基于蠕滑机理的重载货车车轮磨耗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在货车轴重不断增大的条件下,展开车轮磨耗的研究工作对于如何减轻轮轨磨耗和提高运输经济效益具有重要的指导意义。本文在SIMPACK中建立车辆系统动力学模型,采用傅立叶逆变换将轨道不平顺功率谱密度转换为时域不平顺序列,基于MATLAB软件编制了车轮踏面磨耗仿真程序WWS。根据仿真结果和现场实测结果对Zobory磨耗模型进行修正,系统研究影响重载货车车轮磨耗的关键问题,从车轮磨耗的角度确定了轴重与运行速度的匹配关系。通过对车辆非理想状态下的车轮磨耗仿真,分析轮轨型面和转向架结构对车辆非理想状态的适应性。研究钢轨表面滚动接触疲劳损伤的特征,对车轮滚动接触疲劳和磨耗耦合关系进行数值模拟。取得的主要结果和结论如下:
     1.半赫兹接触的接触斑形状较赫兹接触更接近于CONTACT,同时基于半赫兹接触的FASTSIM算法的计算结果与CONTACT比较接近,而且计算速度较快,因此半赫兹接触可以应用于需要大量轮轨滚动接触计算的车轮磨耗仿真。
     2.在半赫兹接触中考虑弹性剪切变形对滑动速度的影响时,其磨耗计算结果与CONTACT的结果比较接近,具有较高的精度。法向载荷主要影响Jendel模型的第Ⅳ磨耗区,蠕滑率和摩擦系数同时接触斑内黏滑区的分布和磨耗区的分布。在小蠕滑工况下,Braghin模型的磨耗最大,Jendel模型次之,Zobory模型最小,而在大蠕滑工况下,Jendel模型的磨耗远大于其余两种模型。
     3.美国轨道谱各种中心线不平顺之间相关系数均小于0.3,为微弱相关,可以直接将中心线的轨道不平顺等效转换为左、右轨道的垂向和横向不平顺。转换后的美国五级谱左、右轨垂向和横向不平顺谱密度与中国干线谱进行比较,在低频部分(<1.5Hz),美国五级谱略大于中国干线谱,在中等频率(1.5Hz-15Hz)部分,基本和中国三大干线谱相当,在高频部分(>15Hz),低于中国干线谱。
     4.小波滤波平滑能更好反映原始数据的分布情况,同时最大更新磨耗深度取0.1mm时能较好满足计算速度和计算精度要求。利用Zobory模型、Jendel模型和Braghin模型对重载货车在环形线和大秦线上的车轮磨耗仿真结果都大于实测结果,最后对Zobory模型进行了修正,并分析了磨耗后车轮对车辆动力学性能的影响。
     5.在文中所设线路条件下,轴重的增加主要影响踏面上磨耗的增大,对轮缘上的磨耗影响不大。摆动式转向架和交叉支撑转向架车轮的磨耗行为比较接近,而径向式转向架能有效减轻车轮轮缘磨耗。车辆定距越大,车轮踏面上的磨耗越小。对三大件式转向架,一系横向定位刚度和垂向刚度对车轮磨耗的影响不大,一系纵向定位刚度对车轮的磨耗寿命和轮缘磨耗均有较大影响。轴距增加使车轮磨耗寿命减小,同时加剧轮缘磨耗。轮径越大,车轮踏面圆周磨耗深度和踏面磨耗面积越小。曲线半径的增大能使车轮磨耗急剧减小,但随着半径的增大,磨耗减小的幅度变小。轨距加宽可以减轻车轮踏面上的磨耗,延长车轮磨耗寿命。当LM踏面与CN75钢轨匹配时,从车轮磨耗的角度来说轨底坡取1/40是合理的。采用CN75钢轨较CN60和UIC60能有效减轻车轮踏面上的磨耗。线路等级越差,车轮轮缘和踏面上的磨耗越大。运行速度主要影响车轮踏面上的磨耗,且运行速度越大,车轮磨耗寿命减小的幅度越大。轮轨摩擦系数为0.1时车轮磨耗明显减小,而摩擦系数分别为0.25、0.4和0.55时车轮磨耗变化不大。以25t轴重以100km/h速度运行时的段修磨耗寿命为基准,轴重为27.5t时不需要降速运行,30t轴重时需降速到85km/h,32.5t轴重时需降到80km/h,35t轴重时需降到60km/h以下。
     6.初始安装偏转角ψ0对平衡后轮对冲角影响较大,而轮径差ΔD主要影响轮对横移量,同时低的踏面等效锥度更容易形成大的轮对冲角和横移量。ψ0和ΔD都会导致车轮磨耗寿命减少,其中ψo对车轮磨耗寿命的影响较大,而ΔD主要导致车轮出现偏磨。从减轻车轮磨耗的角度看,摆动式转向架和交叉支撑转向架对车辆非理想状态的适应性较好,径向式转向架的适应性较差。
     7.车辆在速度和轴重增加的情况下均会加剧钢轨的疲劳损伤,并存在一个拐点,超过拐点后由于钢轨磨损加剧而使损伤减小。在半径小于600m的曲线上采用轮缘润滑措施会使外侧钢轨的疲劳损伤系数急剧增大,严重影响列车行车安全,故对轮缘润滑要慎用,并应与钢轨打磨配合使用。车轮材料磨耗和RCF损伤的耦合关系与轮轨接触条件和车轮材质有关。摩擦系数和蠕滑较小时,由于磨耗较小,材料容易发生RCF损伤;大的摩擦系数和蠕滑率则使磨耗占据主导地位,材料不会发生RCF损伤。贝氏体钢由于屈服强度较高,比CL60钢更能抑制RCF损伤的发生。
With the increasing axle load of freight car, the researches on how to decrease wheel/rail wear and increase transportation economic benefits have important guiding significance. The vehicle system dynamic model was built in SIMPACK software and the power spectrum density of track irregularity was transformed to time-domain irregularity by Inverse Fourier Transform, then the wheel wear simulation program named WWS was developed in MATLAB. The simulation and field results were used to correct the Zobory wear model, then the factors which affect heavy haul car's wheel wear were studied and the match relations between axle load and running velocity were determined base on wheel wear. The adaptabilities of wheel/rail profile and bogie structure to vehicle's imperfect condition were analyzed by wheel wear simulation. The characteristics of rolling contact fatigue on rail surface were analyzed and the competitions between wheel wear and rolling contact fatigue were numerical simulated. Main conclusions are drawn as follows:
     1. The semi-Hertzian model's patch is closer to CONTACT than Hertzian model, and the results of FASTSIM algorithm base on semi-Hertzian are agree well with the CONTACT's. Because the calculation speed is very fast, so the semi-Hertzian model can be used in wheel wear simulation which need great deal of wheel/rail rolling contact computation.
     2. When elastic velocity and semi-Hertzian model were used in wear calculation, the results are agree well with the CONTACT's. The normal load mainly affect the4th wear zone of Jendel model, creepage and friction coefficient mainly affect the adhere/slip area and wear zone. In small creep condition. Braghin model have maximum wear volume, Jendel model take second place and the Zobory model have minimum wear volume, in large creep condition, wear volume in Jendel model is much larger than the other models.
     3. All the correlation coefficients of American track center line's irregularity are less than0.3and low correlative, so the relation between center line and left/right rail irregularity was used to transform the center line irregularity equivalency to left and right rail. The one side power spectrum density of America five grade railway is higher than the China main line in low frequency and less than it in high frequency.
     4. Wavelet smoothing can reflect the characteristic of original data than other smoothing methods, meanwhile the calculation speed and precision can be met when the maximum updating wear depth is0.1mm. When Zobory. Jendel and Braghin model were used to simulate the wheel wear of heavy haul car which running in Ring-line and Daqin railway line, all the simulation results are lager than field results, so the Zobory model was corrected in this paper, then the affects of worn wheel on vehicle system dynamics were analyzed.
     5. Increasing axle load lead wheel wear increase rapidly and the axle load mainly affect the wear in wheel tread rather than flange. Wear behaviour of swing motion bogie and cross-braced bogie nearly uniform, and the radial bogie can reduce the wheel flange wear effectively. Wheel tread's wear will decrease with the increasing of bogie center distance. The lateral and vertical stiffness of primary suspension have little effect on wheel wear, meanwhile the longitudinal stiffness has great effect on wheel tread and flange wear. The wheel wear lifetime reduced with the increasing of wheelbase and decreasing of wheel radius. The increasing of curve radius can lead wheel wear decrease rapidly, and the gauge-widen can increasing the wheel wear lifetime. In view of wheel wear, the1/40rail cant is reasonable when LM wheel profile and CN75rail profile matched. The CN75rail profile can lead less wheel tread's wear than CN60and UIC60. The wheel wear became more severe when the line grade is low. Vehicle's velocity affect the wear in wheel tread rather than flange, and the wear increase rapidly with the increasing of vehicle velocity. When the wheel/rail friction coefficient is0.1, the wheel wear decreased obviously, but when the coefficients are0.25,0.4and0.55, the coefficient have little effect on wheel wear. Take for the wheel wear of the freight car which axle load is25t and running speed is100km/h as reference, the freight car with27.5t axle load do not need to decrease speed, and the speed of freight car with30t.32.5t and35t axle load need to decrease the running speed to85km/h,80km/h and60km/h respectively.
     6. The initial deflection angle ψ0have greater effect on attack angle of wheelset, and radius difference ΔD have greater effect on lateral displacement of wheelset, meanwhile, greater attack angle and lateral displacement can be caused by lower equivalent conicity of wheel profile. Both ψ0and ΔD will decrease wheel wear lifetime, ψ0, mainly affect wheel wear lifetime and ΔD mainly lead to wheel eccentric wear. In view of wheel wear, the swing motion bogie has best adaptability to vehicle's imperfect condition, the cross-braced bogie takes the second place and the radial bogie has the poorest adaptability.
     7. With the increasing of velocity and axle load, the fatigue damage will increase to a peak and diminish because of the wear increased follow with the velocity and axle load. The wheel-rail lubricate system used in sharp curve which radius less than600m will augment the fatigue damage rapidly and influence the safety of train, so the lubricate system must be cautious to used and the grinding should used together with the lubricate system. The wheel/rail contact condition and wheel material have great effect on the competition relation between rolling contact fatigue and wear. When the friction coefficient and creepage are smaller, the wheel material more easy to occur rolling contact fatigue damage because the wear is mild; the large friction coefficient and creepage make the wear play a leading role, and no rolling contact fatigue damage occur. The rolling contact fatigue damage inhibition role of bainite steel is better than CL60steel because bainite steel have higher yield strength.
引文
[1]钱立新.国际铁路重载运输发展概况.铁道运输与经济,2002,24(12):55-56
    [2]耿志修.大秦铁路重载运输技术.中国铁道出版社,2009
    [3]钱立新.世界铁路重载运输的最新进展.铁道建筑,2007,(8):46
    [4]崔大宾.铁路列车轮轨型面优化研究.西南交通大学硕士学位论文.2009
    [5]胡海滨,吕可维,邵文东,李立东,刘振明.大秦铁路货车车轮磨耗问题的调查与研究.铁道学报,2010,32(1):30-37
    [6]Hertz H. On the contact of elastic solids. J. Reine und angewandte Mathematik,1882, (92): 156-171
    [7]Knothe K, LE T H. A contribution to calculation of contact stress distribution between elastic bodies of revolution with non-elliptical contact area. Computers and Structures,1984, 18(6):1025-1033
    [8]Knothe K, LE T H. A method for the analysis of the tangential stresses and the wear distribution between two elastic bodies of revolution in rolling contact. International Journal of Solids and Structures,1985.21(8):889-906
    [9]Kalker J J. Three dimensional elastic bodies in rolling contact. Dordrecht:Kluwer Academic Publisher,1990
    [10]Pascal J P, Sauvage G. New method for reducing the multicontact wheel/rail problem to one equivalent contact patch. Vehicle System Dynamics,1991,20(supplement):475-489
    [11]Pascal J P. About multi-Hertzian contact hypothesis and equivalent conicity in the case of S1002 and UIC60 analytical wheel/rail profiles. Vehicle System Dynamics,1993,22(2):57-78
    [12]Kik W, Piotrowski J. A fast, approximate method to calculate normal load at contact between wheel and rail and creep forces during rolling.2nd Mini Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Budapest,1996:52-61
    [13]Ayasse J B. Chollet H. Determination of the wheel rail contact patch in semi-Hertzian conditions. Vehicle System Dynamics,2005,43(3):161-172
    [14]Quost X, Sebes M, Eddhahak A, et al. Assessment of a semi-Hertzian method for determination of heel-rail contact patch. Vehicle System Dynamics,2006.44(10):789-814
    [15]Sebes M. Ayasse J B, Chollet H. et al. Application of a semi-Hertzian method to the simulation of vehicles in high-speed switches. Vehicle System Dynamics,2006.44 (supplement):341-348
    [16]Santamaria J, Vadillo E G, Gomez J. A comprehensive method for the elastic calculation of the two-point wheel-rail contact. Vehicle System Dynamics,2006,44(supplement):240-250
    [17]Alonso A, Gimenez J G. A new method for the solution of the normal contact problem in the dynamic simulation of railway vehicles. Vehicle System Dynamics,2005,43(2):149-160
    [18]Yan W, Fischer F D. Applicability of the Hertz contact theory to rail-wheel contact problems. Archive of Applied Mechanics.2000,70(4):255-268
    [19]Telliskivi T, Olofsson U. Contact mechanics analysis of measured wheel-rail profiles using the finite element method. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,2001,215(2):65-72
    [20]Sladkowski A, Sitarz M. Analysis of wheel-rail interaction using FE software. Wear,2005, 258(7-8):1217-1223
    [21]Enblom R, Berg M. Impact of non-elliptic contact modelling in wheel wear simulation. Wear,2008,265 (9):1532-1541
    [22]Pau M, Aymerich F, Ginesu F. Distribution of contact pressure in wheel-rail contact area. Wear,2002,253 (1):265-274
    [23]Telliskivi T. Olofsson U. Wheel-rail wear simulation. Wear,2004,257(11):1145-1153
    [24]Rovira A, Roda A, Marshall M B, et al. Experiment and numerical modeling of wheel-rail contact and wear. Wear,2011,271(3):911-924
    [25]Carter F W. On the action of locomotive driving wheel. Proceeding of Royal Society of London,1926:151-157
    [26]Johnson K L. The effect of a tangential contact force upon the rolling motion of an elastic sphere on a plane. Journal of Applied Mechanics,1958, (25):339-346
    [27]Kalker J J. On the rolling contact of two elastic bodies in the presence of dry friction. TU Delft Doctoral Thesis.1967
    [28]Kalker J J. A fast algorithm for the simplified theory of rolling contact. Vehicle System Dynamics.1982,11(1):1-13
    [29]Shen Z Y,Herdrick J K, Elkins J A. A comparison of alternative creep-force models for rail vehicles dynamic analysis. Proceeding of 8th IAVSD Symposium,1984:591-605
    [30]Shen Z Y, Li Z. A fast non-steady state creep force model based on the simplified theory. Wear,1996,191(1-2):242-244
    [31]Polach O. Fast wheel-rail forces calculation computer code. Vehicle System Dynamics. 2000,33(supplement):728-739
    [32]Periard F. Wheel-rail noise generation:curve squealing by trams. TU Delft Doctoral Thesis.1998
    [33]Gimenez J G, Alonso A, Gomez E. Introduction of a friction coefficient dependent on the slip in the Fastsim algorithm. Vehicle System Dynamics,2005,43(4):233-244
    [34]Alonso A. Tangential problem solution for non-elliptical contact area with the FastSim algorithm. Vehicle System Dynamics.2007,45(4):341-357
    [35]Piotrowski J. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy. Vehicle System Dynamics,2010,48(7):869-889
    [36]Zhao X, Li Z. The solution of frictional wheel-rail rolling contact with a 3D transient finite element model-Validation and error analysis. Wear,2011,271(1-2):444-452
    [37]Wen Z. Wu L. Li W. Three-dimensional elastic-plastic stress analysis of wheel-rail rolling contact. Wear,2011,271(1-2):426-436
    [38]Vollebreqt E A H, Widers P. FASTSIM2:a second-order accurate frictional rolling contact algorithm. Computational Mechanics,2011,47(1):105-116
    [39]Beagley T M. Severe wear of rolling/sliding contact. Wear,1976,36(3):317-335
    [40]Bolton P J, Clayton P. Rolling-sliding wear damage in rail and tyre steels. Wear,1984, 93(2):145-165
    [41]Krause H, Poll G. Wear of wheel-rail surfaces. Wear,1985,113(1):103-122
    [42]Danks D, Clayton P. Comparison of the wear process for eutectoid rail steels:field and laboratory tests. Wear,1987,120(2):233-250
    [43]Kalker J J. Simulation of the development of a railway wheel profile through wear. Wear. 1991,150(1):355-365
    [44]Pearce T G, Sherratt N D. Prediction of wheel profile wear. Wear,1991,144(1):343-351
    [45]Karamis M B. Analysis of behaviour of brake shoes in trains. Wear,1991.143(1): 197-198
    [46]Szabo A, Zobory I. On stochastic simulation of the wheel-profile wear process of a railway vehicle operating on a specified network. Periodica Polytechnica Transportation Engineering,1995,23(1-2):19-35
    [47]Clayton P. Predicting the wear of rails on curves from laboratory data. Wear,1995,181 (1): 11-19
    [48]Krettek O, Szabo A, Bekefi E. et al. On identification of wear coefficient used in the dissipated energy based wear hypothesis.2nd Mini Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Budapest,1996:260-265
    [49]Szabo A, Zobory I. On combined simulation of rail/wheel profile wear.2nd Mini Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Budapest,1996:196-206
    [50]Chudzikiewicz A. Evolution of the simulation study of a railway wheel profile trough wear.2nd Mini Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Budapest, 1996:207-214
    [51]Blokhin E P, Danovich V D, Myamlin S V, et al. Influence of railway vehicle models degree of detail on the results of wheel wear prediction.2nd Mini Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Budapest,1996:297-303
    [52]Linder C, Brauchli H. Prediction of wheel wear.2nd Mini Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Budapest,1996:215-223
    [53]Tournay H M, Mulder J M. Transition from the wear to the stress regime. Wear,1996, 191(1-2):107-112
    [54]Zobory I. Prediction of wheel/rail profile wear. Vehicle System Dynamics.1997,28(2): 221-259
    [55]Archard J F. Contact and rubbing of flat surface. Journal of Applied Physics,1953,24(8): 918-988
    [56]Podra P, Andersson S. Wear simulation with the winkler surface model. Wear,1997,207 (1-2):79-85
    [57]Zakharov S, Komarovsky I, Zharov I. Wheel flange/rail head wear simulation. Wear.1998, 215(1-2):18-24
    [58]Olofsson U, Andersson S, Bjorklund S. Simulation of mild wear in boundary lubricated spherical roller thrust bearings. Wear,2000,241 (2):180-185
    [59]Oqvist M. Numerical simulations of mild wear using updated geometry with different step size approaches. Wear,2001,249(1-2):6-11
    [60]Frohling R. Strategies to control wheel profile wear. Vehicle system dynamics,2003,37 (supplement):490-501
    [61]Jendel T. Prediction of wheel profile wear-comparisons with filed measurements. Wear. 2002,253(1):89-99
    [62]Braghin F, Bruni S, Resta F. Wear of railway wheel profiles:a comparison between experimental results and mathematical model. Vehicle system dynamics,2003,37(supplement): 478-489
    [63]Zakharov S. Zharov L. Simulation of mutual wheel/rail wear. Wear,2002,253(1-2):100-106
    [64]Lewis R, Olofsson U. Mapping rail wear regimes and transitions. Wear,2004.257(7-8): 721-729
    [65]Lewis R. Braghin F, Ward A, et al.Integrating dynamics and wear modeling to predict railway wheel profile evolution.6th International Conference on Contact Mechanical and Wear of Wheel/rail Systems, Gothenburg,2003:7-16
    [66]Olofsson U, Telliskivi T. Wear, plastic deformation and friction of two rail steels-a full-scale test and a laboratory study. Wear,2003,254(1-2):80-93
    [67]Enblom R. Simulation of wheel and rail profile evolution wear modeling and validation. KTH Doctoral Thesis.2004
    [68]Enblom R, Berg M. Simulation of railway wheel profile development due to wear-influence of disc braking and contact environment. Wear,2005,258(7-8):1055-1063
    [69]Telliskivi T. Simulation of wear in. a rolling-sliiding contact by a semi-winkler model and the Archard's wear law. Wear,2004,256(7-8):817-831
    [70]Johansson A. Andersson C. Out-of-round railway wheels-a study of wheel polygona-lization through simulation of three-dimensional wheel-rail interaction and wear. Vehicle System Dynamics,2005,43(8):539-559
    [71]Magel E, Kalousek J, Caldwell R. A numerical simulation of wheel wear. Wear.2005, 258(7-8):1245-1254
    [72]Sawley K, Urban C, Walker R. The effect of hollow-worn wheels on vehicle stability in straight track. Wear.2005,258(7-8):1100-1108
    [73]Deter L, Proksch M. Friction and wear testing of rail and wheel material. Wear,2005, 258(7-8):981-991
    [74]Frohling R D. Analysis of asymmetric wheel profile wear and its consequences. Vehicle system dynamics,2006,44(supplement):590-600
    [75]Braghin F, Lewis R, Dwyer R S. A mathematical model to predict railway wheel profile evolution due to wear. Wear.2006,261(11):1253-1264
    [76]Lange H W, Frohling R. Wheel/rail profile and bogie condition management.7th International Conference on Contact Mechanical and Wear of Wheel/rail Systems, Brisbane, 2006:641-647
    [77]Bevan A, Allen P. Enblom R. Application of wear prediction method to the analysis of a new UK wheel profile.7th International Conference on Contact Mechanical and Wear of Wheel/rail Systems, Brisbane,2006:649-656
    [78]Kampfer B. New approach for predicting wheel profile wear.7th International Conference on Contact Mechanical and Wear of Wheel/rail Systems, Brisbane.2006:675-680
    [79]Lewis R, Dwyer R S. Wear at the wheel-rail interface when sanding is used to increase adhesion. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.2006,220(1):29-41
    [80]Jin X, Wen Z, Xiao X, et al. A numerical method for prediction of curved rail wear. Multibody System Dynamics.2007,18(4):531-557
    [81]Dearizon J, Verlinden O, Dehombreux P. Prediction of wheel wear in urban railway transport:comparison of existing models. Vehicle system dynamics,2007,45(9):849-874
    [82]Ansari M, Hazrati I A, Esmailzadeh E, et al. Wear rate estimation of train wheels using dynamic simulation and field measurements. Vehicle system dynamics,2008,46(8):739-759
    [83]Enblom R, Berg M. Impact of non-elliptic contact modeling in wheel wear simulation. Wear,2008,265(9-10):1532-1541
    [84]Rosenberger M, Dietmaier P, Payer J, et al. The influence of the wheelsets' relative kinematics of railway vehicles on wheel/rail wear in curved track. Proceedings the 20th Symposium of the International Association for Vehicle System Dynamics, Berkeley,2007: 403-414
    [85]Asadi A, Brown M. Rail vehicle wheel wear prediction:a comparison between analytical and experimental approaches. Vehicle system dynamics.2008,46(6):541-549
    [86]Shevtsov I Y, Marking V L, Esveld C. Design of railway wheel profile taking into account rolling contact fatigue and wear. Wear.2008,265(9-10):1273-1281
    [87]Ozsarac U, Aslanlar S. Wear behaviour investigation of wheel/rail interface in water lubrication and dry friction. Industrial Lubrication and Tribology,2008,60(2):101-107
    [88]Rezvani M A, Owhadi A, Niksai F. Vehicle system dynamics,2009,47(3):325-342
    [89]Jaramillo J, Zapata D, Palacio M, et al. Effect of lubrication on wear and traction coefficient in a simulated rail/wheel contact.8th International Conference on Contact Mechanical and Wear of Wheel/rail Systems, Firenze.2009
    [90]Wu H, Kalay S, Hou K, et al. Management of wheel/rail contact interface in heavy haul operations.8th International Conference on Contact Mechanical and Wear of Wheel/rail Systems, Firenze,2009
    [91]Mazzola L, Alfi S, Bruni S. Bogie design optimization to minimize wheel wear.8th International Conference on Contact Mechanical and Wear of Wheel/rail Svstems, Firenze, 2009
    [92]Vuong T T, Meehan P A, Eadie D T. Investigation of a transitional wear model for wear prediction and control in rolling contact.8th International Conference on Contact Mechanical and Wear of Wheel/rail Systems, Firenze,2009
    [93]Santamaria J, Vadillo E G, Oyarzabal 0. Wheel-rail wear index prediction considering multiple contact patches. Wear,2009.267(5-8):1100-1104
    [94]Boher C, Barrau O, Gras R. A wear model based on cumulative cyclic plastic straining. Wear,2009,267(5-8):1087-1094
    [95]Tassini N, Quost X, Lewis R, et al. A numerical model of twin disc test arrangement for the evaluation of railway wheel wear prediction methods. Wear,2010,268(5-6):660-667
    [96]Arias C O, Li Z, Lewis R, et al. Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts. Wear,2010,268(2-3):543-551
    [97]Spiryaqin M, Lee K S, Yoo H H, et al. Numerical calculation of temperature in the wheel-rail flange contact and implications for lubricant choice. Wear,2010,268(1):287-293
    [98]Pombo J, Ambrosio J, Pereira M, et al. A study on wear evaluation of railway wheels based on multibody dynamics and wear computation. Multibody System Dynamics,2010,24 (3):347-366
    [99]Sundh J. Olofsson U. Relation contact temperature and wear transitions in a wheel-rail contact. Wear,2011,271(1-2):78-85
    [100]Sun Y Q, Cole C, Boyd P. A numerical method using Vampire modeling for prediction of turnout curve wheel-rail wear. Wear,2010,271(1-2):482-491
    [101]Li Xia, Jin Xuesong, Hu Dong, et al. A new intergrated model to predict wheel profile evolution due to wear. Wear.2011.271(1-2):227-237
    [102]Jin Y, Ishida M, Namura A. Experimental simulation and prediction of wear of wheel flange/rail gauge corner. Wear,2011,271(1-2):259-267
    [103]Brouzoulis J, Torstensson P, Stock R. Prediction of wear and plastic flow in rails-test rig result, model calibration and numerical prediction. Wear,2011.271(1-2):92-99
    [104]Gordana V, Franklin F J, Fletcher D I. Influence of partial slip and direction of traction on wear rate in wheel-rail contact. Wear,2011,270(3-4):163-171
    [105]Pombo J, Ambrosio J, Pereira M, et al. Development of a wear prediction tool for steel railway wheels using three functions. Wear,2011,271(1-2):238-245
    [106]史密斯.钢轨滚动接触疲劳的进一步研究.中国铁道科学,2002,23(3):6-10
    [107]Bold P E, Brown M W, Allen R J. Shear mode crack growth and rolling contact fatigue. Wear,1991,144(1-2):307-317
    [108]Sinclair J C, Allery M B. Development of a failure parameter for rail squats. BRR Report,1991
    [109]Tyfour W R, Beynon J H, Kapoor A. The steady state wear behaviour of pearlitic rail steel under dry rolling-sliding contact conditions. Wear,1995,180(1-2):79-89
    [110]Tyfour W R, Beynon J H, Kapoor A. Deterioration of rolling contact fatigue life of pearlitic rail steel due to dry-wet rolling-sliding line contact. Wear,1996,197(1-2):255-265
    [111]Ringsberg J W, Loo-Morrey M, Josefson B L, et al. Prediction of fatigue crack initiation for rolling contact fatigue. International Journal of fatigue,2000,22(3):205-215
    [112]Fletcher D I, Beynon J H. Equilibrium of crack growth and wear rates during unlubricated rolling-sliding contact of pearlitic rail steel. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.2000,214(2):93-105
    [113]Franklin F J, Widiyarta I, Kapoor A. Computer simulation of wear and rolling contact fatigue. Wear,2001,251(2):949-955
    [114]Franklin F J, Chung T, Kapoor A. Ratcheting and fatigue-led wear in rail-wheel contact. Fatigue&Fracture Engmat&Struct,2003,26(10):949-955
    [115]Franklin F J, Kapoor A. Modelling wear and crack initiation in rails. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.2007,221 (S): 23-33
    [116]Franklin F J, Gahlot A. Fletcher D I, et al. Three-dimensional modelling of rail steel microstructure and crack growth. Wear,2011,271(1-2):357-363
    [117]Ekberg A, Kabo E, Andersson H. An engineering model for prediction of rolling contact fatigue of railway wheels. Fatigue and Fracture of Engineering Materials and Structures,2002, 25(10):899-909
    [118]Burstow M C. Whole life rail model application and development for RSSB-development of an RCF damage parameter. Rail Safety & Standards Boards,2003
    [119]Burstow M C. Whole life rail model application and development for RSSB -continued development of an RCF damage. Rail Safety & Standards Boards,2004
    [120]Tunna J, Urban C. A parametric study of the effects of freight vehicles on rolling contact fatigue of rail. Proc. IMechE, Part F:Rail and Rapid Transit,2008. (223):141-151
    [121]Donzella G, Faccoli M, Ghidini A, et al. The competitive role of wear and RCF in a rail steel. Engineering Fracture Mechanics,2005,72(2):287-308
    [122]Sergey M, Irina G. Rolling contact fatigue defects in freight car wheels. Wear,2005,258 (7-8):1142-1147
    [123]Liu Yongming, Brant Strarman, Sankaran Mahadevan. Fatigue crack initiation life prediction of railroad wheels. International Journal of fatigue,2006,28(7):747-756
    [124]Dirks B, Enblom R. Prediction model for wheel profile wear and rolling contact fatigue. 8th International Conference on Contact Mechanical and Wear of Wheel/rail Systems, Firenze, 2009
    [125]Donzella G, Mazzu A. Petroqalli C. Competition between wear and rolling contact fatigue at the wheel rail interface. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.2009.223(1):31-44
    [126]Handa K, Kimura Y, Mishima Y. Surface cracks initiation on carbon steel railways under concurrent load of continuous rolling contact and cyclic frictional heat. Wear,2010,268(1): 50-58
    [127]Stock R, Pippan R. RCF and wear in theory and practice-the influence of rail grade on wear and RCF. Wear,2010.271(1-2):125-133
    [128]Halama R, Fajkos R, Matusek P. Contact defects initiation in railroad wheels Experience, experiments and modeling. Wear,2011,271(1-2):174-185
    [129]Stock R, Eadie D, Elvidqe D. Influencing rolling contact fatigue through top of rail friction modifier application-a full scale wheel-rail test rig study. Wear,2011,271(1-2): 134-142
    [130]龚积球,田磊.机车车辆曲线通过时轮轨磨耗指标的合理确定.机车电传动,1989,(2):20-23
    [131]费锦德.城市轻轨车辆通过小半径曲线时轮轨磨耗的探讨.大连铁道学院学报,1988,9(4):55-60
    [132]甄学成.机车轮缘涂油器在减缓轮轨磨耗中的应用.内燃机车,1993,(1):41-42
    [133]吕彭民,刘盛勋.曲线轨道参数对轮轨磨耗的影响.兰州交通大学学报,1993,12(4):45-54
    [134]马培德.轮轨磨耗伤损机理分析.石家庄铁道学院学报,1995,8(1):45-50
    [135]陈扬枝,杨东亮,马骥,全永昕.轮轨滚滑磨损试验研究.大连铁道学院学报,1995,16(1):47-51
    [136]铁道部科学研究院.减轻重载列车轮轨磨耗的研究.中国铁路,1997,(6):42
    [137]侯炳麟,许子龙,龚佩毅.在役钢轨的伤损预测.铁道学报,1998,20(3):127-131
    [138]金学松.轮轨蠕滑理论及其试验研究.西南交通大学博士学位论文.1999
    [139]俞展猷.轮轨磨耗机理与轮轨润滑.铁道机车车辆,2000,(5):11-14
    [140]刘启跃,张波,周仲荣.铁路钢轨损伤机理研究.中国机械工程,2002,13(18):1596-1599
    [141]金雪岩,王夏秋.直线工况轴重对轮轨磨损影响的试验研究.西南交通大学学报,2001,36(3):264-267
    [142]阎国臣,何庆复,高义刚.车轮滚动接触疲劳研究.铁道机车车辆,2002,(4):17-20
    [143]中国铁道科学研究院.提速货车120km/h可靠性试验第一阶段试验研究报告.2005
    [144]中国铁道科学研究院.提速货车120km/h可靠性试验第二阶段试验研究报告.2009
    [145]孙宏,杜新民.提速200km/h线路曲线病害及钢轨磨耗发展规律研究.铁道建筑,2007,(11):84-86
    [146]赵雪芹,钟雯,王文健,刘启跃.高速重载线路钢轨损伤特性分析.润滑与密封, 2007,32(10):100-102
    [147]刘学文,田常海,邹定强.在役U75V和U71Mn钢轨伤损及其统计分析方法.中国铁道科学,2007,28(6):19-23
    [148]张澎湃,井秀海.轮轨接触应力的有限元计算.铁道车辆,2007,45(6):4-8
    [149]常崇义,王成国,金鹰.基于三维动态有限元模型的轮轨磨耗数值分析.中国铁道科学,2008,29(4):89-95
    [150]张良威.重载货车轮轨磨耗研究.西南交通大学硕士学位论文.2008
    [151]王文健.轮轨滚动接触疲劳与磨损耦合关系及预防措施研究.西南交通大学博士学位论文.2008
    [152]米国发,刘彦磊,张斌,付秀琴,张弘,宋国祥.铸钢车轮材料耐磨性实验研究.热加工工艺,2008,37(19):17-20
    [153]李霞.车轮磨耗预测初步研究.西南交通大学硕士学位论文.2009
    [154]李霞,金学松,胡东.车轮磨耗计算模型及其数值方法.机械工程学报,2009,45(9):193-200
    [155]罗仁,曾京,邬平波,戴焕云.高速列车轮轨参数对车轮踏面磨耗的影响.交通运输工程学报,2009,9(6):47-53
    [156]罗仁,曾京,戴焕云,邬平波.高速列车车轮磨耗预测仿真.摩擦学学报,2009,29(6):551-558
    [157]王彩芸,钟雯,郭俊,刘启跃.利用轮轨摩擦功预测钢轨磨损量的方法研究.中国机械工程,2009,20(23):2885-2889
    [158]钟雯,王文健,宋纾崎,胡家杰,刘启跃.曲率半径对钢轨滚动接触疲劳性能的影响.西南交通大学学报,2009,44(2):254-257
    [159]王伟.轮轨接触模型和车轮磨耗分析.西南交通大学硕士学位论文.2009
    [160]李霞,温泽峰,金学松.地铁车轮踏面异常磨耗原因分析.机械工程学报,2010,46(16):60-66
    [161]王文健,郭俊,刘启跃,朱旻昊.磨损对钢轨滚动接触疲劳损伤的影响.机械工程材料,2010,34(1):17-19
    [162]郭俊,李霞,杜星,金学松.车轮磨耗分析中平滑方法的选取.西南交通大学学报,2010,45(3):373-377
    [163]丁军君,李芾,黄运华.基于蠕滑机理的磨耗模型分析.中国铁道科学,2010,31(5):66-71
    [164]陈光雄,金学松,邬平波,戴焕云,周仲荣.车轮多边形磨耗机理的有限元研究.铁道学报,2011,33(1):14-18
    [165]丁军君,李芾.基于轮对安装偏转角和轮径差的高速列车车轮磨耗研究.铁道学 报,2011,33(2):20-25
    [166]丁军君,李芾,黄运华.基于半赫兹接触的车轮磨耗计算.西南交通大学学报,2011,46(2):205-209
    [167]王建西,许玉德,练松良,方永明.随机轮轨力作用下钢轨滚动接触疲劳裂纹萌生寿命预测仿真.铁道学报,2010,32(3):66-70
    [168]金学松,刘启跃.轮轨摩擦学.中国铁道出版社,2004
    [169]王小松,葛耀君,吴定俊.非赫兹接触下轮轨接触蠕滑力的计算.铁道学报,2007,29(4):96-100
    [170]Markus Hecht. Gleislageuntersuchung aus fahrzeug-und oberbautechnischer Sicht, Entwicklung eines universellen dynamischen Meβverfahrens. RWTH Doctoral Thesis.1988
    [171]铁道部科学研究院.我国干线轨道不平顺功率谱的研究.1999
    [172]练松良,刘扬,杨文忠.沪宁线轨道不平顺谱的分析.同济大学学报(自然科学版),2007,35(10):1342-1346
    [173]曾志平,余志武,张向民,陈秀方.青藏铁路无缝线路试验段轨道不平顺功率谱分析.铁道科学与工程学报,2008,5(1):37-40
    [174]张曙光,康熊,刘秀波.京津城际铁路轨道不平顺谱特征分析.中国铁道科学,2008,29(5):25-29
    [175]Liebig S. The generation of track irregularities using periodic functions. Technical University of Budapest. Proceedings of the Mini Conference on Vehicle System Dynamics, Identification and Anomalies. Budapest,2002:137-142
    [176]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟.西南交通大学学报,1999,34(2):138-142
    [177]陈春俊,李华超.频域采样三角级数法模拟轨道不平顺信号.铁道学报,2006,28(3):38-42
    [178]晋智斌,强士中,李小珍.时滞多维轨道不平顺激励的一致白噪声模型.西南交通大学学报,2007,42(3):269-273
    [179]肖守讷,阳光武,张卫华,赵永祥.基于谱密度函数的轨道随机不平顺仿真.中国铁道科学,2008,29(2):28-32
    [180]左玉云,向俊.郑武线轨道不平顺的相关性分析.铁道科学与工程学报,2006,3(1):46-49
    [181]裴益轩,郭民.滑动平均法的基本原理及应用.火炮发射与控制学报,2001,(1):21-23
    [182]杨孙楷,陈庆绸.脉冲极谱实验数据的FFT滤波.计算机与应用化学,1991,8(2):81-85
    [183]潘泉,张磊,孟晋丽.小波滤波方法及应用.清华大学出版社,2005
    [184]徐昭鑫.直轨道对对称轮对的几何约束,兼及等效斜度和重力刚度.西南交通大学学报,1980,25(4):89-98
    [185]杨国桢.磨耗形踏面轮轨几何参数.铁道车辆,1980,(18):10-12
    [186]严隽耄.具有任意轮廓形状的轮轨空间几何约束的研究.西南交通大学学报,1983,28(3):40-48
    [187]王开文.车轮接触点迹线及轮轨接触几何参数的计算.西南交通大学学报,1984,29(1):89-98
    [188]徐鹏,蔡成标,罗世辉.一种轮轨两点接触数值计算方法.铁道车辆,2010,48(8):1-4
    [189]任尊松.轮轨多点接触计算方法研究.铁道学报,2011,33(1):25-30
    [190]严隽耄,傅茂海.车辆工程.第三版.中国铁道出版社,2008
    [191]丁勇,王新锐,曲金娟.铁路货车车轮伤损及踏面磨耗规律的研究.铁道机车车辆,2011,31(6):32-36
    [192]铁道科学研究院.提速货车120km/h环形线可靠性试验阶段工作总结报告.2007
    [193]N.N. Theoretische beschreibung der mikrophysikalischen grundlagen von verschleiBphanomenen und Uberprufung der rechenmethoden. Eisenbahntechni- sche Rundschau,1988,37:460-462
    [194]Specht W. Beitrag zur rechnerischen bestimmung des rad-und schienen verschleiBes durch guterwagendrehgestelle. RWTH Doctoral Thesis.1985
    [195]Kim K H. Verschleiβgesetz des rad-schiene-systems. RWTH Doctoral Thesis.1996
    [396]Linder C. Verschleiβ von eisenbahnradern mit unrundheiten. ETH Zurich Doctoral Thesis.1997
    [197]Weidemann C. Fahrdynamik und verschleiB starrer und gummigefederter eisenbahnrader. RWTH Doctoral Thesis.2002
    [198]Deters L, Proksch M. Friction and Wear Testing of Rail and Wheel Material.6th Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Gothenburg,2003: 175-181
    [199]刘志远.货车车辆构造与检修.中国铁道出版社,2007
    [200]曾向荣,李文英,高晓新.城市轨道交通工程钢轨轨底坡取值的探讨.都市快轨交通,2006,19(6):57-60
    [201]司道林,王继军,孟宏.钢轨轨底坡对重载铁路轮轨关系影响的研究.铁道建筑,2010,(5):108-110
    [202]Leary J F. Wilson N G. Effects of axle misalignments on rolling resistance and wheel wear. ASME Winter Annual Meeting, New York,1985:1-8
    [203]Kobayashi H, Soma H, Tanifuji K. A study on effects of axle misalignment of a vehicle with independently rotating wheels. Transactions of the Japan Society of Mechanical Engineers,2008,74(12):2932-2938
    [204]王卫东,李金森.转向架轴距误差对车辆直线动力学性能影响的分析.中国铁道科学,1995,16(4):103-110
    [205]沈钢,曹志礼,赵惠祥.交叉支撑转向架形位偏差的动力学性能影响.同济大学学报,2002,30(12):1503-1507
    [206]池茂儒,张卫华,金学松,朱旻昊.轮对安装形位偏差对车辆系统稳定性的影响.西南交通大学学报,2008,43(5):621-625
    [207]池茂儒,张卫华,金学松,朱旻昊.轮径差对车辆系统稳定性的影响.中国铁道科学,2008,29(6):65-70
    [208]李艳,张卫华,池茂儒,周文祥.车轮踏面外形及轮径差对车辆动力学性能的影响.铁道学报,2010,32(1):104-108
    [209]Beagles M. Whole life rail model:progress from march to may 2002. UK, AEA Technology Rail,2002
    [210]Clayton P, Hill D N. Rolling contact fatigue of a rail steel. Wear,1987,117(3):319-334
    [211]杨启錞,刘晓峰.近10年新型轮轨润滑剂的发展与展望.中国铁道科学,2001,22(3):96-101
    [212]高嘉年.我国新型轮轨润滑的软件和硬件研究-华宝21(HB21)型轮轨润滑系统.第一届轮轨润滑技术学术研讨会,杭州,1990
    [213]Kapoor A, Franklin F J. Tribological layers and the wear of ductile materials.Wear,2000, 245(1-2):204-215
    [214]付秀琴,张斌,张弘,张明如.贝氏体车轮钢性能分析.中国铁道科学,2008,29(5):83-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700