心血管系统的电网络建模及动脉硬化与狭窄诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管系统是维持人体正常运作的重要系统,也是疾病高发区。心血管疾病己成为威胁人类生命的最危险因素之一,全球约三分之一的人死于心血管疾病。心血管疾病的早期诊断对降低心血管疾病导致的死亡率和经济负担具有重要意义。为研究心血管疾病中动脉硬化和狭窄的早期诊断,本文主要围绕心血管系统的电网络建模与仿真、动脉硬化和狭窄诊断模型的建立、心血管动力学参数检测仪器研发和临床实验四个方面展开研究。
     通过比较动脉系统与电网络系统之间的对应关系,提炼和总结了集总参数电网络模型的特点,建立了上肢动脉的电网络模型,采用数值计算方法和Matlab中Simulink/Simpowersystem模块进行模型求解和仿真,结果与实际数据符合较好。但该模型不能有效模拟脉搏波的传播和反射等现象。
     在55段人体动脉树分布式电网络模型的基础上,提出了新的基于数据链表和递归算法的模型求解方法,实现模型的自动求解计算。利用模型和算法对正常人的脉搏波传播进行了仿真,得到动脉树中各点血压和血流波形,并将结果以3D形式呈现,能直观分析脉搏波的传播和反射特性。分析了身高、心率、每搏输出量、动脉内径和壁厚等不同生理参数对血压和血流波形的影响,同时分析了动脉顺应性、外周阻力、动脉长度、动脉内径和壁厚对动脉树输入阻抗的影响。结果表明:不同因素对血压波形、血流波形和输入阻抗的影响有较大不同,呈现各自独有特征,是人体动脉树生理病理诊断的重要辅助参考。
     利用分布式电网络模型对动脉硬化和动脉狭窄进行了模拟仿真,结果表明:该模型能准确模拟PWV随动脉硬化程度的改变而改变;能有效模拟脉搏波反射对收缩压增强指数的影响;能有效模拟动脉硬化参数改变对全身动脉系统中的血压和血流波形的影响;能准确模拟动脉狭窄的位置、大小和程度对ABI、血压和血流波形的影响;传递函数能有效反映动脉狭窄的位置、大小和程度等信息。
     以输入阻抗为动脉狭窄的特征参数,结合支持向量机建立了动脉狭窄预测模型,预测结果表明:不同狭窄度的总准确率均在82%以上,且准确率随着狭窄程度的增加而增加,当动脉狭窄程度超过60%时,准确率大于90%;离心距离越近准确率越高,主动脉弓狭窄的准确率为95%左右,但对于离心距离较远(股动脉以下)的中度动脉狭窄(50%)的预测有一定的局限,准确率约为50%。但当动脉狭窄为90%及以上时,SVM对离心距离较远动脉狭窄的预测准确率上升为91.6%。
     以传递函数为动脉狭窄的特征参数,结合支持向量机建立了动脉狭窄预测模型,结果表明:动脉狭窄阈值取90%时,SVM十次交叉验证的平均准确率为97.8%;对于中度和重度(50%和90%)动脉狭窄,利用传递函数预测传递函数两点之间的动脉狭窄较为理想,准确率分别在87%和99%以上,而对传递函数两点之外的分支动脉段狭窄有一定的局限性,预测颈动脉狭窄的总准确率Q分别为62.1%和91.4%,灵敏度QP分别在25.8%和18%左右。
     提出了利用传递函数和支持向量机对动脉狭窄分段定位的新方法,结果表明:动脉狭窄50%、60%、70%、80%和90%时预测总准确率Q分别为82.0%、80.0%、81.4%、83.7%和91.5%,说明对动脉狭窄度为90%及以上的情况能较好地定位,但颈动脉和锁骨下动脉狭窄的定位准确率分别为85.7%和44.4%,说明在传递函数两点之外狭窄的分段定位有一定局限性。
     利用LabVIEW开发平台,开发和研制出心血管系统动脉硬化和动脉狭窄检测仪YF/XGYD-2000B,该仪器能检测PWV、ABI、ASI、C1和C2等多项参数和指标。通过YF/XGYD-2000B与无创血压模拟仪的对比测试,证实该仪器测量血压的准确性和可重复性;通过与欧姆龙动脉硬化检测仪的临床对比研究,证实了该仪器动脉硬化和狭窄检测的有效性;通过仪器自身多参数的比较,证实了参数间的良好相关性,并分析了与动脉硬化和狭窄相关的其他常规参数的关系;通过脑梗塞病人的PWV与年龄、SBP和ABI进行了分析,得到了较好的临床效果,体现了其应用价值。
The cardiovascular system is an important system which maintains the normalfunctioning of human body, and is also a high-incidence area of disease. Cardiovasculardisease has become one of the most dangerous threats to human life. About a third ofpeople around the world die of cardiovascular disease. Early diagnosis of cardiovasculardisease is very important to reduce the mortality and economic burden caused bycardiovascular disease. This paper mainly focused on four aspects: electric networkmodeling and simulation of cardiovascular system, diagnosis modeling ofarteriosclerosis and stenosis for early detecting cardiovascular disease, equipment R&Dof cardiovascular dynamics parameters and clinical trials.
     By comparing arterial system with electrical network system, one refined andsummarized the characteristics of lumped electrical network model. An electric networkmodel of upper limb arteries was established. And numerical method and MatlabSimulink/Simpowersystem module model were used to solve the model. The results ofsimulation are in good agreement with actual data. However, the model couldn’teffectively simulate pulse wave propagation and reflection.
     Based on the distributed electric network model of55human arterial tree, a novelcalculation method of the model was proposed with data lists and recursive algorithm,which can automatically complete the computation of model. The model and algorithmwere applied in the simulation of pulse wave propagation, blood pressure and flowwaveform of normal arterial tree, and the results rendered in3D figure which directlydisplay the properties of pulse wave propagation and reflection. The effects of differentphysiological parameters: height, heart rate, stroke output, arterial diameter and wallthickness on blood pressure and flow waveform were analyzed and discussed. We alsodiscussed the effects of different physiological parameters: arterial compliance,peripheral resistance, arterial length, arterial diameter and wall thickness of the arterialtree on input impedance. The results showed that different factors affect the bloodpressure and flow waveforms and input impedance in quite different way showing theirunique characteristics. The model provided us with an important auxiliary reference forphysiological and pathological diagnosis of human arterial tree.
     The distributed electric network model was applied to simulate atherosclerosis andarterial stenosis. The results showed that the model can accurately simulate: PWV changes with the degree of atherosclerosis; augmentation index of systolic bloodpressure changes with pulse wave reflection; blood pressure and flow waveforms wereaffected by arteriosclerosis parameters; ABI, blood pressure and flow waveforms wereaffected by the location, size and degree of artery stenosis; transfer function caneffectively reflect the location, size and degree of artery stenosis.
     A prediction model of artery stenosis was established by support vector machineusing input impedance as the characteristic parameters of arterial stenosis. Predictionresults showed that overall accuracies were more than82%under different stenosisdegrees. And, the accuracy increases with the degree of stenosis increasing. When thedegree of stenosis reaches to60%, the accuracy rises to more than90%. Additionally,the nearer the artery stenosis was to heart, the higher the accuracy was. The accuracy ofaortic arch stenosis approached to95%under the degree of stenosis60%. But, theaccuracy of femoral artery stenosis dropped down to about50%. It means the methodhas some limitations for the prediction of moderate stenosis far from heart. When thedegree of arterial stenosis increased to90%and above, the limitation disappeared forfemoral artery stenosis whose prediction accuracy increased to91.6%.
     A prediction model of artery stenosis was built using support vector machine withtransfer function as the characteristic parameters of arterial stenosis. Prediction resultsshowed that: the10cross-validation average accuracy of SVM reached to97.8%for thedegree of stenosis90%. For moderate and severe (50%and90%) artery stenosis,transfer function can predict accurately the artery stenosis situating between two pointsof transfer function, whose accuracy were more than87%and99%, respectively. But,the prediction total accuracy Q of carotid stenosis were62.1%and91.4%, sensitivity QPwere25.8%and18%, respectively. It means the stenosis was hard to predict for thestenosis outside transfer function.
     A new method of the positioning of arterial stenosis was proposed using transferfunction and the multi-classification theory of support vector machine. The positioningresults showed that: total accuracy Q was82.0%,80%,81.4%,83.7%and91.5%forartery stenosis50%,60%,70%,80%and90%, respectively. It means the artery stenosisabove90%can be positioned easily. But the positioning accuracies of carotid andsubclavian artery stenosis were85.7%and44.4%, which indicated the proposed methodhas some limitations for the artery stenosis outside two points of transfer function.
     An arteriosclerosis and arterial stenosis detection apparatus YF/XGYD-2000B wasdeveloped on LabVIEW development platform. It can detect a series of parameters and indicators of PWV, ABI, ASI, C1and C2. The comparison between YF/XGYD-2000Band noninvasive blood pressure simulator verified that YF/XGYD-2000B can measureblood pressure accuracy, and have good repeatability. Clinical comparative studydemonstrated that the results of YF/XGYD-2000B were in good agreement with thoseresults of Omron atherosclerosis apparatus. Comparison of itself parameters ofYF/XGYD-2000B indicated a good correlation between the parameters. Clinical trial ofcerebral infarction patients was implemented, and results showed PWV had a goodcorrelation with age, SBP, and ABI, which demonstrated the application value ofYF/XGYD-2000B.
引文
[1]卫生部心血管病防治研究中心.中国心血管病报告2010[M].北京:中国大百科全书出版社,2011.
    [2] R. F. Redberg, E. J. Benjamin, V. Bittner, et al. ACCF/AHA2009Performance Measures forPrimary Prevention of Cardiovascular Disease in Adults[J]. Journal of the American Collegeof Cardiology,2009,54(14):1364-1405.
    [3]王晓花,章建程.动脉粥样硬化动物模型研究进展[J].海军医学杂志,2007,28(02):175-177.
    [4]闫盛,郝斌.动脉粥样硬化动物模型研究现状[J].山西医药杂志(下半月刊),2008,37(08):731-733.
    [5] Y. Arai, M. Fujita, A. Marui, et al. Combined treatment with sustained-release basic fibroblastgrowth factor and heparin enhances neovascularization in hypercholesterolemic mousehindlimb ischemia[J]. Circulation Journal,2007,71(3):412-417.
    [6] E. M. Rubin, B. Y. Ishida, S. M. Clift, et al. Expression of human apolipoprotein-a-i intransgenic mice results in reduced plasma-levels of murine apolipoprotein-a-i and theappearance of2new high-density-lipoprotein size subclasses[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,1991,88(2):434-438.
    [7] M. J. Callow, L. J. Stoltzfus, R. M. Lawn, et al. Expression of human apolipoprotein-b andassembly of lipoprotein(a) in transgenic mice[J]. Proceedings of the National Academy ofSciences of the United States of America,1994,91(6):2130-2134.
    [8] O. Yoshino, T. Quail, Z. J. Balogh. Secondary Intra-Abdominal Hypertension: New AnimalModel[J]. Acta Clinica Belgica,2009,64(3):276-276.
    [9] F. Bendtsen, S. Moller. Pharmacological effects are model specific in animal models of portalhypertension[J]. Hepatology International,2008,2(4):397-398.
    [10] H. Sato, C. M. Hall, G. W. Griffith, et al. Large animal model of chronic pulmonaryhypertension[J]. Asaio Journal,2008,54(4):396-400.
    [11]沈加林,陈克敏,许建荣,等.球囊固定动脉法延髓神经血管压迫建立高血压动物模型的实验研究[J].中华放射医学杂志,2002,36(9):773-775.
    [12]张晓华,李善泉,沈加林,等.原发性高血压犬模型的建立[J].上海第二医科大学报,2003,23(5):406-408.
    [13]张荣伟,张洪俊,黄新国.髓血管压迫致高血压动物模型[J].中华实验外科杂志,1994,11(14):228-229.
    [14]王秀卿,高贞,郭红,等.慢性应激性高血压动物模型的建立[J].白求恩军医学院学报,2003,1(4):202-203.
    [15]沈加林,陈克敏,许建荣,等.球囊固定动脉法延髓神经血管压迫建立高血压动物模型的实验研究[J].中华放射学杂志,2002,36(9):773-775.
    [16]曾进胜,黄如训.易卒中肾血管性高血压大鼠模型及其应用[J].中山医科大学学报,199617(4):241-244.
    [17]姜炜,郭阳,只达石.颈动脉内膜切除术后再狭窄动物模型的建立[J].天津医药,2007,35(02):127-128.
    [18]李永秋徐姚张.颈动脉球囊扩张再狭窄动物模型的建立[J].介入放射学杂志,2004,13(02):156-158.
    [19]刘恒方,黄晓松,刘尊敬,等.颈动脉狭窄动物模型制作的研究进展[J].国际神经病学神经外科学杂志,2006,33(01):62-65.
    [20]徐永革,周定标,郑集义,等.颈动脉粥样硬化性狭窄动物模型的建立[J].中华神经外科杂志,2003,7(04):255-258.
    [21]沈长银,石蓓,赵然尊,等.兔颈动脉粥样硬化狭窄动物模型的制备[J].四川大学学报(医学版),2009,40(05):923-926.
    [22] C. Bertolotti, Z. Qin, B. Lamontagne, et al. Influence of multiple stenoses on echo-Dopplerfunctional diagnosis of peripheral arterial disease: A numerical and experimental study[J].Annals of Biomedical Engineering,2006,34(4):564-574.
    [23] M. Saito, Y. Ikenaga, M. Matsukawa, et al. One-Dimensional Model for Propagation of aPressure Wave in a Model of the Human Arterial Network: Comparison of Theoretical andExperimental Results[J]. Journal of Biomechanical Engineering-Transactions of the Asme,2011,133(12).
    [24] K. S. Matthys, J. Alastruey, J. Peiro, et al. Pulse wave propagation in a model human arterialnetwork: Assessment of1-D numerical simulations against in vitro measurements[J]. Journalof Biomechanics,2007,40(15):3476-3486.
    [25]胡徐趣,覃开蓉,吴昊,等.利用硅胶管流动腔系统模拟动脉脉动血流切应力和周向应力环境[J].医用生物力学,2006,21(2):94-99.
    [26]赵秀梅,姜澜,田牛,等.微血管网血流动力学的体外模拟系统[J].微循环学杂志,2001,11(4):33-36.
    [27]江朝光,姜澜,孙衍庆,等.循环生物力学的模型研究[J].军医进修学院学报,1999,20(4):241-244.
    [28]李洪,钱坤喜.体外模拟心血管系统血液动力学性能分析[J].生物医学工程学杂志,200623(4):778-780.
    [29]张永富,龙泉,宋丽萍,等.体循环模拟装置的动脉压力波产生机理及其影响因素的体外实验研究[J].生物医学工程学杂志,1999,7(03):219-224.
    [30] K. AbedMeraim, W. Z. Qui, Y. B. Hua. Blind system identification[J]. Proceedings of the Ieee,1997,85(8):1310-1322.
    [31] C. H. Chen, E. Nevo, B. Fetics, et al. Estimation of central aortic pressure waveform bymathematical transformation of radial tonometry pressure-Validation of generalized transferfunction[J]. Circulation,1997,95(7):1827-1836.
    [32] K. Hirata, K. Iwao, M. Yamazaki, et al. Carotid-radial artery transfer function in the seatedposition: theoretical basis of the estimation of seated central blood pressure using twocommercially available methods[J]. Journal of Hypertension,2010,28:E517-E517.
    [33] S. A. Hope, D. B. Tay, I. T. Meredith, et al. Comparison of generalized and gender-specifictransfer functions for the derivation of aortic waveforms[J]. American Journal ofPhysiology-Heart and Circulatory Physiology,2002,283(3):H1150-H1156.
    [34] S. A. Hope, D. B. Tay, I. T. Meredith, et al. Gender specific and generalized arterial transferfunctions in the derivation of aortic waveform characteristics from radial blood pressurewaves[J]. Journal of Hypertension,2002,20:S183-S183.
    [35] G. Swamy, D. Xu, N. B. Olivier, et al. An adaptive transfer function for deriving the aorticpressure waveform from a peripheral artery pressure waveform[J]. American Journal ofPhysiology-Heart and Circulatory Physiology,2009,297(5):H1956-H1963.
    [36] K. Takazawa, M. F. Orourke, M. Fujita, et al. Estimation of ascending aortic pressure fromradial arterial pressure using a generalised transfer function[J]. Zeitschrift Fur Kardiologie,1996,85:137-139.
    [37]王炳和,郭红霞,杨颙.人体脉搏系统传递函数模型的参数估计与脉搏波仿真[J].计算机工程与应用,2004,40(8):193-195.
    [38] J. D. Cameron, B. McGrath, A. M. Dart. Use of radial artery applanation and a generalisedtransfer function to determine aortic pressure in hypertensives[J]. Journal of Hypertension,1998,16:S280-S280.
    [39]王炳和,张效民,相敬林,等.倒谱与解卷积技术在人体脉搏系统分析中的应用[J].西北工业大学学报,2000,18(04):600-603.
    [40] G. Swamy, X. Da, R. Mukkamala. Estimation of the aortic pressure waveform from a radialartery pressure waveform via an adaptive transfer function: feasibility demonstration inswine[J].200931st Annual International Conference of the IEEE Engineering in Medicineand Biology Society EMBC2009,2009.
    [41] J. O. Hahn, A. Reisner, H. H. Asada, et al. Physiologic-state-adaptive recovery of aortic bloodpressure and flow using blind2-channel IIR cardiovascular system identification[M]. NewYork:Ieee,2008.
    [42] A. D. Jeays, P. V. Lawford, R. Gillott, et al. Characterisation of the haemodynamics of thesuperior mesenteric artery[J]. Journal of Biomechanics,2007,40(9):1916-1926.
    [43] J. R. Cebral, F. Mut, D. Sforza, et al. Clinical application of image-based CFD for cerebralaneurysms[J]. International Journal for Numerical Methods in Biomedical Engineering,2011,27(7):977-992.
    [44] J. Jiang, C. Strother. Computational Fluid Dynamics Simulations of Intracranial Aneurysms atVarying Heart Rates: A "Patient-Specific" Study[J]. Journal of BiomechanicalEngineering-Transactions of the Asme,2009,131(9).
    [45] G. Paal, A. Ugron, I. Szikora, et al. Flow in simplified and real models of intracranialaneurysms[J]. International Journal of Heat and Fluid Flow,2007,28(4):653-664.
    [46] L. Grinberg, T. Anor, J. R. Madsen, et al. Large-scale simulation of the human arterial tree[J].Clinical and Experimental Pharmacology and Physiology,2009,36(2):194-205.
    [47] A. Chien, S. Tateshima, J. Sayre, et al. Patient-specific hemodynamic analysis of smallinternal carotid artery-ophthalmic artery aneurysms[J]. Surgical Neurology,2009,72(5):444-450.
    [48] V. L. Rayz, S. A. Berger, D. Saloner. Transitional flows in arterial fluid dynamics[J].Computer Methods in Applied Mechanics and Engineering,2007,196(31-32):3043-3048.
    [49]张平.考虑残余应力的主动脉弓血管壁的有限元分析[D].北京工业大学硕士论文,2007.
    [50]鲁刚.颅内动脉瘤的血流动力学分析[D].复旦大学博士论文,2011.
    [51]万大伟,孙琦,刘应征,等.人体肺动脉狭窄血流动力学数值分析(英文)[J].系统仿真学报,2008,20(19):5320-5323.
    [52]陈小平.三维锥形弯曲动脉中的脉动流的数值模拟[D].苏州大学硕士论文,2009.
    [53]伍时桂,胡利民,王家权.狭窄动脉中的非线性脉动流的数值研究[J].医用生物力学,2000,15(02):81-81.
    [54]杨金有.胸主动脉内血液流动的计算流体力学方法研究[D].中国医科大学硕士论文,2010.
    [55]乔爱科,伍时桂.主动脉弓内脉动流的有限元分析[J].生物医学工程学杂志,2001,18(04):583-588.
    [56]邱霖,岑人经.有锥度角的主动脉弓血液脉动流数值分析[J].医用生物力学,2004,19(02):74-78.
    [57] Z. El Zahab, E. Divo, A. J. Kassab. A localized collocation meshless method (LCMM) forincompressible flows CFD modeling with applications to transient hemodynamics[J].Engineering Analysis with Boundary Elements,2009,33(8-9):1045-1061.
    [58] J. Y. Park, C. Y. Park, C. M. Hwang, et al. Pseudo-organ boundary conditions applied to acomputational fluid dynamics model of the human aorta[J]. Computers in Biology andMedicine,2007,37(8):1063-1072.
    [59] J. R. Nanduri, F. A. Pino-Romainville, I. Celik. CFD mesh generation for biological flows:Geometry reconstruction using diagnostic images[J]. Computers&Fluids,2009,38(5):1026-1032.
    [60] J. L. Chen, S. Z. Wang, G. H. Ding, et al. Patient-specific blood dynamic simulations inassessing endovascular occlusion of intracranial aneurysms[J]. Journal of Hydrodynamics,2009,21(2):271-276.
    [61] H. Muehlthaler, B. Quatember, G. Fraedrich, et al. Quantification of blood flow velocity instenosed arteries by the use of finite elements: an observer-independent noninvasive method[J].Magnetic Resonance Imaging,2008,26(8):1152-1159.
    [62] G. C. Kagadis, E. D. Skouras, G. C. Bourantas, et al. Computational representation andhemodynamic characterization of in vivo acquired severe stenotic renal artery geometriesusing turbulence modeling[J]. Medical Engineering&Physics,2008,30(5):647-660.
    [63] J. Jung, R. W. Lyczkowski, C. B. Panchal, et al. Multiphase hemodynamic simulation ofpulsatile flow in a coronary artery[J]. Journal of Biomechanics,2006,39(11):2064-2073.
    [64] T. Miki, Y. Imai, T. Ishikawa, et al. A fourth-order Cartesian local mesh refinement method forthe computational fluid dynamics of physiological flow in multi-generation branchedvessels[J]. International Journal for Numerical Methods in Biomedical Engineering,2011,27(3):424-435.
    [65] D. M. Auslander, T. E. Lobdell, D. Chong. Large-scale model of the human cardiovascularsystem and its application to ballistocardiography[J]. Kovove Materialy,1972,(72-Aut-Q).
    [66] M. DiazInsua, M. Delgado. Modeling and simulation of the human cardiovascular system withbond graph: A basic development[M].1996.
    [67]冯宇军,田树军.心血管循环系统建模和仿真研究中的功率键合图方法[J].中国生物医学工程学报,2001,20(01):67-71+52.
    [68] L. M. Yan, W. Lou, G. S. He. Simulation for auto-diagnosis of cardiovascular disease[M].2005.
    [69] A. A. Zadpoor, A. R. Arshi, A. A. Nikooyan, et al. A bond graph approach to the modeling offluid-solid interaction in cardiovascular system's pulsatile flow[M].2005.
    [70]代开勇.心血管系统键合图模型仿真研究[D].浙江大学硕士论文,2006.
    [71] G. M. Ning, K. Y. Dai, Y. Q. Li, et al. Bond graph model for cardiovascular system[J]. Journalof Zhejiang University,2007,41(5):864-870.
    [72]陈淑珍.基于循环系统键合图模型的心脑血管疾病仿真研究[D].浙江大学硕士论文,2007.
    [73]宁钢民,代开勇,李英奇,等.心血管系统键合图模型研究[J].浙江大学学报(工学版),2007,41(05):864-870.
    [74] V. Diaz Zuccarini, D. Rafirou, J. LeFevre, et al. Systemic modelling and computationalphysiology: The application of Bond Graph boundary conditions for3D cardiovascularmodels[J]. Simulation Modelling Practice and Theory,2009,17(1):125-136.
    [75] V. Le Rolle, A. I. Hernandez, P. Y. Richard, et al. A bond graph model of the cardiovascularsystem[J]. Acta Biotheoretica,2005,53(4):295-312.
    [76] O. Z. Frank. Die Grundform des arteriellen Pulses[J]. Z Biol,1899,37:483-526.
    [77] N. Westerhof, F. Bosman, C. J. De Vries, et al. Analog studies of the human systemic arterialtree[J]. J Biomech,1969:121-143.
    [78] R. Burattini, G. Gnudi. Computer identification of models for the arterial tree input impedance:comparison between two new simple models and first experimental results[J]. Medical andBiological Engineering and Computing,1982,20:134-144.
    [79] A. Noordergraaf. Circulatory system dynamics[M]. New York:Academic,1978.
    [80]王庆伟,许世雄.心血管系统体循环输入阻抗的几种集中参数模型的比较和应用[J].医用生物力学,2003,18(1):6-12.
    [81] M. W. Mohiuddin, G. A. Laine, C. M. Quick. Increase in pulse wavelength causes the systemicarterial tree to degenerate into a classical windkessel[J]. American Journal ofPhysiology-Heart and Circulatory Physiology,2007,293(2):H1164-1171.
    [82] J. J. Wang, K. H. Parker. Wave propagation in a model of the arterial circulation[J]. Journal ofBiomechanics,2004,37(4):457-470.
    [83] S. J. Sherwin, V. Franke, J. Peiro, et al. One-dimensional modelling of a vascular network inspace-time variables[J]. Journal of Engineering Mathematics,2003,47(3-4):217-250.
    [84]邹欣瑾.基于四肢同步测量动脉硬化的检测方法和临床研究[D].重庆大学硕士论文,2010.
    [85]张维忠.动脉弹性功能临床研究的现状和意义[J].中华心血管病杂志,2003,31(04):6-7.
    [86] T. Takenaka, K. Kobayashi, H. Suzuki. Pulse wave velocity as an indicator of arteriosclerosisin hemodialysis patients[J]. Atherosclerosis,2004,176(2):405-409.
    [87] S. Meaume, A. Benetos, O. F. Henry, et al. Aortic pulse wave velocity predicts cardiovascularmortality in subjects>70years of age[J]. Arteriosclerosis Thrombosis and Vascular Biology,2001,21(12):2046-2050.
    [88] S. Meaume, A. Rudnichi, A. Lynch, et al. Aortic pulse wave velocity as a marker ofcardiovascular disease in subjects over70years old[J]. Journal of Hypertension,2001,19(5):871-877.
    [89]李妍妍.老年高血压踝臂指数与脉搏波传导速度、反射波增强指数的关系[J].中外医疗,2009,28(35):18-19.
    [90]李晶,窦京涛,金楠,等.健康人血糖、血脂、年龄与中心动脉反射波增强指数相关分析[J].心脏杂志,2009,21(04):534-536.
    [91]曾靖,程李涛,唐利军,等.增强指数评估动脉僵硬度不如脉搏波速度敏感[J].中国动脉硬化杂志,2008,16(01):43-46.
    [92]朱燕秋,杨浩,何为.血管硬化指数的测量方法与临床应用研究[J].医疗设备信息,2005,20(09):13-15.
    [93]黄婕. YF-1XGYD动脉硬度测量仪的临床应用[D].重庆医科大学硕士论文,2003.
    [94]王晋,朱燕秋,杨浩,等.血压与血管硬度测量仪的研制[J].重庆大学学报(自然科学版),2003,26(04):90-92.
    [95]陈章荣,罗开良,殷跃辉,等.动脉僵硬指数对冠心病的预测[J].西安交通大学学报(医学版),2008,29(04):417-419.
    [96]董培康,罗开良,胡蓉,等.动脉僵硬指数与颈动脉内膜中层厚度、斑块的关系研究[J].中华医学会心血管病分会第八次全国心血管病学术会议.2004.
    [97]董培康,罗开良,胡蓉,等.动脉硬度指数与肱动脉内皮功能的关系[J],中华医学会心血管病学分会第八次全国心血管病学术会议中国福建厦门.2006.
    [98] S. M. Park, H. S. Seo, H. E. Lim, et al. Assessment of arterial stiffness index as a clinicalparameter for atherosclerotic coronary artery disease[J]. Circulation Journal,2005,69(10):1218-1222.
    [99]姚建阁.基于脉搏波的动脉弹性指数算法研究和临床试验分析[D].重庆大学硕士论文,2008.
    [100] C. Fjeldstad, C. Frederiksen, A. S. Fjeldstad, et al. Arterial Compliance in Multiple Sclerosis:A Pilot Study[J]. Angiology,2010,61(1):31-36.
    [101] J. N. Cohn. Arterial compliance to stratify cardiovascular disk: More precision in therapeuticdecision making[J]. American Journal of Hypertension,2001,14(8):258S-263S.
    [102] L. M. Prisant, L. M. Resnick, S. M. Hollenberg. Arterial elasticity among normotensivesubjects and treated and untreated hypertensive subjects[J]. Blood Pressure Monitoring,2001,6(5):233-237.
    [103] L. M. Prisant, L. M. Resnick, S. M. Hollenberg. Assessment of sequential same armagreement of blood pressure measurements by a CVProfilor (TM) DO-2020versusBaumanometer (R) mercury sphygmomanometer[J]. Blood Pressure Monitoring,2001,6(3):149-152.
    [104] L. M. Prisant, M. Pasi, D. Jupin, et al. Assessment of repeatability and correlates of arterialcompliance[J]. Blood Pressure Monitoring,2002,7(4):231-235.
    [105] B. Li, H. Gao, X. Li, et al. Correlation between brachial-ankle pulse wave velocity and arterialcompliance and cardiovascular risk factors in elderly patients with arteriosclerosis[J].Hypertension Research,2006,29(5):309-314.
    [106]邹欣瑾,何为,余传祥,等.动脉弹性功能参数检测与临床研究[J].生物医学工程学杂志,2010,27(03):565-569.
    [107] E. MacDonald, P. Froggatt, G. Lawrence, et al. Are automated blood pressure monitorsaccurate enough to calculate the ankle brachial pressure index?[J]. Journal of clinicalmonitoring and computing,2008,22(5):381-384.
    [108] T. Richart, T. Kuznetsova, B. Wizner, et al. Validation of automated oscillometric versusmanual measurement of the ankle-brachial index[J]. Hypertension Research,2009,32(10):884-888.
    [109] T. Kawamura. Assessing Ankle-Brachial Index (ABI) by using automated oscillometricdevices[J]. Arquivos brasileiros de cardiologia,2008,90(5):294-298.
    [110] A. M. MacDougall, V. Tandon, M. P. Wilson, et al. Oscillometric measurement of theankle-brachial index[J]. Canadian Journal of Cardiology,2008,24(1):49-51.
    [111] M. M. McDermott, P. Greenland, K. Liu, et al. The ankle brachial index is associated with legfunction and physical activity: The walking and leg circulation study[J]. Annals of InternalMedicine,2002,136(12):873-883.
    [112] M. M. McDermott, K. Liu, P. Greenland, et al. Functional decline in peripheral arterial disease-Associations with the ankle brachial index and leg symptoms[J]. Jama-Journal of theAmerican Medical Association,2004,292(4):453-461.
    [113] M. A. Allison, W. R. Hiatt, A. T. Hirsch, et al. A high ankle-brachial index is associated withincreased cardiovascular disease morbidity and lower quality of life[J]. Journal of theAmerican College of Cardiology,2008,51(13):1292-1298.
    [114] S. Rizvi, H. Kamran, L. Salciccioli, et al. Relation of the Ankle Brachial Index to LeftVentricular Ejection Fraction[J]. American Journal of Cardiology,2010,105(1):129-132.
    [115] M. Kluytmans, J. van der Grond, K. J. van Everdingen, et al. Cerebral hemodynamics inrelation to patterns of collateral flow[J]. Stroke,1999,30(7):1432-1439.
    [116] Z. S. Zhang, M. Berg, A. Ikonen, et al. Carotid stenosis degree in CT angiography: assessmentbased on luminal area versus luminal diameter measurements[J]. European Radiology,2005,15(11):2359-2365.
    [117] K. Nieman, F. Cademartiri, P. A. Lemos, et al. Reliable noninvasive coronary angiographywith fast submillimeter multislice spiral computed tomography[J]. Circulation,2002,106(16):2051-2054.
    [118] K. M. Das, A. A. El-Menyar, A. M. Salam, et al. Contrast-enhanced64-section coronarymultidetector CT angiography versus conventional coronary angiography for Stentassessment[J]. Radiology,2007,245(2):424-432.
    [119] P. Peloschek, J. Sailer, C. Loewe, et al. The role of multi-slice spiral CT angiography in patientmanagement after endovascular therapy[J]. Cardiovascular and Interventional Radiology,2006,29(5):756-761.
    [120]吴恩惠.影像诊断学(第五版)[M].北京:人民卫生出版社,2007.
    [121] D. Y. Kim, J. W. Park. Internal carotid artery stenosis measurements from3D reconstructedmulti-directional views using phantom data set on MRA image sequence[J]. European Journalof Radiology,2009,72(1):65-74.
    [122] D. W. Taylor. Beneficial effect of carotid endarterectomy in symptomatic patients withhigh-grade carotid stenosis[J]. New England Journal of Medicine,1991,325(7):445-453.
    [123] H. R. Underhill, V. L. Yarnykh, T. S. Hatsukami, et al. Carotid plaque morphology andcomposition: Initial comparison between1.5-and3.0-T magnetic field strengths[J]. Radiology,2008,248(2):550-560.
    [124] B. C. Chu, A. Kampschulte, M. S. Ferguson, et al. Hemorrhage in the atherosclerotic carotidplaque: A high-resolution MRI study[J]. Stroke,2004,35(5):1079-1084.
    [125] J. Wang, V. L. Yarnykh, J. A. Molitor, et al. Micro magnetic resonance angiography of thefinger in systemic sclerosis[J]. Rheumatology,2008,47(8):1239-1243.
    [126]宋云龙,孟利民,张挽时,等. Tim技术3D DCE-MRA诊断下肢动脉狭窄:与DSA对比研究[J].临床放射学杂志,2007,26(5):496-499.
    [127]冯敏,顾建平,王书智,等. MRA在诊断外周血管疾病中的价值:与DSA对照研究[J].临床放射学杂志,2005,24(9):811-813.
    [128]刘秋颖.超声造影评价兔动脉狭窄及其在观察不同程度球囊损伤后动脉狭窄中的应用[D].中国医科大学博士论文,2009.
    [129]华扬.实用颈动脉与颅脑血管超声诊断学[M].北京:科学出版社,2002.
    [130]穆玉明,高海燕,吴伟春,等.超声对颈部动脉狭窄评价的临床应用研究[J].中国超声医学杂志,2006,22(2):146-148.
    [131] G. C. Makris, A. Lavida, M. Griffin, et al. Three-dimensional ultrasound imaging for theevaluation of carotid atherosclerosis[J]. Atherosclerosis,2011,219(2):377-383.
    [132]易建华,何晖光,赵明昌,等. CT冠状动脉血管造影和血管内超声融合算法的研究.Paper,2010中国医学影像技术国际论坛暨《中国医学影像技术》编委换届会中国北京.2010.
    [133]洪钰锟.血管内超声在外周动脉狭窄诊断和介入治疗中的应用[D].第三军医大学硕士论文,2011.
    [134]刘秋颖,任卫东,韩金江,等.超声造影与常规超声诊断不同程度动脉狭窄的对比分析[J].第四军医大学学报,2008,29(19):1799-1802.
    [135]王娜.超声造影诊断肝动脉狭窄的实验研究[D].南方医科大学硕士论文,2008.
    [136]张艳.超声造影诊断移植肾动脉狭窄的动物实验及临床研究[D].南方医科大学硕士论文,2007.
    [137]柳兆荣.心血管流体力学[M].上海:复旦大学出版社,1986.
    [138]柳兆荣,李惜惜.弹性腔理论及其在心血管系统分析中的应用[M].北京:科学出版社,1987.
    [139] A. Avolio. Input impedance of distributed arterial structures as used in investigations ofunderlying concepts in arterial haemodynamics[J]. Medical and Biological Engineering andComputing,2009,47(2):143-151.
    [140] N. Westerhof, J. W. Lankhaar, B. E. Westerhof. The arterial Windkessel[J]. Medical andBiological Engineering and Computing,2009,47(2):131-141.
    [141] A. D. Ferreira, J. Barbosa, I. Cordovil, et al. Three-section transmission-line arterial model fornoninvasive assessment of vascular remodeling in primary hypertension[J]. Biomedical SignalProcessing and Control,2009,4(1):2-6.
    [142] K. Hassania, M. Navidbakhsh, M. Rostami. Simulation of the cardiovascular system usingequivalent electronic system[J]. Biomedical Papers (Olomouc),2006,150(1):105-112.
    [143] N. Stergiopulos, D. F. Young, T. R. Rogge. Computer-Simulation of Arterial Flow withApplications to Arterial and Aortic Stenoses[J]. Journal of Biomechanics,1992,25(12):1477-1488.
    [144] J. R. Womersley. Oscillatory flow in arteries: the constrained elastic tube as a model of arterialflow and pulse transmission[J]. Physics in Medicine and Biology,1957,2(2):178-187.
    [145] M. G. Taylor. An approach to an analysis of the arterial pulse wave. I. Oscillations in anattenuating line [J]. Physics in Medicine and Biology,1957,1(3):258-269.
    [146] A. P. Avolio. Multi-Branched Model of the Human Arterial System[J]. Medical&BiologicalEngineering&Computing,1980,18(6):709-718.
    [147] L. R. John. Forward electrical transmission line model of the human arterial system[J].Medical&Biological Engineering&Computing,2004,42(3):312-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700