大型压力调节阀的动态分析及故障检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调节阀广泛应用于火力发电、核电、化工等流体控制场合,是物料或能量供给系统中不可缺少的重要组成部分。在钢厂的循环发电工程中,各钢厂利用公称直径d≥200mm的大型调节阀对混合煤气进行压力控制。调节阀由于长时间的运行磨损、设备的自然老化以及人为损坏等因素影响,故障时有发生,将导致发电设备停机,不仅对电网造成冲击,而且造成巨大的经济损失。大型压力调节阀的动态分析和故障诊断已成为钢厂循环发电工程中的一个关键技术问题。针对钢厂循环发电工程中大型压力调节阀故障及检测问题,本文进行了如下的研究工作:
     系统研究了大型压力调节阀动态分析及故障检测的有关问题。提出了大型压力调节阀在减振、节能、降噪、故障检测及定位研究中仍需解决的问题,指出可根据调节阀的结构特点研究减振,根据内部流场研究节能及降噪,以及根据故障动态特征研究检测及定位。
     根据调节阀动态分析及故障检测的相关理论,研究了调节阀泄漏和堵塞故障的检测机理,提出了混合煤气的质量流函数,建立了检测混合煤气质量流的数学模型。此外,在故障定位研究中,引入质量流梯度,分析了泄漏和堵塞故障的定位机理,为后续章节的进一步研究提供理论基础。
     研究了大型压力调节阀的动态模拟及优化。建立了大型压力调节阀的三维实体模型,并对其进行了模态分析,结果表明,调节阀的固有频率总体上随相对开度的增加而较小,在此基础上,提出了基于扩展主动变刚度的调节阀振动控制的方法。建立了调节阀的流道模型,采用混合煤气为介质分析了调节阀的流量特性、压差-流量和开度-压差特性。分析了调节阀内部流场漩涡产生的原因,并通过流道的优化,消除阀座处的漩涡,减小阀出口处的漩涡。讨论了调节阀噪声产生的原因及影响因素。针对噪声控制,提出了基于变节流面迂回通路的调节阀噪声治理的方法,设计了带锥度的多孔式套筒。分析了多孔式套筒孔的大小和数量对降噪的影响。结果表明,采用有锥度的多孔式套筒不仅消除了阀出口下方的大漩涡、减小了左侧腔的漩涡,而且较普通的多孔式套筒降噪效果更明显。
     研究了调节阀泄漏时的动态特征及检测、定位方法。建立了调节阀入口、出口、阀杆和阀体阀盖处泄漏的三维模型及其流道模型,对不同泄漏故障进行了模态分析、流场分析。结果表明,泄漏故障降低大部分阶次的固有频率,调节阀的入口、出口泄漏的流量特性曲线较无故障时有轻微下凹,使其流量特性减弱。针对泄漏故障提出了泄漏口流量特性,入口、出口泄漏口流量特性曲线类似于下降的线性特性曲线,阀盖泄漏口和阀杆泄漏口的流量特性曲线类似于向下倾斜的正弦曲线。出现泄漏故障时为减小能源损失,在保证阀后压力稳定的情况下应尽量提升阀前压力。分析了泄漏口大小、数量对调节阀压差-流量,以及泄漏故障对调节阀噪声的影响。根据调节阀泄漏故障内部流场的动态特征,研究了调节阀泄漏故障的检测及定位,提出了采用质量流进行泄漏检测,双质量流差进行泄漏定位的方法,并总结出相应的泄漏定位判定表。
     研究了调节阀堵塞时的动态特征及检测、定位方法。建立了调节阀入口、出口及阀体内堵塞的三维实体模型,并通过模态分析得到阀入口堵塞和阀体内堵塞降低调节阀的固有频率,阀出口堵塞提高调节阀的固有频率。在三维实体模型的基础上,建立了各堵塞故障的流道模型,分析其内部流场,结果表明,堵塞故障使流量特性曲线凸起,流量减小,需要增加开度或压差才能达到预定的流量。分析了堵塞物的大小及数量对调节阀流场的影响,得到流量受出口堵塞的影响大于入口堵塞,随出口堵塞物的增大急剧减小,同时研究了堵塞故障对调节阀噪声的影响。根据调节阀堵塞故障内部流场的动态特征,研究了调节阀堵塞故障时的检测及定位,提出了采用质量流波动检测堵塞,同样采用双质量流差方法进行堵塞定位,并总结出相应的堵塞定位判定表。
     构建了调节阀动力学性能及质量流检测试验系统。对调节阀进行了模态实验和质量流检测试验,以及调节阀故障诊断系统的设计。通过调节阀的模态实验,验证了调节阀建模的准确性以及仿真数据的可信性。通过质量流检测试验,证明混合煤气质量流的数学模型可准确的反映并监测系统质量流的变化,以及调节阀故障诊断系统的可行性。
The control valve is widely used in thermal power, nuclear, chemical and other fluid control occasions, it is the indispensable and important component in materials or energy supply system. Steel mills using waste gas in combined cycle power project, steel mills use the nominal diameter≥200mm of large control valve to control pressure of the mixed gas. With the long time running, the natural aging of the equipment, human damage and other reasons, the fault of control valve occurs frequently, it will lead to the shutdown of power generation equipment, and it also caused a huge economic losses.Therefore, large pressure control valve dynamic analysis and fault diagnosis becomes a key technical problem of the combined cycle power plants. The main research contents of this paper are as follows.
     The related problem of the dynamic performance and fault detection for large-scale pressure control valve were studied. The problem of needing to solve for vibration control, energy conservation, noise control, fault detection and localization were discussed, and pointed out that according to the structural characteristics to research vibration reduction, according to the internal flow field to research energy saving and noise reduction, and according to the dynamic characteristics to study the fault detection and localization
     Dynamic analysis and fault detection theory of valve were introduced. The fault detection mechanism of the leakage and blockage were studied, mass flow functionand the mathematical model of mixed gas mass flow was established. In fault location, the mass flow gradient was introduced, and the fault location mechanism of the leakage and blockage were studied, and it provided a theoretical basis for the further study of the later chapters.
     The dynamic analysis and optimization of large-scale pressure control valve were researched. The3D solid model of large-scale pressure control valve was established. The modal analysis results showed, over all, with opening increasing, frequency was reduced. On this basis, the expansion of semi-active variable stiffness was proposed. Then the flow model was established, the flow characteristics, pressure-flow and opening-pressure properties were studied by mixed gas. The causes of valve internal flow field whirlpool were analyzed. Through the optimization, the whirlpool of seat was eliminated, and the outlet of the whirlpool was reduced. Proposing variable throttling surface Circuitous path for noise reduction by studying noise control mechanism, and the influence of the size and number of the porous sleeve for noise reduction were analyzed. The results showed that it not only eliminated the large whirlpool in the bottom of the valve outlet, reduced the swirl of the left side of the cavity, it was more apparent than common porous sleeve in noise reduction.
     The dynamic characteristics and leakage fault detection and location method of the control valve were researched. The3D model of valve inlet leakage, valve outlet leakage, valve stem leakage, valve cover leakage and their flow models were established. The modal analysis and flow analysis of the different leakage faults were studied. The results showed that the leakage fault reduced the order of the natural frequency, flow characteristics curve of inlet leakage and outlet leakage were slight concave than trouble-free, quick opening were weakened. The leakage point flow characteristics were proposed by leakage fault, and pointed out that flow characteristic curve of inlet leakage point and outlet leakage point were similar to the decline of linear curve. The valve stem leakage point and valve cover leakage point were similar to the decline of sine curve. In order to ensure the stable after pressure, the valve should be as far as possible maximize the before pressure. The influence of the leak port size and number for differential pressure-flow of valve, and leakage faults for noise distribution were researched. According to the dynamic characteristics of the valve leakage, leakage fault detection and localization were studied. The method of mass flow leak detection and double mass flow leak location were proposed. The leak location table was made through simulation experiments.
     The dynamic characteristics and blockage fault detection and location method of the control valve were researched. The three-dimensional model of valve inlet blockage, valve outlet blockage and valve body blockage were established. The modal analysis showed that the valve inlet blockage and valve body blockage reduced the natural frequency, and valve outlet blockage increased the natural frequency of valve system. On the basis of three-dimensional solid model, the blockage fault flow models were established. The internal flow fields were analyzed. The results showed that flow characteristics curve of blockage were slight convex, quick opening were raised and the flow reduced. In order to achieve a predetermined flow rate should to increase opening or pressure. The influence of the block size and number for flow field were researched, got the influence of outlet blockage was bigger than inlet blockage in flow field, the flow sharply reduced with obstruction increased. The influences of the blockage faults for noise distribution were researched. According to the dynamic characteristics of the valve blockage, blockage fault detection and localization were studied. The method of mass flow leak detection and double mass flow block location were also proposed. The block location table was made through simulation experiments.
     The experiment system of dynamic performance and mass flow detection were constructed. Modal experiments and mass flow detection experiments were done, and valve fault detection system was designed. Through the modal experiment, the accuracy and credibility of the control valve modeling and simulation data for the previous section were verified. Through the mass flow detection experiments, they showed that can accurately reflected and monitored the change of the mass flow for the system, and the feasibility for fault diagnosis system.
引文
[1]张琦,蔡九菊,王建军,等.钢铁厂煤气资源的回收与利用[J].钢铁,2009,44(12):95-99.
    [2]文方,孙敏,张玲.高炉煤气余压发电装置在钢厂的应用[J].机电工程技术,2008,37(1):95-97.
    [3]邱建宏,何新慧.钢铁企业焦炉煤气的有效利用[J].内蒙古科技与经济,2011(6):63-64.
    [4]Peter Diemer, Hans J.rgen Killich, Klaus Knop, et al. Potentials for Utilization of Coke Oven Gas in Integrated Iron and Steel Works [J]. Stahl und Eisen,2004,124(7):21-30.
    [5]李雨.提高钢铁企业煤气综合利用降低煤气放散的探讨[J].冶金能源,2011,30(2):3-5.
    [6]潘永成.压力调节阀的流场流动特性和流固耦合特性研究[D].山东大学硕士学位论文,2010:1-2.
    [7]彭华玉,杨定斌.燃气-蒸汽联合循环发电在涟钢的应用及效果[J].金属材料与冶金工程,2009,37(1):46-49.
    [8]工丽.济钢燃气-蒸汽联合循环发电项目投资及效应分析[J].山东冶金,2007,29(4):72-73.
    [9]吴洪亮,刘坤.钢铁企业煤气高效利用技术的探讨[J].煤气与热力,2007,27(4):35-37.
    [10]胡新亮.济钢循环经济发展之路[J].中国冶金,2006,16(8):50-51.
    [11]Byung-Cheon Ahn, Jae-Yeob Song. Control characteristics and heating performance analysis of automatic thermostatic valves for radiant slab heating system in residential apartments[J]. Energy,2010,35(4):1615-1624.
    [12]Takashi Miyajima, Toshinori Fujita, Kazutoshi Sakaki, et al. Development of a digital control system for high-performance pneumatic servo valve [J], Precision Engineering,2007,31(2): 156-161.
    [13]Brian Nesbitt. Handbook of Valves and Actuators[M].北京:化学工业出版社,2010:171-172.
    [14]李雪梅,丁峰.气控流量调节阀的设计与应用[J].流体传动与控制,2006(1):26-27.
    [15]陆培文.调节阀实用技术[M].北京:机械工业出版社,2006.
    [16]何衍庆,邱宣振,杨洁,等.控制阀工程设计与应用[M].北京:化学工业出版社,2005.
    [17]Y Pan, U Ozguner and O H Dagci. Variable-Structure Control of Electronic Throttle Valve [J]. IEEE Transactions on Industrial Electronics,2008,55(11):3899-3907.
    [18]R Xu and U Ozguner. Sliding Mode Control of a Class of Underactuated Systems[J]. Automatica,2008,44(1):233-241.
    [19]R R Hemamalini, P Partheeban, J S Chandrababu, et al. The Effect on Pressure Drop across Horizontal Pipe and Control Valve for Air/Palm Oil two-phase Flow[J]. International Journal of Heat and Mass Transfer,2005,48(14):2911-2921.
    [20]V Ahuja, A Hosangada, J Shipman, et al. Multi-element Unstructured Analyses of Complex Valve Systems [J]. Journal of Fluids Engineering-Transactions of the ASME,2006,128(4): 707-716.
    [21]刘松.偏心旋转阀在液相双环管聚丙烯装置中的应用[J].广州化工,2009,37(3):176-177.
    [22]刘凯,马丽敏,马丽玲,等.调节阀的应用及发展趋势[J].管道技术与设备,2008(2):30-31.
    [23]谢玉东,王勇,刘延俊.基于电液调节阀的大流量混合煤气压力控制研究[J].武汉理工大学学报(交通科学与工程版),2009,33(3):519-522.
    [24]谢玉东,王勇,刘延俊.调节阀执行机构研究[J].液压与气动,2008(9):72-74.
    [25]王可崇,丁建梅.可逆步进装置调节阀执行机构的研究[J].哈尔滨工业大学学报,2009,41(11):65-68.
    [26]陶玉静,范才智,田章福,等.两位五通电动气阀动态特性研究[J].推进技术,2006,27(6):542-545.
    [27]石淑莲,贾泽.超超临界汽轮机主汽调节联合阀阀壳与阀座瞬态过盈接触分析[J].机械工程师,2011(4):97-99.
    [28]Muller Matthew T., Fales Roger C. Design and analysis of a two-stage poppet valve for flow control[J] International Journal of Fluid Power,2008,9 (1):17-26.
    [29]Hirooka Daisuke, Suzumori Koichi, Kanda Takefumi. Flow control valve for pneumatic actuators using particle excitation by PZT vibrator [J] Sensors and Actuators, A:Physical, 2009,155 (2):285-289.
    [30]周文霞,张继革,宋志平,等.核2级调节阀的抗震分析及试验研究[J].世界地震工程,2011,27(1): 148-152.
    [31]姚良,李艾华,孙红辉,等.基于MSET和SPRT的内燃机气阀机构振动监测[J].振动工程学报,2009,22(2):150-155.
    [32]李强.国产供热汽轮机高调汽门结构改进[J].华中电力,2008,21(3):49-54.
    [33]余晓明,仲梁维,杨恒,等.核岛双闸板闸阀振动特性的数值模拟[J].上海理工大学学报,2008,30(2):121-124.
    [34]余晓明,仲梁维,杨恒,等PZ62Y-50/150型核岛平行式双闸板闸阀振动特性计算与数值模拟分析[J].流体机械,2008,36(4):22-29.
    [35]Ohta, Kazuhide, Ikeda, Kouichiro, Zheng Guangzu, et al. Vibration response and noise radiation of engine block coupled with the rotating crankshaft and gear train [J]. Nihon Kikai Gakkai Ronbunshu C,2009,75(752):789-795.
    [36]彭禹,郝志勇.利用有限元技术获得弹簧参数[J].浙江大学学报(工学版),2008,42(10):1756-1760.
    [37]徐长航,刘吉飞,陈国明,等.经验模态分解和魏格纳-维利分布在往复泵泵阀振动信号特征提取中的应用[J].中国石油大学学报(自然科学版),2010,34(3):99-103.
    [38]Farshidi R., Trieu D., Park S.S., et al. Non-contact experimental modal analysis using air excitation and a microphone array [J]. Measurement:Journal of the International Measurement Confederation,2010,43(6):755-765.
    [39]S. Vanlanduit, F. Daerden, P. Guillaume. Experimental modal testing using pressurized air excitation [J] Journal of Sound and Vibration,2007,299 (1-2):83-98.
    [40]DASGUPTA K, WATTON J. Dynamic analysis of proportional solenoid controlled piloted relief valve by bondgraph[J]. Simulation Modelling Practice and Theory,2005,13(1):21-38.
    [41]DASGUPTA K, KARMAKAR R. Modelling and dynamics of single-stage pressure relief valve with directional damping[J]. Simulation Modelling Practice and Theory,2002,10(1): 51-67.
    [42]MAITI R, SAHA R, WATTON J. The static and dynamic characteristics of a pressure relief valve with a proportional solenoid-controlled pilot stage[J]. IMechE, Part Ⅰ, Journal of Systems and Control Engineering,2002,216(2):143-156.
    [43]HABING R A, PETERS M C A M. An experimental method for validating compressor valve vibration theory[J]. Journal of Fluids and Structures,2006,22:683-697.
    [44]Waku Shinji, Watanabe Tomonori, Takahashi Masato. Vibration reduction of nozzle-flapper type servo valve using in an air-spring type anti-vibration apparatus [J]. Nihon Kikai Gakkai Ronbunshu C,2009,75(751):591-599.
    [45]Waku Shinji, Watanabe Tomonori, Takahashi Masato. An idetification of vibration reduction of nozzle-flapper type servo valve using in an air-spring type anti-vibration apparatus and reduced vibration effect on isolated table [J]. Nihon Kikai Gakkai Ronbunshu C, 2009,75(755):1941-1949.
    [46]Zaryankin A.E., Chernoshtan V.I., Arianov S.V.,et al. Some ways for improving vibration reliability of balanced control valves for steam turbines [J]. Thermal Engineering,2009,56(8): 644-648.
    [47]Wu D.,Burton R., Schoenau G. Analysis of a pressure-compensated flow control valve [J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,2007, 129(2):203-211.
    [48]Yi S.I., Shin M.K., Shin M.S.,etc. Optimization of the eccentric check butterfly valve considering the flow characteristics and structural safety [J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering,2008,222(1): 63-73.
    [49]Mostofi J., Zamanian M.. Failure analysis:Stress cracking of stainless steel safety gate valve stem [J]. Materials Performance,2008,47 (2):64-67.
    [50]Beck Mark, Muenchhof Marco, Isermann Rolf. Model-based fault detection and diagnosis for electromagnetic valve drives [J]. Proceedings of the ASME Dynamic Systems and Control Conference 2009,2010:653-660.
    [51]Hamed Hossein Afshari, Amir Zanj, Alireza Basohbat Novinzadeh. Dynamic analysis of a nonlinear pressure regulator using bondgraph simulation technique [J]. Simulation Modelling Practice and Theory,2010,18(2):240-252.
    [52]Moujaes S.F., Jagan R.3D CFD predictions and experimental comparisons of pressure drop in a ball valve at different partial openings in turbulent flow [J]. Journal of Energy Engineering,2008,134(1):24-28.
    [53]贺小峰,何海洋,刘银水,等.先导式水压溢流阀动态特性的仿真[J].机械工程学报,2006,42(1):75-82.
    [54]刘轶,贺小峰.基于MATLAB的水压溢流阀动态特性仿真[J].机械工程与自动化,2007(5):29-34.
    [55]Qifang Ye, Jiangping Chen. Dynamic analysis of a pilot-operated two-stage solenoid valve used in pneumatic system [J]. Simulation Modelling Practice and Theory,2009,17(5): 794-816.
    [56]Kucienska Beata, Seynhaeve Jean-Marie, Giot, etc. Friction relaxation model for fast transient flows application to water hammer in two-phase flow-The WAHA code [J]. International Journal of Multiphase Flow,2008,34(2):188-205.
    [57]Claudio Alimonti, Gioia Falcone, Oladele Bello.Two-phase flow characteristics in multiple orifice valves [J]. Experimental Thermal and Fluid Science,2010,34(8):1324-1333.
    [58]Boccardi Gino, Bubbico Roberto, Piero Celata Gian,etc. Geometry influence on safety valves sizing in two-phase flow [J]. Journal of Loss Prevention in the Process Industries,2008,21(1): 66-73.
    [59]Jurgen Schmidt, Simon Egan. Case Studies of Sizing Pressure Relief Valves for Two-Phase Flow [J]. Chemical Engineering and Technology,2009,32(2):263-272.
    [60]Zhifang Xue Lin, Shi Hongfei Ou. Refrigerant flow characteristics of electronic expansion valve based on thermodynamic analysis and experiment[J]. Applied Thermal Engineering, 2008,28(2-3):238-243.
    [61]Jinghui Liu, Jiangping Chen, Qifang Ye, etc. A new model for depicting mass flow rate characteristic of electronic expansion valves [J]. Experimental Thermal and Fluid Science, 2007,32(1):214-219.
    [62]Liang Chen, Jinghui Liu, Jiangping Chen, etc. A new model of mass flow characteristics in electronic expansion valves considering metastability[J]. International Journal of Thermal Sciences,2009,48(6):1235-1242.
    [63]袁尚科,戚海春,何才山,等.调节阀空化噪声原因分析及降噪研究[J].兰州工业高等专科学校学报,2010,17(6):38-41.
    [64]周明.调节阀安全运行的影响因素分析及对策[J].中国西部科技,2008,7(10):32-33.
    [65]徐新.多孔式高压差低噪音套筒调节阀的设计[J].科技信息,2010(12):108-108.
    [66]鞠东兵.船用汽轮机调节阀减振降噪研究与进展[J].阀门,2010(5):13-15.
    [67]王永洲,杨锐,张运龙.调节阀振动原因分析及防范措施[J].阀门,2009(5):44-45.
    [68]马宪亭.液压阀的噪声控制探讨[J].液压气动与密封,2011(5):1-3.
    [69]王炜哲,施鎏鎏,柴思敏,等.1000MW超临界汽轮机主调阀内流动和噪声计算分析[J].动力工程,2007,27(3):401-405.
    [70]Surek Dominik, Stempin Silke. Pneumatic oszillations and current noises in pressure control valves [J]. Vakuum in Forschung und Praxis,2005,17(6):336-344.
    [71]Akimoto H., Kanai H., Uehara Y., et al. Analysis of thermal magnetic noise in spin-valve GMR heads by using micromagnetic simulation [J]. Journal of Applied Physics,2005, 97(10):1-3.
    [72]Baran Gheorghe, Safta Carmen-Anca, Bunea Florentina, et al. Stages of noises and vibrations to a butterfly valve in working with cavitation [J].UPB Scientific Bulletin, Series D: Mechanical Engineering,2008,70 (4):15-22.
    [73]娄冬梅.减少控制阀振动和噪音的措施[J].锅炉制造,2010(6):62-64.
    [74]邹建,吴张永,保勇前,等.纯水液压溢流阀噪声控制研究[J].机床与液压,2010,38(8):57-58.
    [75]Ogawa Kazuhiko. Effect of semicircular fins on noise reduction in butterfly valve cavitation under a biased velocity distribution condition[J].Proceedings of the International Instrumentation Symposium,2010,482:1-30.
    [76]Ogawa Kazuhiko. Noise reduction in butterfly valve cavitation by semicircular fins and visualization of cavitation flow [J].Proceedings of the International Instrumentation Symposium,2008,474:366-375.
    [77]Ogawa, K.. Cavitation noise reduction around a butterfly valve by semicircular fins [J].2007 Proceedings of the 5th Joint ASME,2007,2(1):397-402.
    [78]Waller George. Prediction of noise generated by a cabin outflow valve using the STAR-CD code [J]. Canadian Acoustics-Acoustique Canadienne,2007,35(3):92-93.
    [79]Herrmann Jan, Maess Matthias, Gaul Lothar. Substructuring including interface reduction for the efficient vibro-acoustic simulation of fluid-filled piping systems[J].Mechanical Systems and Signal Processing,2010,24 (1):153-163.
    [80]石虎山,赵升吨.气动阀间歇性排气噪声辐射规律的研究[J].西安交通大学学报,2008,42(9):1091-1095.
    [81]Ryu Jewook, Cheong Cheolung, Kim Sungtae, et al. Computation of internal aerodynamic noise from a quick-opening throttle valve using frequency-domain acoustic analogy [J]. Applied Acoustics,2005,66(11):1278-1308.
    [82]Park Sung-Hwan, Kitagawa Ato. A study on noise and flow fluctuation reduction of water hydraulic two-stage high speed solenoid valve using leakage flow around the main poppet as pilot flow [J]. Transactions of the Japan Society of Mechanical Engineers, Part C,2005, 71(5):1498-1505.
    [83]吴媛.高炉煤气干法除尘工艺中减压阀组噪音的治理[J].冶金动力,2008(4):16-22.
    [84]燕慧,王志会,邵珂华,等.青岛分输站噪音治理方案的探讨[J].油气田地面工程,2009,28(3):53-54.
    [85]顾成果.套筒调节阀套筒结构的设计与分析[J].阀门,2010(4):8-10.
    [86]Jung Tae-Uk. Acoustic noise characteristics improvement of solenoid valve by the shading coil application [J]. Transactions of the Korean Institute of Electrical Engineers,2008,57 (7):1175-1180.
    [87]Janzen Victor P., Smith Bruce A. W., Luloff Brian V., et al. Acoustic noise reduction in large-diameter steam-line gate valves [J]. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP,2008,4:513-522.
    [88]杜学文,傅新.节流阀口噪声特性及控制方法研究[J].流体传动与控制,2009(5):27-29.
    [89]胡军华,曹树平,罗小辉,等.阀控舵机系统噪声控制的试验分析[J].噪声与振动控制,2010(1):25-28.
    [90]Chen Haosheng, Li Jiang, Chen Darong, Wang Jiadao.Damages on steel surface at the incubation stage of thevibration cavitation erosion in water [J]. Wear,2008, 265(5-6):692-698.
    [91]王和慧,于莉,周金水,等.希罗装置复杂通道的CFD仿真和FE分析设计[J].工程力学,2010,27(5):231-238.
    [92]MISRA A, BEHDINANB K, CLEGHORNA1 W L.Self-excited vibration of a control valve due tofluid-structure interaction [J]. Journal of Fluids and Structures,2003,16(5):649-665.
    [93]MORITA R, INADA F, MORIM. CFD simulations and experiments of flow fluctuations around a steam control valven [J]. Transactions of the ASME:Journal ofFluids Engineering, 2007,129:48-54.
    [94]施海华,王树众,屠珊,等.先导式套筒调节阀的流体激振原因及处理[J].阀门,2009(1):1-3.
    [95]CHERN M J, WANG C C, MA C H. Performance test and flow visualization of ball valve [J]. Experimental Thermal and Fluid Science,2007,31:505-512.
    [96]Hwang Kyeong Mo, Jin Tae Eun, Kim Kyung Hoon. A study on wall thinning causes identified through experiment, numerical analysis and ultrasonic test of main feedwater isolation valve [J]. Journal of Nuclear Science and Technology,2008,45 (1):45-51.
    [97]Kumar M S, Sujata M, Venkataswamy M A, Bhaumik SK. Failure analysis of a stainless steel pipeline [J].Engineering Failure Analysis,2008(15):497-504.
    [98]A. Marquez, A. Ibarra Pino, J. De Bona. Failure analysis of a let-down valve at a Petrochemical plant[J]. Engineering Failure Analysis,2009,16(6):1894-1902.
    [99]Elhaj M., Gu F., Ball A.D., etc. Numerical simulation and experimental study of a two-stage reciprocating compressor for condition monitoring [J]. Mechanical Systems and Signal Processing,2008,22(2):374-389.
    [100]高发生.关于湿式自动喷水灭火系统设置泄压及流量压力测试装置的思考[J].消防技术与产品信息,2008(6):34-37.
    [101]梁贵萍.恒压式变量泵全流量压力超小故障的分析与改进[J].液压与气动,2006(9):80-82.
    [102]刘恩斌,李长俊,廖柯熹,等.利用瞬态正压波确定天然气管道冰堵位置[J].西南石油学院学报,2006,28(3):86-88.
    [103]刘恩斌,李长俊,彭善碧,等.基于压力波法的管道堵塞监测技术[J].天然气工业,2006,26(4):112-114.
    [104]唐艳春.调节阀堵塞问题的研究[J].化工设备与管道,2009,46(2)::47-51.
    [105]苑卫军,周金国,徐东海.两段炉煤气管道堵塞问题与解决方案[J].陶瓷,2010(3):23-25.
    [106]韩新萍.焦炉煤气管道堵塞原因分析及防范措施[J].武钢技术,2010,48(6):33-35.
    [107]工晓川,康勇,夏彬伟,等.加压煤层气集输管道堵塞分析及防治[J].煤气与热力,2010,30(12):32-35.
    [108]D. Huang, Z.L. He, X.L. Yuan. Dynamic characteristics of an air-to-water heat pump under frosting/defrosting conditions [J].Applied Thermal Engineering,2007,27(11-12):1996-2002.
    [109]张德生,赵继云,刘立宝,等.阀控充液式液力偶合器电液阀堵塞问题分析[J].煤炭工程,2010(8):81-82.
    [110]曹菁,洪雪峰,施金华.进水电磁阀泄漏特性测试系统的创新设计[J].测试与控制,2009,22(6):165-171.
    [111]Tao Jin, Bin Xu, Ke Tang, etc. Bubble counter based on photoelectric technique for leakage detection of cryogenic valves [J]. Journal of Zhejiang University:Science A,2008,9(1): 88-92.
    [112]W. Kaewwaewnoi, A. Prateepasen, P. Kaewtrakulpong. Investigation of the relationship between internal fluid leakage through a valve and the acoustic emission generated from the leakage [J]. Measurement:Journal of the International Measurement Confederation,2010, 43(2):274-282.
    [113]Hong Jaeil, Yoo Juhyun, Lee Kabsoo. Characteristics of acoustic emission sensor using lead-free (LiNaK)(NaTaSb)O3 ceramics for fluid leak detection at power plant valves [J]. Japanese Journal of Applied Physics,2008,47(4):2192-2194.
    [114]方学锋,梁华,夏志敏,等.基于声发射技术的阀门泄漏在线检测方法[J].化工机械,2007,34(1):52-54.
    [115]Liu Junli, Li Shufen. Design of DSP-based valve leak detection system [J]. ICETC 2010-2010 2nd International Conference on Education Technology and Computer,2010,2: 2314-2318.
    [116]Tanimola Femi, Hill David. Distributed fibre optic sensors for pipeline protection Journal of Natural Gas Science and Engineering,2009,1(4-5):134-143.
    [117]Taghvaei M., Beck S.B.M., Staszewski W.J.. Leak detection in pipelines using cepstrum analysis [J]. Measurement Science and Technology,2006,17(2):367-372.
    [118]Xue Guan Song, Seong Gul Kim, Lin, Wang. Transient flow analysis of spring loaded pressure safety valve[J]. Proceedings of the ASME Pressure Vessels and Piping Conference 2009,2009 (7):253-258.
    [119]T.-Y. Yang, L.-P. Leu. Multi-resolution analysis of wavelet transform on pressure fluctuations in an L-valve [J]. International Journal of Multiphase Flow,2008,34(6):567-579.
    [120]魏中青,马波,么子云,等.运用小波包变换与能量算子的气阀故障特征提取[J].振动、测试与诊断,2011,31(1):50-54.
    [121]李俊花,孙昭晨,崔莉,等.基于新息理论的变点检测及其在长输管道泄漏监测中的应用[J].自动化学报,2006,32(3):462-469.
    [122]王永涛,牟海维,韩建.基于小波包与神经网络的长输油管道泄漏检测方法[J].大庆石油学院学报,2006,30(4):129-131.
    [123]崔谦,靳世久,李一博.模糊聚类分析方法在管道泄漏检测系统中的应用研究[J].电子测量与仪器学报,2006,20(2):60-62.
    [124]Mohammadpour Javad, Grigoriadis Karolos, Franchek Matthew. Real-time diagnosis of the exhaust recirculation in Diesel engines using least-squares parameter estimation[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,2010,132(1):1-8.
    [125]Elaoud Sami, Hadj-Taieb Lamjed, Hadj-Taieb Ezzeddine. Leak detection of hydrogen-natural gas mixtures in pipes using the characteristics method of specified time intervals [J]. Journal of Loss Prevention in the Process Industries,2010,23(5):637-645.
    [126]Carneiro Alvaro Luiz Guimaraes, Silva Aucyone Augusto da, Upadhyaya Belle R.. Incipient fault detection of motor-operated valves using wavelet transform analysis [J]. Nuclear Engineering and Design,2008,238(9):2453-2459.
    [127]Yazdanpanah Goharrizi Amin, Sepehri Nariman. A wavelet-based approach to internal seal damage diagnosis in hydraulic actuators [J]. IEEE Transactions on Industrial Electronics,2010, 57(5):1755-1763.
    [128]Ferrante Marco, Brunone Bruno, Meniconi Silvia. Leak detection in branched pipe systems coupling wavelet analysis and a Lagrangian model [J]. Journal of Water Supply:Research and Technology-AQUA,2009,58 (2):95-106.
    [129]Hayashi Shoji, Odaka Tomohiro, Kuroiwa Jousuke, et al. Fault diagnosis system of electromagnetic valve using neural network filter [J]. Transactions of the Atomic Energy Society of Japan,2008,7(3):186-193.
    [130]谭树彬,刘建昌,钟云峰.基于神经网络的电液伺服阀故障诊断[J].仪器仪表学报,2006,27(6): 401-413.
    [131]Escobet Antoni, Nebot Angela, Cellier Francois E.. Fault diagnosis system based on fuzzy logic:Application to a valve actuator benchmark [J]. Journal of Intelligent and Fuzzy Systems, 2011,22(4):155-171.
    [132]Shamloo Hamid, Haghighi Ali. Leak detection in pipelines by inverse backward transient analysis [J]. Journal of Hydraulic Research,2009,47(3):311-318.
    [133]Kim Young-Joon, Miyazaki Koji, Tsukamoto Hiroshi. Leak detection in pipe using transient flow and genetic algorithm [J]. Journal of Mechanical Science and Technology,2008,22(10): 1930-1936.
    [134]Zhang Lai-bin, Qin Xian-Yong, Wang, Zhao-hui, etc. Designing a reliable leak detection system for West Products Pipeline [J]. Journal of Loss Prevention in the Process Industries, 2009,22(6):981-989.
    [135]Martins Jaqueline Costa, Seleghim Jr. Paulo. Assessment of the performance of acoustic and mass balance methods for leak detection in pipelines for transporting liquids [J]. Journal of Fluids Engineering, Transactions of the ASME,2010,132(1):114011-114018.
    [136]Nixon W., Ghidaoui M.S., Kolyshkin A.A.. Range of validity of the transient damping leakage detection method [J]. Journal of Hydraulic Engineering,2006,132(9):944-957.
    [137]Li H., Braun J.E..Decoupling features for diagnosis of reversing and check valve faults in heat pumps [J]. International Journal of Refrigeration,2009,32(3):316-326.
    [138]张红兵,卢亚萍,杨毅.输气管道清管堵塞定位技术研究[J].天然气技术,2008,2(1):42-53.
    [139]田园,谢英,袁宗明,等.利用瞬态质量流量脉冲监测天然气管道堵塞[J].西南石油大学学报(自然科学版),2008,30(1):154-156.
    [140]曹树谦,张文德,萧龙翔.振动结构模态分析:理论、实验与应用[M].北京:机械工业出版社,1996.
    [141]黄永强,陈树勋.机械振动理论[M].北京:机械工业出版社,1996.
    [142]王福军.CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [143]王安麟,刘广军,姜涛.广义机械优化设计[M].武汉:华中科技大学出版社,2008.
    [144]陆守权.输油管道泄漏监测技术研究[D].西南石油学院硕士学位论文,2001.
    [145]毛根海.应用流体力学[M].北京:高等教育出版社,2006.
    [146]刘金梁,王忠诚,叶喜忠.核级阀门抗震分析与研究[J].阀门,2011(2):34-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700