bean-maize rotation in A.fruticosa intercropping system may be a preferable cropping manner,in Vetiver intercropping system,both wheat-maize and faba bean-maize are equivalent.However, the responses to hedge species and crop rotations reported here need be verified in longer term experiment before they can be used to facilitate police and management decisions.
引文
1.边秀举,王维进,杨福存.冀北高原草甸土春小麦中化肥去向研究.土壤学报,1997,34(1):60-65
    2.蔡崇法,丁树文,张光远等.三峡库区紫色土坡地养分状况与养分流失.地理研究,1996,15(3):77-84
    3.蔡崇法,王峰,丁树文等.间作及农林复合系统中植物组分间养分竞争机理分析.水十保持研究,2000,7(3):219-221,252
    4.蔡崇法,姚其华.棕红壤丘陵区土壤资源特性与农业发展研究.湖北科学技术出版社,2001,64-67,255-257
    5.蔡强国,卜崇峰.植物篱复合农林业技术措施效益分析.资源科学,2004,26(增刊):8-12
    6.蔡强国,吴淑安.紫色十陡坡地不同土地利用对水十流失过程的影响.水十保持通报,1998,18(2):1-9
    7.陈一兵,林超文,朱钟麟.经济植物篱种植模式及其生态经济效益分析.水土保持学报,2002,16(2):80-83
    8.褚贵新,沈其荣,张娟等.用~(15)N富积标记和稀释法研究早作水稻/花生间作系统中氮素固定和转移.植物营养与肥料学报,2003,9(4):385-389
    9.陈冠雄,商曙辉,扬思河等.植物释放N20的研究.应用生态学报,1990,1(1):94-96
    10.丁洪,蔡贵信,王跃思,陈德立.玉米-小麦轮作系统中氮肥反硝化损失与N_2O排放量.农业环境科学学报,2003,22(5):557-560
    11.丁树文,王峰,蔡崇法等.两种绿篱植物对作物养分吸收的影响.资源科学,2004,26(增刊):156-160
    12.杜丽君,金涛,阮雷雷,陈涛,胡荣桂.鄂南红壤几种典型利用方式CO_2的排放及其影响因素.环境科学,2007,28(7):1608-1613
    13.杜睿,黄建辉,万小伟,贾月慧.北京地区暖温带森林士壤温室气体排放规律.环境科学,2004,25(2):12-16
    14.傅庆林.低丘红壤区农业生态系统的功能研究.生态学报,1992,12(1):129-132
    15.傅庆林,俞劲炎.易旱农田生态系统养分循环的研究.应用生态学报,1993,4(2):146-149
    16.郝艳如,劳秀荣.复合群体作物根际营养效应的研究进展.中国农学通报,2001,17(2):47-49
    17.候爱新,陈冠雄.不同种类氮肥对土样释放N20的影响,应用生态学报,1998,9(2):176-180
    18.黄秉维.再论华南坡地的利用和改良.地理研究,1989,8(4):1-8
    19.黄丽,丁树文,董舟等.三峡库区紫色土流失养分流失试验研究.土壤侵蚀与水土保持学报,1998,4(1):8-13
    20.何道文,孙辉,黄雪菊.利用N~(15)自然丰度法研究吲氮植物生物固氮量.干早地区研究,2004, 22(1):132-137
    21.黄宇,王华,冯宗炜等.南方红壤区种植龙须草对土壤质量的影响.生态学报,2003,23(12):2599-2606
    22.李凌浩,王其兵,白永飞.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究.植物生态学报,2000,24(6):680-686
    23.李隆.间作作物种间促进与竞争作用研究.[博士学位论文].北京:中国农业大学图书馆,1999
    24.李隆,张福锁.小麦.大豆间作中小麦对大豆P吸收的促进作用.生态学学报,2000,20(4):630-634
    25.李文华,赖世登,罗菊春等.中国农林复合经营.1994,北京北京科学出版社
    26.刘广才.不同间套作系统种间营养竞争的差异性及其机理研究.[博士学位论文].兰州:甘肃农业大学图书馆,2005
    27.刘惠,赵平,林永标,饶兴权.华南丘陵区农林复合生态系统晚稻田甲烷和氧化亚氮排放.热带亚热带植物学报,2006,14(4):269-274
    28.娄运生,李忠佩,张桃林.不同利用方式对红壤C02排放的影响.生态学报,2004,24(5):469-476
    29.卢奇.农用林业研究的回顾与展望.世界林业研究,1996,2:39-47
    30.鲁如坤.我国典型地区农业生态系统养分循环和平衡研究Ⅲ.全国和典型地区养分循环和平衡现状.土壤通报,1996,27(5):193-196
    31.鲁如坤,时正元,施建平.我国南方6省农田养分平衡现状评价和动态变化研究.中国农业科学,2000,33(2):63-67
    32.吕殿青,杨进荣,马林英.灌溉对土壤硝态氮淋洗效应影响的研究.植物营养与肥料学报,1999,5(4):307-315
    33.马毅杰,陈家坊.水稻土物质变化与生态环境.北京:科学出版社,1999,1-8
    34.孟凡乔,关桂红,张庆忠,史雅娟,届波,况星.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律.环境科学学报,2006,26(6):992-999
    35.孟平,张劲松,樊巍,高喜荣,辛学兵.农林复合系统研究.科学出版社,2004,5-6
    36.孟平,张劲松,尹昌君等.太行山丘陵区果-牧复合系统生态效益的研究.中国农业生态学报,2003,11(3):12-15
    37.孟庆岩,王兆骞,姜曙干.我国热带地区胶.茶.鸡农林复合系统物质循环研究.自然资源学报,2000a,15(1):61-65
    38.孟庆岩,王兆骞,宋莉莉.我国热带地区胶.茶.鸡农林复合系统氮循环研究.应用生态学报,2000b,11(5):707-709
    39.彭奎,欧阳华,朱波.农林复合生态系统氮索平衡及其评价-以中国科学院盐亭农业生态试验站为例.长江流域与环境,2004,13(3):252-257
    40.阮雷雷.湖北咸宁地区几种土地利用类型的温室气体排放及其增温潜势.[硕士学位论文].武汉:华中农业大学图书馆,2007
    41.佘丽娜,郑毅,朱有勇.小麦蚕豆间作中作物对氮的吸收利用.云南农业大学学报,2003,18:256-258
    42.申元村.三峡库区植物篱坡地农业技术水土保持效益研究.水土保持学报,1998,4(2):61-68
    43.沈善敏.农业生态系统中碳与主要营养元素循环及中国农田土壤养分收支.见:沈善敏主编:中国土壤肥力.中国农业出版社,1998,PP:57-110
    44.石华,唐永良等.复合农林业休闲轮作制的研究.见:中国科学院红壤生态实验站编.红壤生态系统研究(第5集).北京:中国农业科技出版社,1998,220-228
    45.孙辉,唐亚,何永华等.等高固氮植物篱模式对坡耕地土壤养分的影响.中国生态农业学报,2002,10(2):79-82
    46.孙辉,唐亚,谢嘉穗.植物篱种植模式及其在我国的研究和应用.水土保持学报,2004,18(2):114-117
    47.孙向阳,徐化成.北京低山区两种人工林土壤中N_2O排放通量的研究.林业科学,2001,37(5):57-63
    48.宋文质,王少彬,曾江海,王智平,张玉铭.华北地区早田十壤氧化亚氮的排放.环境科学进展,1997,5(4):49-55
    49.唐亚,谢嘉穗,陈克明等.等高固氮植物篱技术在坡耕地可持续耕作中的应用.水土保持研究,2001,8(1):101-109
    50.王百群,张卫,余存祖.用~(15)N示踪法研究不同土壤水分条件下小麦对氮的吸收利用.核农学报,1999,13(6):362-367
    51.王朝辉,李生秀.不同生育期缺水和补充水对冬小麦氮磷钾吸收及分配影响.植物营养与肥料学报,2002,8(3):265-270
    52.王明珠,茅昂江,复合农林业在低丘红壤区的应用.见:中国科学院红壤生态实验站编.红壤生态系统研究(第5集).北京.中国农业科技出版社,1998,229-231
    53.王喜庆,李生秀,高亚军,土壤水分在提高氮肥肥效中作用机制.西北农业大学学报,1997,25(1):15-19
    54.王兴祥,张斌,王明珠,张桃林,何圆球.低丘红壤花生南酸枣间作系统研究.1.生产力.土壤,2002,6:324-327,343
    55.王兴祥,张桃林,张斌等.低丘红壤花生南酸枣间作系统研究Ⅱ.氮素竞争.土壤,2003,1(1):66-68
    56.王艳强.川中丘陵区草地土壤-植物系统CO_2、N_2O和CH_4通量研究.[硕士学位论文].成都:西南农业大学图书馆,2005
    57.王月福,姜东,于振文等.高低士壤肥力下小麦基施和追施氮肥的利用效率和增产效应.作物学报,2003,29(4):491-495
    58.王正秋.试论等高灌木带在陕北丘陵区生态环境建设中的作用.中国水土保持,2000,8:26-27,28
    59.王智平.中国农田N_2O排放量的估算.农村生态环境,1997,13(2):51-55
    60.卫春,陈建群,张鹏飞等.复合农林系统中水杉他感作用的生物测定.南京林业大学学报,23(4):85-88
    61.韦东普,白玲玉,华珞等.用~(15)N同位素稀释法研究牧草的氮素营养。核农学报,2000,14(2):104-109
    62.吴建军,李全胜.幼龄桔园间作牧草的土壤生态效应及其对桔树生长的影响.生态学杂志,15(4):10-14
    63.肖冬梅,王淼,姬兰柱,韩士杰,王跃思.长白山阔叶红松林土壤N_2O排放通量的变化特征.生态学杂志,2004,23(5):46-52
    64.肖辉林,彭少麟,郑煜基,莫江明,罗薇,曾晓舵,何小霞.植物化感物质及化感潜力与土壤养分的相互影响.应用生态学报,2006,17(9):1747-1750
    65.肖焱波.豆科/禾本科间作体系中养分竞争和氮素转移研究.[博士学位论文].北京:中国农业大学,2003
    66.熊毅,李庆逹.中国土壤.北京:科学出版社,1987,502-516
    67.徐慧等.长白山北坡不同土壤N_2O和CH_4排放初步研究.应用生态学报,1995,6(4):373-377
    68.杨兰芳,蔡祖聪,祁士华.大豆和玉米生长对土壤N_2O排放的影响.作物学报,2007,33(5):861-865
    69.姚荣奎等.大气N_2O的GC-ECD方法和环境浓度及来源.环境化学,1994,13(1):22-29
    70.叶优良.间作对氮素和水分利用的影响.[博士学位论文].北京,中国农业大学图书馆,2003
    71.袁远亮,孙辉,唐亚等.等高固氮植物篱脐橙园综合效益研究.中国生态农业学报,2001,9(4):76-78
    72.尹迪信,唐华彬,朱青,等.植物篱逐步梯化技术实验研究.水土保持学报,2001,15:84-87
    73.袁光林,马瑞霞,刘秀芬,孙思恩.化感物质对小麦幼苗吸收氮的影响.生态农业研究,1998,6(2):37-39
    74.翟明普,贾黎明.森林植物间的化感作用.北京林业大学学报,1993,15(3):138-147
    75.曾江海,王智平.农田土壤N_2O生成与排放研究.土壤通报,1995,26(3):123-134
    76.张恩和.甘肃引黄灌区高效立体多熟种植及增产机理研究.[硕士学位论文].兰州:甘肃农业大学图书馆,1992
    77.张秀君,徐慧,陈冠雄.影响森林土壤N_2O排放和CH_4吸收的主要因素.环境科学,2002,23(5):8-12
    78.张振贤,华络,尹逊霄,黄丽萍,高娟.农田土壤N_2O的发生机制及其主要影响因素.首都示范大学学报,2005,26(3):114-120
    79.赵炳梓,许富安.水肥条件对小麦、玉米N、P、K吸收的影响.植物营养与肥料学报,2000,6(3):260-266
    80.赵其国等.红壤物质循环及其调控.科学出版社,2002,134-135
    81.赵其国,徐梦洁.东南红壤丘陵地区农业可持续发展研究.土壤学报,2000,37(4):433-442
    82.朱海燕.重庆石灰岩地区石漠化过程中水分与氮素对土壤-构树系统氮/磷元素营养的影 响.[博士学位论文].成都:西南大学图书馆,2007
    83.朱兆良,文启孝.中国十壤氮素.江苏科学技术出版社,1991
    84.朱兆良,邢光熹.氮循环-维系地球生命生生不息的一个自然过程.清华大学出版社,2002
    85.朱远达,蔡强国,张光远等.植物篱对土壤养分流失的控制机理研究.长江流域资源与环境,2003,12(4):345-351
    86.朱祖祥.土壤学.北京:农业出版社,1983
    87.Akinnifesi FK,Kang BT,Sanginga N,Tijani-Eniola H.Nitrogen use efficiency and N-competition between leucaena hedgerows and maize in an alley cropping system.Nutrient cycling in agroecosystems,1997,47:71-80
    88.Allen S C,Jose S,Nair P K R,Barry JB,Ramsey CL.Competition for ~(15)N-labeled fertilizer in a pecan(Carya illinoensis K.Koch)-cotton(Gossypium hirsutum L.) alley cropping system in the southern United States.Plant and Soil.2004a,263:151-164
    89.Allen S C,Jose S,Nair P K R,Brecke B J,Nkedi-Kizza P,Ramsey C L.Safety-net role of tree roots:evidence from a pecan(Carya illinoensis K.koch) -cotton(Gossypium hirsutm L.) alley cropping system in the southern United States.Forest Ecology and Management,2004b,192:395-407
    90.Allison F E.The enigma of soil N balance sheets.Adv.Agron,1980,71:213-250
    91.Amatya G,Chang S X,Be,are M H,Mead D J.Soil properties under a pinus radiata-ryegrass silvopastoral systems in New Zealand.Part Ⅱ.C and N of soil microbial biomass and soil N dynamics.Agroforestry Systems,2002,54:149-160
    92.Ambus Per.Relationship between gross nitrogen cycling and nitrous oxide emission in grass-clover pasture,Nutrient cycling in agroecosystems,2005,72:189-199
    93.Baggs E M,Chebii J K,Ndufa J K.A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya.Soil Tillage Research,2006,90:69-76
    94.Baggs E M,Rees R M,Smith K A,Vinten A J A.Nitrous oxide emission from soils after incorporating crop residues.Soil Use Manage,2000,16:82-87
    95.Batish D R,Singh H P,Pandher J K,et al.,Phytotoxic effect of Parthenium residues on the selected soil properties and growth of chickpea and radish.Weed Biol Manage,2002,2(2):73-78
    96.Baziramakenga R,Leroux G D.Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedling.Canadian Journal of Botany,1997,75(8):445-450
    97.Bergstrom D.W,Tenuta M.and Beauchamp E.G.Increase in nitrous oxide production in soil induced by ammonium and organic carbon.Biology and Fertility of soil,1994,18:1-6
    98.Bethlenfalway G J,Reyes-Soils M G,Camel S K,Ferrera-Cerrato R.Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal myeelium.Physiol.Plant,1991,82:423-432
    99.Bhaskar A and G.vyas K.Studies on competition between wheat trod Chenopodium album L. Weed Research,1988,28:53-58
    100.Blum U,Rebbeck J.Inhibition and recovery of cucumber roots given multiple treatment of ferulic acid in nutrient culture.Chemical Ecology,1989,15:917-928
    101.Boddey R M,Peoples M B,Palmer B,Dart P J.Use of the ~(15)N natural abundance technique to quantify biological nitrogen fixation by woody perennials.Nutrient cycling in agroecosystems,57:25-270
    102.Bouwman,A.F.Exchange of Greenhouse Gases between terrestrial ecosystems and the atmosphere.IN:Bouwman,A.E(ED).Soil and Greenhouse Effect.Whey and sons.Chickster,New York,1990,p,61-127
    103.Bremer EW,van Houtum,van Kessel.Carbon dioxide evolution from wheat and lentil residues as affected by grinding,added nitrogen,and the absence of soil.Bio Fertil Soils,1991,11:221-227
    104.Bremmer J M and MeCarty GW.Effects of terpenoids on nitrification in soil.Soil Sci Soc Am J,1988,52:1630-1633
    105.Conant R T,Klopatek J M,Malin R C,Klopatek C C.Carbon pools and fluxes along an environment gradient in northern Arizona.Biogeochemisty,1998,43(1):43-61
    106.Darora F D,Keya S O.Contribution of legume nitrogen fixation to sustainable agriculture in sub-saharan Africa.Soil Biol Biochem,1997,29(5):809-817
    107.Das,D K and Chaturvedi,O P.Structure and function of Populus deltoids agroforestry systems in eastern India:2.Nutrient dynamics Agroforestry Systems,2005,65:223-230
    108.David R.δ~(15)N as an integrator of the nitrogen cycle.Trends in Ecology and Revolution,2001,16:153-162
    109.De Costa W A.I M and Surenthran P.Tree-crop interactions in hedgerow intercropping with different tree species and tea in Sri Lanka:1.Production and resource competition.Agroforestry Systems,2005,63:199-209
    110.Dekora F D and Keya S O.Contribution of legume nitrogen fixation to sustainable agriculture in sub-saharam Africa.Soil Biol.Biochem,1997,29:809-817
    111.Desjardins R L and Riznek R.Agricultural greenhouse gas budget,p,133-140.In T.McRac(ed)Environmental sustainability of Canadian agriculture:Report of the agri-environmental indicator project.Agriculture and Agfi-Food Canada,Ottawa,ON.
    112.Dinkelmeyer H,Lehmann J,Renck A,Trujillo L,da Silva Jr JP,Gebauer G,Kaiser K.Nitrogen uptake from ~(15)N-enfiched fertilizer by four tree crops in an Amazonian agroforest.Agroforestry Systems,2003,57:213-224
    113.Duxbury J M,Bouldin D R,Terry R E,Tate Ⅲ R L.Emissions of nitrous oxide from soils.Nature,1982,298:462-464
    114.Eason W R and Newman E I.Rapid cycling of nitrogen an phosphorus from dying roots oflolium perenne.Oecologia,1990,82:432-436
    115.Eichner M J.Nitrous oxide emission from fertilized soils:summary of available data.J Environ Qual, 1990, 19:272-280
    116. Ewel K C, Cropper W P, Gholz H L. Soil CO_2 evolution in florida slash pine plantations. I. Changes through time. Can J For Res, 1987,17: 325-329
    117. Fillery, LR.P. Biological denitrification. In: Freney, J.R. &Simpson,J.R.eds. Gaseous Loss of Nitrogen from Plant-Soil Systems. Martinus Nijhofff, 1983, 33-64
    118. Firestone M. Biological denitrification. In: Stevenson F.J.ed. Nitrogen in Agricultural Soils No.22 ASA,CSSA&SSSA. Madison,Wisconsin, 1982, 289-326
    119. Freney J R. Emission of nitrous oxide from soils for agriculture. Nutrient cycling in agroecosystems, 1997,49: 1-6
    120. Frissel M J. Cycling of Mineral Nutrients in Agricultural Ecosystems. Elsevier Scientific Pub. Company. 3, 7-16, 277-316
    121. Fukai S, Trenbath B R. Processes determining intercrop productivity and yields of component crops. Field Crops Research, 1993,34: 247-271
    122. Galbally I E. Biosphere-atmosphere exchange of trace gases over Australia. In: Australia's renewable resources: sustainability and global change. Gifford R. M.&M.M. Barson (eds). Bureau of rural resources. Canberra, Australia, 1992,117-149
    123. Ghosh S, majumdar D, Jain M C. Nitrous oxide emission from kharf and rabi legumes grown on an alluvial soil. Biol Fertil Soils, 2002, 35: 473-478
    124. Ghosh P K, Mohanty M, Bandyopadhyay K K, Painuli D K, Misra A K. Growth, competition, yields advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India. II. Effect of nutrient management. Field Crops Res, 2006,96: 90-97
    125. Harawa R, Lehmann J, Akinnifesi F, Femandes E, Kanyama-Phiri G Nitrogen dynamics in maize based agrofestry systems as affected by landscape position in southern Malawi. Nutrient cycling in agroecosystems, 2006, 75: 271-284
    126. Hauggaard-Nielsen H, Ambus P, Jensen ES. Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crops Res, 2001, 70: 101-109
    127. Haynes, R. J. Mineral Nitrogen in the Plant Soil System. New York: Academic Press, Inc, 1986.
    128. Haynes B E, Gower S T. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiol, 1995, 15: 317-325
    129. Hauggaard-Hielsen H, Ambus P and Jensen E S. Interspecific competition, N use and interference with weeds in pea-barly intercropping. Field Crop Research, 2001, 70: 101-109
    130. Heenan DP. Effects of broad-leaf crops and their sowing time on subsequent wheat production. Field Crop Research, 1995,43: 19-29
    131. Idol T W, Pope P E, Ponder Jr, F. N mineralization, nitrification, and N uptake across a 100-year chronosequence of upland hard wood forests. Forest Ecology and Management, 2003, 176: 509-518
    132. Inderjit, Nilsen, E T. Bioassays and field studies for allelopathy in terrestrial plants: progress in problems. Critical Reviews in Plant Sciences, 2003,22:221-238
    133.Inderjit, Rawat D, Foy C L. Multifaceted approach to determine rice straw phytotoxicity. Canadian Journal of Botany, 2004, 82:168-176
    134. Inderjit. Experimental complexities in evaluating the allelopathic activities in laboratory bioassays: A case study. Soil Biology and Biochemistry, 2006, 38: 256-262
    135. Jensen E S, Hauggaard-Nielsen H. How can increased use of biological N_2 in agriculture benefit the environment? Plant and Soil, 2003,252:177-186
    136. Jose S and Gillespie A R. Allelopathy in black walnut (Juglans nigra L.) alley cropping. I. Spatio-temporal varation in soil juglone in a black walnut-corn (Zea mays L.) alley cropping system in the Midwestern USA. Plant and Soil, 1998, 203: 191-197
    137. Jose S, Gillespie AR, Seifert JR, Mengel DB, Pope PE. Defining competition vectors in a temperate alley cropping system in the mid-western USA. 3. Competition for nitrogen and litter decomposition dynamics. Agroforestry Systems, 2000, 48: 61-77
    138. Jose S, Gillespie AR, Pallardy SG Interspecific interactions in temperate agroforestry. Agroforestry Systems, 2004,61: 237-255
    139.Kang BT, Caveness FE, Tian G, Kolawole GO. Longterm alley cropping with four hedgerow species on an Alfisol in southwestern Nigeria-effect on crop performances, soil chemical properties and nematode population. Nutrient cycling in agroecosyststems, 1999, 54:145-155
    140.Kauppi P. Biomass and carbon budget of European forest, 1971 to 1990. Science, 1991, 199: 182-190
    141. Keltin D L, Burger J A, Edwards G S. Estimating root respiration, microbial respiration in the rizosphere, and root-free soil respiration in forest soils. Soil Biolchem, 1998, 30:961-968
    142. Kralova M, Mascheleyn P H, Liondau C W H. Production of dinitrogen and nitrous oxide in soil as affected by redox potential. Water, Air, Soil Pollut, 1992,61:37-45
    143. Larionova A A, Yermolayev A M, Blagodatsky S A. Soil respiration and carbon balance of gray forest soils as affected by land use. Biology and Fertility of Soils, 1998,27: 251-257
    144. Lee KH, Jose S. Soil respiration and microbial biomass in a pecan-cotton alley cropping system in Southern USA. Agroforestry Systems, 2003, 58:45-54
    145. Lei L, Nagumo T, Hatano R. Nitrogen cycling with respect to environmental load in farm systems in Southwest China. Nutrient cycling in agroecosystems, 2009,73:119-134
    146. Lehmann J, Peter 1, Steglich C, Gebauer G, Huwe B, Zech W. Below-ground interactions in dryland agrofoestry. Forest Ecology and Management, 1998, 111: 157-169
    147. Lehmann J, Weigl D, Droppelmann K, Huwe B, Zech W. Nutrient cycling in an agroforestry system with runoff irrigation in Northtem Kenya. Agroforestry Systems, 1999,43:49-70
    148. Lehmann J and Muraoka T. Tracer methods to assess nutrient uptake distribution in multistrata agroforestry systems. Agroforestry Systems, 2001, 53: 133-140
    149. Lehmann J, Gebauer G, Zech W. Nitrogen cycling assessment in a hedgerow intercropping system using ~(15)N enrichment. Nutrient cycling in agroecosystems, 2002,62: 1-9
    150. Levine J S. Photochemistry of biogenic gases. In: Global ecology. Towards a science of biosphere(Ed by MB Rambler, L Margulis and R Foster), Boston: Academic Press, 1989. 51-74
    151. Livesley SJ, Gregory PJ, Buresh RJ. Competition in tree row agroforestry systems. 2. Distribution, dynamics and uptake of soil inorganic N. Plant and Soil, 2002, 247: 177-187
    152. Lloyd J, Taylor J A. On the temperature dependence of soil respiration. Func Ecol. 1994, 8: 315-323
    153. Lundgren B O. Introduction. Agorforestry Systems, 1982, 1:3-6
    154. Lundgren B O.ICRAF into 1990s. Agroforestry Today, 2(4): 14-16
    155. Ma X Q, Heal K V, Liu A Q, Jarvis P G Nutrient cycling and distribution in different-aged planations of Chinese fir in southern China. Forest Ecology and Management, 2007, 1-14
    156. Martin MC, Voldeng H D, Smith DL. Nitrogen transfer from nodulating sobean to corn and non-nodulthg soybean in intercrops: direct ~(15)N labeling methods.New phytol, 1991, 117: 233-241
    157. Mayer J, Buegger F, Jensen ES, Schloter M, HeβJ. Residual nitrogen contribution from grain legumes to succeeding wheat and rape and related microbial process. Plant and Soil, 2003, 255: 541-554
    158. Maston P A, Vitousek P M. Ecosystem approach to a global nitrous oxide budget. BioScience, 1990,40:667-672
    159. Mayer J, Buegger F, Jensen ES, Schloter M, HeβJ. Residual nitrogen contribution from grain legumes to succeeding wheat and rape and related microbial process. Plant and Soil, 2003, 255: 541-554
    160. McGrath DA, Duryea ML, Comerford NB, Cropper WP. Nitrogen and phosphorus cycling in an Amazonian agroforest eight years following forest conversion. Ecol Appl, 2000, 10: 1633-1647
    161.Mekonnen K Buresh R J, Jama B. Root and inorganic nitrogen distribution in sesania fallow, natural fallow and maize fields. Plant and Soil, 1997, 188: 319-327
    162. Metay A, Oliver R, Scopel E, Douzet JM, Moreira JAA, Maraux F, Feigl B, Feller C. N_2O and CH_4 emissions from soils under conventional and no-till management practices in Goiania (Cerrados, Brazil). Geoderma, 2007, Doi: 10.1016/j.geoderma. 2007.05.010
    163. Miller H G. The nutrient budgets of even-aged forests. In: The ecology of even-aged forest plantations. Proceedings of the meetings in division IIUFRO(Edingburg, 1978). 1979,252-292
    164. Morris, R.A and Garrity D.P Resource capture and utilization in intercropping: non-nitrogen nutrients. Field Crops Recearch, 1993, 319-334
    165. Mugendi D N, Nair PKR, Mugwe J N, O'neill M K, Woomer P L. Alley cropping of maize with alliandra and leuceena in the subhumid highlands of kenya Part 1. Soil-fertility changes and maize yield. Agroforestry Systems, 1999, 46: 39-50
    166. Nissen TM, Midmore DJ, Cabrera MLAboveground and belowground competition between intercropped cabbage and young Eucalyptus torelliana. Agroforestry Systems, 1999,46: 83-93
    167.Northup R R,Yu Z,Daglgren R A,Vogt K A.Polyphenol control of nitrogen release from pine litter.Nature,1995,377:227-229
    168.O'hara,G W,Daniel R M.Rhizobial denitrification:a review.Soil Biology and Biochemistry,1985,17:1-9
    169.Ordónez R,Rodríguez A,Carbonell R,González P,Perea F.Dynamics of residue decomposition in the field in a dryland rotation under Metiterranean climate conditions in southern Spain.Nutrient cycling in agroccosystems,2007,Doi:10.1007/s107054)07-9111-9.
    170.Parker,G.Throughfall and stem flow in the forest nutrient cycle.Adv Ecol Res,1983,13:57-133
    171.Parton WJ,Schimel DS,Cole DS,Ojima DS.Analysis of factors soil organic levels ofgrasslands in the Great Plains.Soil Sci.Soc.Am.J,1987,51:1173-1179
    172.Patton W J,Scurlock J M O,Ojima D S.Observations and modeling of biomass and soil organic matter dynamics for the grassland biome world wide.Global Biogcochemical Cycles,1993,7:785-809
    173.Pearson J,Clough E C M,Woodall J H.Ammonian emissions to atmosphere from leaves of wild planks and hordeum vulgate treated with methionine sulphoximine.New Phytol,1998,138,37-48.
    174.Penning de Vries F W T Djiteye MA.La productivte des parueges sahelens Une etude dessols,des vegetations et de l'exploitation de cette ressurce naturelle,Agri.Res.Rep.918,PUDOC,Wageninggen,the Netherlands,523 pp.
    175.Peoples M B,Herridge D F,Ladha J K.Biologicai nitrogen fixation:An efficient source of nitrogen for sustainable agricullture production.Plant and Soil,1995,174:3-28
    176.Raich J W,Schlesinger W H.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.Tellus,1992,44:81-99
    177.Raich J W,Tufekcioglu A.Vegetation and soil respiration:Correlation and controls.Biogeochem,2000,48:71-90
    178.Rao M R,Muraya P,Huxley P A.Observations of some tree root systems in agroforestry.intercrop situations,and their graphical representation.Exp.Agri,1993,29:183-194
    179.Reid,R and Wilson,G.Agroforestry in Australia and New Zealand.Goddard and Dobson Victoria,M F.1985
    180.Rhoades C C,Nissen T M and Kettler J S.Soil nitrogen dynamics in alley cropping and no-till sytems on ultisols of the Georgia Piedmont,USA.Agroforestry Sytems,1997,39:31-44
    181.Rietveld W J.Allelopathic effects of juglone on germination and growth of several herbaceous and woody species.J.Chem.Ecol,1983,9:295-308
    182.Rizhiya E,Bertora C,van Viler PC J,Kuikman P J,Faber JH,van Groenigen JW.Earthworm activity as a determinant of N_2O emission from crop residue.Soil Biology and Biochemistry,2007,39:058-2069
    183.Robertson L A and Kuenen J G.Physiology of Nitro-Eying and denitrifying bacteria.In,Rogers J. E. And Whitman Wbceds. Manorial Production and Consumption of Greenhouse Gases: Methane, Nitrogen oxides and Halo methane's. American Society for microbiology Washington D.C.1991: 189-199.
    184. Rochette P, Angers DA, Belanger G, Chantigny MH, Prevost D, Levesque G. Emissions of N_2O from Alfalfa and Soybean Crops in Eastern Canada. Soil Sci Soc Am J, 2004, 68: 493-506
    
    185. Rowe E C, Hairaih K, Giller K E, et al .Testing the safety-net role of hedgrerow tree roots by ~(15)N placement as different soil depths .Agroforestry Systems, 1999, 43: 81-93
    186. Rowe EC and Cadisch G. Implications of heterogeneity on procedures for estimating plant ~(15)N recovery in hedgerow intercrop systems. Agroforestry Systems, 2002, 54: 61-70
    187. Rowe E C, Van Noordwijk M, Suprayogo D, Cadisch G. Nitrogen use efficiency of monocutlture and hedgerow intercropping in the humid tropics. Plant and Soil, 2005, 268: 61-74
    188. Ruark G A and Zarnoch S J. Soil carbon, nitrogen and fine root biomass ampling in a pine stand. Soil Sci. Soc. Am J, 1992, 56(5): 1421-1482
    189. Sanchez PA. Properties and management of soils in the teopics. John Wiley and Sons, New York, USA. 1976
    190. Sanford J R, Parton W J, Ojima D S, Lodge D J.Hurricane effect on soil organic matter dynamics and forest production in the Luqillo Experimental Forest, Puert Rico: Results of simulation modeling. Biotropoca, 1991,23: 364-372
    191. Schmidt S K, Ley R. Microbial competition and soi lstructure limit the expression of allelochemicals in nature. In: Inderjit, Dakshini K M M, Foy C L(Eds.), Principles and practices in Plant Ecology: allelochemical Interactions. CRC Press, Boca Raton, FL, 1999, pp. 339-351
    192. Schroth G., Lehmann J, Rodrigues M R L, Barros E, Macedo J L V. Plant-soil interactions in multistrata agroforestry in the humid tropics. Agroforestry Systems, 2001, 53: 85-102
    193. Shah Z, Shah SH, Peoples MB, Schwenke GD, Herridge DF. Crop residue and fertilizer N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic fertility. Field Crops Research, 2003, 83: 1-11
    194. Sharma, Y A and Bhutani, L P Effect of nitrogen levels and weed control treement on nutrient status of peach (Prunus persica). Indian Journal of Agricultural Sciences, 1989, 84(4): 255-259
    195. Shearer Gand Kohl D H. Estimates of N_2 fixation in ecosystems: the need for and basis of the ~(15)N natural abundance method. In: Rundel PW, Ehleringer J Rand Nagy K A, eds, Stable Isotopes in Ecological Research. New York:Spring-Verlag,1988, 342-374
    196. Simojoki A, Jaakkola A. Effect of nitrogen fertilization, cropping and irrigation on soil air composition and nitrous oxide emissions in loamy clay. European Journal of Soil Science, 2000, 51(3): 413-424
    197. Singh R P and Ong C K, Saharan N. Above- and below-ground interactions in alley-cropping in semi-arid India. Agroforestry Systems, 1989, 9: 259-274
    198. Smith K A. Greenhouse gas fluxes between land surface and the atmosphere. Progress of Physical Geography, 1990, 3: 249-272
    
    199. Snoeck D, Zapata F, Domenack A M. Isotopic evidence of the transfer of nitrogen fixed buy legumes to coffee trees. Biotechnol Agron Soc Environ, 2000,4(2) :5-100
    
    200. Syvasalo E, Regina K, Phihatie M, Esala M. Emissions of nitrous oxide from boreal agricultural clay and loamy sand soils. Nutrient cycling in Agroecosystems, 2004,69:1555-165
    
    201. Thomas R J. Role of Legumes in proving N for sustainable tropical pasture system. Plant and Soil, 1995,174:103-118
    
    202. Tian H, Mellillo J M, Keklighter D W,Mcguire A D, Helfrich J.The sensitivity of terrestrial carbon storage to historical climate variability ad atmosphere CO_2 in the United States. Tellus, 1999, 51B, 414-452
    
    203. Tilman, Dand Wedin, D. Plant traits and resource reduction for five grasses growing on a nitrogen gradient. Ecology, 1991, 72:683-689
    
    204. Tufekcioglu A, Raich J W, Isenhart T M, Schultz R C. Soil respiration within riparian buffers and adjacent crop fields. Plant and Soil, 2001, 299:117-124
    
    205. Vandermeer J. The Ecology of Intercropping. Cambridge University Press, New York, 1989,1-10
    
    206. Van Kessel C, H. Hartley. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Research, 2000,48:267-293
    
    207. Vanlauwe B, Sanginga N, Merckx R. Alley cropping with Senna siamea in SOuth-western Nigeria: I.Recovery of ~(15)N labeled urea by the alley cropping system. Plant and Soil, 231: 187-199
    
    208. Varennes AD Torres MO, Cunha-Queda C, Goss MJ, Carranca C. Nitrogen conservation in soil and crop residues as affected by crop rotation and soil disturbance under Mediterranean conditions. Bio Fertil Soils, 2007, Doi: 10.1007/s00374-007-0177-y.
    209. Veldkamp E, Davidson E, Erickson H, Keller M, Weitz A. Soil nitrogen cycling and nitrogen oxide emissions along a pasture chronsequence in the humid tropics of Costa Rcia. Soil Biology and Biochemistry, 1999, 31: 387-394
    210. Vinther FP, Hansen EM, Olesen JE. Effects of plant residues on crop performance, N mineralization and microbial activity including field CO_2 and N_2O fluxes in unfertilized crop rotations. Nutri cycling in agroecosystems, 2004, 70:189-199
    211. Wahua T A T. Nutrient uptake by intercropped maize and cowpeas and a concept of nutrient supplementation index (NSI). Exp. Aric, 1983,19: 263-275
    212. Weier KL, Doran JW, Power, J F et al. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil science soc Amer J, 1993, 57: 66-72
    213. Welker J M et al Capture and allocation of nitrogen by Quercus douglasii seedings in competition with annual and perennial grasses. Oecologia, 1991, 87(4): 459-466
    214. White C S. Monoterpenes: Their effects on ecosystem nutrient cycling. J Chem Ecol, 1994, 20: 1381-1406
    215. Willey R W. Intercropping-Its importance and research needs. Part I. Competition and yield advantages. Field Crops Abst, 1979a, 32(1): 1-10
    216. Willey R W. Intercropping-lts importance and research needs. Part II. Agronomy and research approaches. Fied Crops Abst, 1979b, 32(1): 73-85
    217. Willey R. W. and Reddy M.S A field technique for separating above-and below-ground interactions in intercropping: An experiment with pearl millet/groundnet. Exp. Agri 1981. 17: 257-264
    218. Williams J, Hutchinsong L, FehseniJldf C. NO_x and N_2O emissions from soil. Global Biogeochem. Cycles, 1992, 6(4): 351-388
    219. Xiao Y B, Li L, Zhang F S. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant and Soil, 2004, 262: 45-54
    220. Xing G X. N_2O emission from cropland in China. Nutrient cycling in agroecosystems, 1998, 52: 249-254
    221. Yang L F, Cai Z C. The effect of growing soybean (Glysine max L.) on N_2O emission from soil. Soil Biology and Biochemistry, 2005, 37: 1205-1209
    222. Yang L F, Cai Z C. Soil respiration during a soybean-growing season. Pedosphere, 2006, 16(2): 192-200
    223. Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 2002, 00: 1-7
    224. Zhou X L, Angus F, Mackenzie C, Kaluli A, Smith J W. Management practices to conserve soil nitrate in maize production systems. Journal of Environment Quality, 1997, 26: 1369-1374

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700