船用二冲程柴油机及推进轴系的振动建模与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为船舶主动力装置的大型低速二冲程柴油机,是船舶振动和噪声的一个重要的激励源,研究并控制整个柴油机的振动噪声具有非常重要的意义。本文以多体动力学、有限元法和有限差分法为基础,较为系统地研究了整个柴油机及推进轴系的振动特性。
     首先,建立柔性多体动力学数学模型。基于Newton-Euler向量力学分析法和浮动坐标系,运用模态综合法(动态缩减技术),缩减各部件的自由度,建立柔性多体动力学的数学模型,并分别用Newmark、HHT、BDF法对一单缸发动机进行了数值计算,对比表明:BDF法作为计算复杂的大型船用柴油机柔性多体动力学的较佳方法。
     其次,建立整机有限元模型。根据大型船用柴油机的部件及其组合结构庞大、有限元模型无法验证的特点,基于有限元法原理,对于单个部件,增加其单元数量,以其固有模态不再变化为基准,作为模型简化的参考;对于螺栓连接的组合结构,以锥度孔模型和接触理论为基础,在有限元法中用梁单元、弹簧单元模拟其连接,经螺栓连接板件的模态试验验证了该法的可靠性。在以上两步的基础上,建立了整个机体和轴系的有限元模型,并做了模态分析。
     第三,基于试验台架,建立大型船用柴油机整机振动的数学模型并计算其振动响应。对大型船舶柴油机有限元模型动态缩减,各部件间的连接副均采用非线性弹簧-阻尼连接(NONL)模型,建立整机的柔性多体动力模型并用BDF法计算。结果表明:基于全柔性机体与柔性轴系的三维耦合模型能够更加全面地反映机体的振动特性。根据缩减模型的逆变换,可得到整个机体和轴系表面的位移、速度、加速度和应力分布。通过与台架试验结果对比,验证了该模型和方法的可行性。
     第四,主轴承处以弹性流体动力混合润滑模型计算,对比在NONL、EHD、 TEHD三种模型下整机的振动特性。对于轴系特性,简化的NONL模型有所欠缺,在主轴承处引入了基于Reynolds方程和微凸峰接触Greenwood-Tripp模型的弹性流体动力混合润滑模型,基于质量守恒边界条件(JFO),采用有限差分与有限元法相结合的方法,分别以计入(TEHD)和不计入(EHD)温度对油膜和轴瓦的影响两种模型计算整机振动,并与非线性弹簧-阻尼连接模型一起对比,发现:计算效率依次是NONL、EHD、TEHD模型,计算精度依次是TEHD、EHD、NONL模型。因此,若仅计算机体的振动特性,NONL模型最佳;若计算整机振动特性,综合考量EHD最佳。
     最后,在以上研究的基础上,以39000DWT油轮为载体,以6S50MC-C船用柴油机为研究对象,基于实船安装条件下进行整机及推进轴系振动的计算。柴油机、中间轴承座和尾轴承对应部位的双层底支撑刚度均采用动态刚度,利用经验公式得到螺旋桨在三个方向上的力/力矩激励,建立与船体耦合的整机的柔性多体动力学计算模型。先以轴系按照直线布置且无调谐轮和轴向减振器时计算。再基于三弯矩法,对轴系进行了校中计算,求出各轴承的变位,以其为基础计算轴系合理校中下整机的振动。又以单独或组合计入调谐轮、减振器、对中等因素分为5中模型进行计算对比,以及船舶双层底刚度和横向支撑刚度、轴承间隙大小改变等对整机振动特性的影响。以综合计入调谐轮、减振器、对中等因素的TW-AVD-ALN模型计算,分析整机在不同转速下的振动特性。结果表明:机体和轴系间、轴系自身的扭-纵-弯振间和整机与各边界条件间的振动是相互耦合影响的,只是相互间的耦合能量大小不一,外在表现有所差异。最后,通过实船测量的轴系扭转振动值与计算值对比,验证了模型和计算方法的准确性,为下一步整机振动的优化控制奠定基础。该法具有一定的工程价值。
The large low speed two-stroke diesel engine as the main power plant on ship is the key exciting source of ship vibration and noises. So, research and control on the vibration and noises are most significant. Based on the multi-body dynamics, finite element method and finite differenc method, vibration characteristics of the whole engine and propulsion shafting are studied systematically.
     Firstly, math model on the flexible multibody dynamics is built. Based on the Newton-Euler equations and floating frame coordinates, the degree of freedoms on componets are reduced with component mode synthesis method (dynamic condensation technology). The math models on them are set up. Numerical calculation on a single-cylinder engine is done by the Newmark, HHT and BDF method respectively. The results show that BDF method is preferred to calculate the flexible multibody dynamics of the large and complex marine diesel engine.
     Secondly, finite element model of the whole engine is established. According to the features of the large marine diesel engine whose components and combined structure are so big and its finite element model can not be proved, based on the finite element principle, when the natural mode of the single component doesn't change by increasing the element number any more, the model is acted as a reference to simplify the model. In view of the cone model and the contact theory, combined structre connected by the bolts is jointed by beam elements and spring elements in the finite element formulate, which is verified by the modal test. Based on the above two steps, the finite element model of the engine block and the shafting are built and their mode are analyzed.
     Thirdly, the math model on the whole engine vibration of the large marine diese engine is set up and the calculation about its vibration response is done, based on the test-bench. The FEM of the large marine diesel engine is reduced with dynamic condensation technology. The components are connected by the nolinear spring-damper (NONL model). The flexible multi-body dynamics model on the whole engine is developed and its calculation is done by BDF method. It shows that3-D coupled model on the whole flexible eninge block and the flexible shafting can reveal the vibration characteristcs of the engine block more allsidely. According the inverse transformation of the condensed model, the displacement, velocity, acceleration and stress distribution of the engine block and the shafting could be got. Through comparion with the experimental results on the test frame, the possibilities of the model and the calculation method are verified.
     Fouthly, the elastic-hydro-dynamic mixed lubrication model is used at the main bearings and the whole engine vibration is compared under the NONL, EHD and TEHD model. The NONL model is not enough for the shafting. The elastic-hydrodynamic fixed lubrication model is introduced to the main bearings based on the Reynolds equation and Greenwood-Tripp contact model. The whole engine vibratin is done with EHD model (without temperature effect on the oil film and the bearings) and TEHD model (with) respectively by MBD, FEM and FDM method. The comparion is also made with NONL model. It is found that the order of calculation efficiency is NONL, EHD, TEHD model in trun, the order of calculation precision is TEHD, EHD, and NONL model. Therefore, the NONL model is best if only for the engine block vibration and the EHD model is best if for the whole engine vibration.
     Finally, the vibrations of the whole6S50MC-C marine diesel engine and propusion shafting are calculated, which are installed on the39000DWT oil tanker, based on above researches. Firstly, the vibration is developed under the in-line shafting without tuning wheel and axial vibration damper. Secondly, the shafting alignment is done with three-moment method and the bearing deflection is got. The vibration is studied considering the rational shafting alignment based on the bearing deflection. The vibration comparions of5models each other are finished. Also the effect of the double hull stiffness, transverse stiffness and bearing clearance on the vibration is done. With the TW-AVD-ALN model, the vibration properties of the whole engine are analysed under different speed. The results show that the vibrations are coupled each other among the engine block, the shafting and boundary conditons. At last, through comparion with the torsional vibration values measured on the ship, the model and calculation method are proved, which would lay foundation for optimization control on the whole engine vibration. The method has engineering value to some certain degree.
引文
[1]Doug Woodyard. Pounder's marine diesel engines and gas turbines. Oxford:Elsevier Butterworth-Heinemann,2004.
    [2]IMO. Code on noise levels on board ships. Res.A.468(Ⅶ),1981.
    [3]Christopher Vorwerk, Gunter Busch, Ruans Jorgen Kaiser, Michael Withelm. Influence of bottom end design on noise and vibration of 4-cylinder in-line gasoline engine. SAE931315.
    [4]Othar Czerny, Markus Schwaderlapp, Thomas Wagner. NVH optimization of 16-cylinder diesel engine. SAE932492.
    [5]Jose ph L.Stout. Concept level powertrain radiated noise analysis. SAE1991-01-1746.
    [6]Gerard F, M. Tounour, N.E. Masri, L. Cremers, A. Selmane. Numerical modeling of engine noise radiation through the use of acoustic transfer vectors-a case study.SAE 2001-01-1514.
    [7]Ming Zhou, Steve Lepi. Powerplant block-crank dynamic Interaction and Radiated Noise Prediction.SAE2003-01-1735.
    [8]Hun g H. Sung, Donald J. nefske, etc. Development of an engine system model for predicting structural vibration and radiated noise of the running engine. SAE972039.
    [9]L Chabot, OGK Yates. Noise and vibration optimization of a gasoline engine. Proceedings of the Second Ricardo User Meeting,1997
    [10]Francois Gerard, Naji El Masri, Naji El Masri, etc. Numerical modeling of engine noise radiation through the use of acoustic transfer vectors-a case study. SAE2001-01-1514.
    [11]M. Sekita, H. Tamura, B. Vandenplas, W. Hendricx. A combined experimental-numerical approach for motorcycle crank noise:modeling. SAE2002-01-2209
    [12]Kwon-hee Suh, Yoon-ki Lee, Hi-seak Yoon. A Study on the balancing of the three-cylinder engine with balance Shaft。SAE2000-01-0601.
    [13]俞明,李惠珍,李盛成,等.利用有限元技术估算内燃机机体表面辐射噪声方法的研究.内燃机学报,1992,10(2):123-128.
    [14]李惠珍,俞明,袁兆成等.内燃机机体模态分析及辐射噪声的预测内燃机工程.1994,15(2):1-6.
    [15]葛蕴珊,王芝秋,张志华,等.内燃机辐射噪声三维计算模型.内燃机学报,1994,15(4):19-23.
    [16]葛蕴珊,王芝秋,张志华,等.声边界无法在内燃机机体辐射噪声预报中的应用研.内燃机学报,1995,13(1):60-64.
    [17]王国庆,刘宏昭.含间隙内燃机曲柄滑块机构动力学研究.农业机械学报,2001,06:5-7.
    [18]韩松涛.内燃机的振动噪声控制及现代设计方法研究:(博士论文).天津:天津大学,2002.
    [19]刘月辉,郝志勇,付鲁华,等.车用发动机表面辐射噪声的研究.汽车工程,2002,24(3):213-216.
    [20]邓晓龙,张宗杰,李少鹤.FEM/BEM方法预测发动机油底壳噪声辐射.华中科技大学学报,2003,31(5):80-82.
    [21]方华.柴油机机体及油底壳低噪声结构的数值模拟研究:(博士论文).长春:吉林大学,2003.
    [22]葛蕴珊,李慧明,黄三元。柴油机中薄板部件的辐射噪声控制。内燃机工程,2004,25(1):71-75.
    [23]刘月辉.基于虚拟技术的发动机噪声控制研究:(博士论文).天津:天津大学,2004.
    [24]贾维新,郝志勇,杨金才.虚拟预测方法在柴油机低噪声设计中的应用.浙江大学学报,2007,(3):489-493.
    [25]贾维新,郝志勇,杨金才.虚拟预测方法在柴油机低噪声设计中的应用.浙江大学学报,2007,(3):489-493.
    [26]郭磊,郝志勇,徐红梅.某单缸柴油机气缸体辐射噪声的集成化虚拟预测.内燃机工程,2007,(4):76-80.
    [27]杨陈,郝志勇,陈馨蕊.柴油机机体辐射噪声预测及低噪声改进设计.江苏大学学报,2008,29(4):301-304.
    [28]李玉军.柴油机结构噪声预测及其优化控制的研究:(博十论文).武汉:武汉理工大学,2007.
    [29]张磊,任海军,艾晓玉等.发动机薄壁件结构振动优化.振动工程学报,2010,23(6):687-697.
    [30]I.Senjanovic, V.Coric:Vibration analysis of marine diesel engine on test bed. International Shipbuilding Progress,1982,29:154-160.
    [31]I.Senjanovic, V.Coric:Vibration analysis of marine diesel engine on board. International Shipbuilding Progress,1983,30:30-40.
    [32]Massaki S, Kazushige I, Takashi F, etc. Vibration analyses of marine diesel engines (1st report, experimental modal analyses). The Japan Society of Mechanical Engineers,1986,53(485):96-101.
    [33]Massaki S, Kazushige I, Takashi F, etc. Vibration analyses of marine diesel engines (2nd report, analyses by component synthesis method). The Japan Society of Mechanical Engineers,1986, 52(483):2822-2827.
    [34]李渤仲,宋天相,宋希庚.活塞发动机轴系耦合振动问题(一)——扭转振动引起的轴向振动.内燃机学报,1989,7(1):1-6.
    [35]李渤仲,宋希庚,宋天相.活塞发动机轴系耦合振动问题(二)——扭转、轴向的升级连振.内燃机学报,1990,8(4):317-322.
    [36]宋希庚,宋天相,薛冬新.活塞发动机轴系耦合振动问题(三)——同频和倍频耦合计算方法.内燃机学报,1994,12(2):115-120.
    [37]王义,宋天相,宋希庚,等.船舶推进轴系扭转一轴向耦合振动响应曲线的分析.船舶工程,1995,(1):33-35.
    [38]薛冬新,宋希庚,王义.船用中速柴油机轴系的扭纵耦合振动.大连理工大学学报,1996,36(5):581-584.
    [39]杜洪兵,陈之炎,静波.内燃机轴系扭转一纵向耦合振动数学模型.内燃机工程,1992,13(:2)66-74.
    [40]应启光,李渤仲,周美荣,等.现代长冲程船用柴油机轴系扭转一轴向耦合振动(一).船舶工程,1993,(4):40-44.
    [41]李渤仲,应启光,周美荣,等.长冲程船用柴油机轴系扭转一轴向耦合振动(二)—耦合振动典型实例剖析.船舶工程,1994,(6):37-40.
    [42]应启光,周美荣,李渤仲,等.现代长冲程船用柴油机轴系扭转一轴向耦合振动(三).船舶工程,1995,(1):40-47.
    [43]张洪田,张志华,刘志刚,等.船舶推进轴系纵扭耦合振动研究.中国造船,1995,(2):68-76.
    [44]Dort D V, Visser N J. Crankshaft coupled free torsional-axial vibration of a ship's propulsion system. International Shipping Progress,1963,10(109):333-350.
    [45]L inden V D, Hart H H, Dolfin E R. Torsional-axial vibration of a ship's propulsion system.International Shipping Progress,1969,16(173):16-26.
    [46]宋希庚.内燃机轴系扭转轴向耦合振动:(博士论文).大连:大连理工大学,1988.
    [47]Parsons M G.Mode coupling in torsional and longitudinal shafting vibrations. Marine technology, 1983,20(3):257-271.
    [48]Homori S, Kamata M, Sasaki Y. Comprehensive evaluation of the vibration and strenghth of long-stroke diesel engine crank shaftings.19th International Congress on Combustion Engines, CIMAC,1991, D60:1-20.
    [49]Ja kobsen S B. Coupling axial and torsional vibration calculations on long-stroke diesel engines. SN AME Transactions,1991,99:405-419.
    [50]Ja kobsen S B, Bryndum L,Fukuda T, et al. Axial vibration of crankshafts of long-stroke diesel engines, and the control of their influence on crankshaft strength and hull vibration conditions.19th International Congress on Combustion Engines CIMAC,1991,D61:1-14.
    [51]Kikuchi A, Makuta H, Yoshihara S. Vibration analysis of a diesel engine crankshaft system considering coupling effects of torsinal and axial modes.21st International Congress on Combustion Engines CIMAC,1995, D36:1-16.
    [52]李惠珍,张德平,方华.用有限元法进行曲轴扭振计算.内燃机学报,1991,9(2):157-162.
    [53]王国治.柴油机轴系扭振研究中的模态分析方法.内燃机学报,1986,4(3):249-259.
    [54]郝志勇,舒歌群,史绍熙.内燃机轴系扭振相应的弹性波计算方法研究.内燃机学报,2000,18(1):29-32.
    [55]W L Hallauer Jr., R Y L Liu. Beam bending-torsion dynamic stiffness method for calculation of exact vibration modes. Journal of Sound and Vibration,1982,85(1):105-113
    [56]P Schwibingger, R Nordmann. The influence of torsional-lateral coupling on the stability behaviour of geared rotor systems. Journal of Engineering for Gas Turbines and Power,1988, 110(4):563-571
    [57]Muszynska, P. Goldman, D.E. Bently, Torsional/lateral vibration cross-coupled responses due to shaft anisotropy:a new tool in shaft crack detection. Vibrations in Rotating Machinery, Institution of Mechanical Engineers Conference Publications, London,1992, pp.257-262.
    [58]张勇,蒋滋康.轴系弯扭耦合振动的数学模型.清华大学学报(自然科学版),1998,38(8):114-117.
    [59]张勇,蒋滋康.旋转轴系弯曲振动与扭转振动耦合的分析.清华大学学报(自然科学版),2000,40(60:80-83.
    [60]何成兵.汽轮发电机组轴系弯扭耦合振动研究:(博士论文).北京:华北电力大学,2003.
    [61]Wakabayashi K, Seki T, Iwamoto S, et al. Analysis of vibrations of reciprocating engine shaftings by the transfer matrix method (the first report, analysis of forced vibration of a crankshaft). Journal of the M.E.S.J.,1979,14(3):268-278
    [62]Wakabayashi K, Iwamoto S, Matsumoto N. Analysis of vibrations of reciprocating engine shaftings by the transfer matrix method (the second report, calculation and comparion with measured data of torsional vibration). Journal of the M.E.S.J.,1979,14(3):279-287
    [63]Wakabayashi, Iwamoto S, Nakamura A. Analysis of vibrations of reciprocating engine shaftings by the transfer matrix method (the third report, bending vibration stress excited by torsional vibrations of crankshafts of high speed, small diesel engnie). Journal of the M.E.S.J., 1982,17(12):966-973
    [64]Wakabayashi, Iwamoto S, Shimoyamada K. Analysis of vibrations of reciprocating engine shaftings by the transfer matrix method (the fourth report, torsional vibration stress of a crankshaft with a viscous fluid damper). Journal of the M.E.S.J.,1984,19(1):24-33
    [65]B argis E, Garro A, Vullo V. Crankshaft design and evaluation-partl-critical analysis and experimental evaluation of current methods. Conf. on reliability, Stress analysis and failure prevention in mechanical design, ASME International,1980a:191-201
    [66]N agamatsu A, Hayashi Y, Ishihara A. Analysis of vibration of cylinder block by reduced impendence method. Bulletin of JSME,1980,23(185):1879-1883.
    [67]Ngamaastu A, Ngaaike M. Vibration analysis of movable part of international combustion engine:Partl.crankshafts. Bulletin of JSME,1981.24(198):2141-2146.
    [68]Ngamaastu A, Ngaaike M. Vibration analysis of movable part of international combustion engine:Part2 combined system of crankshaft and wheel. Bulletin of JSME,1983,26(215):827-531.
    [69]N agamatsu A. Basic research on vibration and noise of internal combustion engine (1st report, vibrations between a disk and blades using a reduced impendence method). Bulletin of JSME,1984, 27(224):289-294.
    [70]Okamura H, Yamanaka T, Sogabe K, et al. Dynamic stiffness matrix method for three-dimensional analysis of crankshaft vibrations (1st report, the background and applications to a planar structure crankshaft system). Transaction of the JSME, Part C,1989,55(516):1965-1973.
    [71]Okamura H, Yamanaka T, Sogabe K, et al. Dynamic stiffness matrix method for three-dimensional analysis of crankshaft vibrations (2nd report, application to solid structure crankshaft systems and the influence due to the oil film stiffness of crankshaft-journal bearing. Transaction of the JSME, Part C,1989,55(516):1974-1982.
    [72]Okamura H, Suzuki A, Sogabe K, et al. Dynamic stiffness matrix method for three-dimensional analysis of crankshaft vibrations (3rd report, application of flywheel FEM model and 'multi-points-spring-support model'for oil-film of crank journals). Transaction of the JSME, Part C, 1990,55(516):2319-2326.
    [73]Priebsch H H, Affenzeller J, Gran S. Prediction and stress of nonlinear supported, rotating crankshafts. Journal of Engineering for Gas Turbines and Power, Transaction of ASME,1995,115: 711-720.
    [74]Priebsch H H, Affenzeller J, Kuipers G. Structure borne noise prediction techniques. SAE900019,1990:42-52.
    [75]Smaili A A, Khetawat M P. Dynamics modeling of automotive engine crankshats. Mch. Mach. Theory,1994,29(7):995-1006.
    [76]Knoll G, Richard S, Klaus W. Full dynamic analysis of crankshaft and engine block with special respect to elastohydrodynamic bearing coupling. ICE Advanced Engine Design Proceedings, Ft Collins, ASME,1997, pp.1-8
    [77]I saac Du H Y, Simulation of flexible rotating crankshaft with flexible engine block and hydrodynamic bearings fora V6 engine. SAE paper 1999-01-1752,1999:1852-1860.
    [78]R aub J, Jone J D, Kley P, et al. Analytical investigation of crankshaft dynamics as a virtual engine module. SAE1999-01-1750,1999, pp:1847-1851.
    [79]M ourelatos Z P. An analytical investigation of the crankshaft-flywheel bending vibrations for a V6 egnine. SAE951276,1995, pp:2172-2180.
    [80]M ourelatos Z P. An efficient crankshaft dynamic analysis using substrucuring with Ritz vectors. Jounal of Sound and Vibration,2000,238(3):495-527.
    [81]M ourelatos Z P. A crankshaft system model for structural dynamic analysis of internal combustion engines. Computers and Structures,2001,79():2009-2027.
    [82]M ourelatos Z P. An efficient journal bearing lubrication analysis for engine crankshafts. Tribology Transaction,2001,44(3):351-358.
    [83]戴莉娅,张志华,孙大庆.船舶推进轴系纵、横、扭耦合振动传递矩阵发的研究.中国造船,1989,(4):98-106.
    [84]覃文浩,内燃机曲轴系振动响应的多体系统动力学分析方法.安全与环境学报,2002,2(2):51-53.
    [85]唐斌.基于精确动态刚度矩阵法的内燃机轴系扭转、纵向及弯曲三维耦合振动研究:(博士论文).大连:大连理工大学,2006.
    [86]周春良.船舶轴系研究:(博士论文).哈尔滨:哈尔滨工程大学,2006.
    [87]Kortu m, W., Vaculin, O.. Is multibody simulation software suitable for mechatronic systems? Vehicle System Dynamics40,2004:1-16.
    [88]Ahmed A. Shabana. Multibody system dynamics. Cambridge:Cambridge University Press, 2005
    [89]陆佑方.柔性多体动力学.北京:高等教育出版社,1996.
    [90]Wernaer Sschiehlen. Research trends in multibody system dynamics. Multibody System Dynamics,2007,18:3-13
    [91]洪家振.计算多体系统动力学.北京:高等教育出版社,1999.
    [92]戎保,芮莜亭,王国平,等.多体系统动力学研究进展.振动与冲击,2011,30(7):178187.
    [93]Ahmed A. Shabana. Flexible multibody dynamics:review of past and recent developments. Multibody System Dynamics,1997, (1):189-222.
    [94]Javier G. J., Eduardo B. Kinematics and dynamics simulation of multibody systems. New York: Springer-Verlag New York,1994.
    [95]黄文虎,邵成勋.多柔体系统动力学.北京:科学出版社,1996.
    [96]Ahmed K. Noor. Recent advances and applications of reduction methods. ASME, Applied Mechanics Reviews,1994,47(5):125-146.
    [97]Michael Lehner, Peter Eberhard. A two-step approach for model reduction in flexible multibody dynamics. Multibod Systems Dynamics,2007,17:157-176.
    [98]P. Koustsovasilis, M. Beitelschmidt. Comparison of model reduction techniques for large mechanical systems. Multibody System Dynamics,2008,20:111-128.
    [99]王永岩.动态子结构方法理论及应用.北京:科学出版社,1999.
    [100]R.R. Craig, M.D.D. Bampton. Coupling of substructures for dynamic analysis. A1AA Journal, 1968,6(7):1313-1319.
    [101]R.R. Craig. A review of time domain and frequency domain component mode synthesis methods. International Journal of Analytical and experimental Modal Analysis,1987,2:59-65.
    [102]Bathe K J. Finite element procedure in engineering analysis. New York:Prentice Hall.,1982.
    [103]ANSYS. ANSYS Theory reference, manual(Version 13.0),2010.
    [104]De Veubekem B F. The dynamics of flexible bodies. Int. J. Eng. Sci.,1976,14:895-913.
    [105]H H Priebsch, Affenzeller J. Prediction technique for stress and vibration on non-linear supported, rotating crankshafts. ASME, Journal of Engineering for Gas Turbines and Power,1993, 115:711-720.
    [106]G Offner, T Eizenberger, H H Priebsch. Separation of reference motions and elastic deformations in an elastic multi-body system. IMechE, Journal of Multi-body Dynamics,2006, 220(K):63-76.
    [107]Canavin J R, Linkins P W. Floating reference frames for flexible spacecraft. J. Spacecraft Rocket,1976,14:724-732.
    [108]Zhengdong Ma, Noel C. Perkins. An efficient multibody dynamics model for internal combustion engine systems. Multibody System Dynamic,2003,10:363-391.
    [109]G. Shi., S N Atluri. Nonlinear dynamic response of frame-type structures with hysteretic damping at the joints. A1AA,1992,20(1):234-240.
    [110]Hurst J.W., Chestnutt J.E.; Rizzi A.A. An actuator with physically variable stiffness for highly dynamic legged locomotion. IEEE Proceedings on Robotics and Automation,.2004, (5):4662-4667
    [111]B Jacobson, L Floberg. The finite journal bearing considering vaporization. Chlmers Thekniska Hoegskolas Handlingar,1957,199:1-116.
    [112]Patir N, Cheng H S. An average flow model for determining effects of three dimensional roughness on partial hydrodynamic lubrication. ASME, Transactions, Journal of Lubrication Technology,1978,100:12-17.
    [113]Priebsch H H, Loibnegger B, Krasser J and Laback O. A calculation method for crank train bearings considering pressure and temperature dependent oil viscosity. SIA 3rd International Congress, Paris,1996.
    [114]邓枚,孙军,符永红,等.计及轴受载变形的粗糙表面轴承热弹性流体动力润滑分析.机械工程学报,2010,46(15):95-101.
    [115]Hilber H, Hughes T, Taylor R. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics,1977,5:283-292.
    [116]Kuipers J B. Quaternions and rotation sequences. Princeton, New Jersey:Princeton University Press,1999.
    [117]Gear C W. Numerical initial value problems in ordinary differential equations. New York: Prentice Hall,1971.
    [118]李寿佛,苏凯,李林海.降阶向后微分公式.湘潭大学自然科学学报,1997,19(4):1-4.
    [119]李庆扬,王能超,易大义.数值分析.北京:清华大学出版社,2008.
    [120]Bulirsch R, Stoer J. Introduction of numerical analysis. New York:Springer,2002.
    [121]MAN B&W. S50MC-C7 Project Guide.2007.
    [122]Wartsila. Vasa 32 Project Guide.2006
    []23]崔志琴,杨瑞峰.复杂机械结构的参数化建模及模态分析究.机械工程学报,2008,44(2):234-237.
    [124]吉村允孝.采用结合面动态数据的计算机辅助设计来改善机床的结构刚性.机床,1979,(1):75-77.
    [125]吕中亮,杨昌棋,安培文,等.多点激励模态参数识别方法研究进展.振动与冲击,2011,30(1):197-203.
    [126]Kazuyuki Y, Tadakazu N, Anwer Y. et. al. Design optimization of engine bolts in noise and vibration performance development using FEM. SAE2006-01-0282.
    [127]Shigley J. Mechanical engineering design.7th ed. New York:McGraw-Hill Inc,2004.
    [128]VD12230 committee. Systematic calculation of high duty bolted joints. Berlin:Verein Deutscher Ingenieure,2003.
    [129]Fukuoka, T.. Analysi of the tightening process of a bolted joint with a tensioner-effect of contact stiffness. Transactions of the Japan Society of Mechanical Engineers,1995, Ser. A.(61): 429-435.
    [130]Ostrovskii, V. I.. The fluence of machining methods on sideway contact stiffness. Machining and Tooling,1984,36:17-19.
    [131]Tangiguchi A,Tsusumi M and Ito Y.. Treatment of contact stiffness in structural analysis—1st report, mathematical model of contact stiffness and its applications. Bulletin of JSME,1984,27: 601-607.
    [132]Back N., Burdekin M. and Cowley A.. Analysis of machine tool joints by the finite element method.14th MTDR Conference,1973, No.210:529-539.
    [133]Fukuoka, T.. Analysis of the tightening process of a bolted joint with a tensioner—effect of contact stiffness. Transactions of the Japan Society of Mechanical Engineers, Series A, vol.61,1995: 429-435
    [134]Kirsanova V. N.. The shear compliance of flat joints. Maching and Tooling,1967,38: 30-34.
    [135]王勖成.有限单元法.北京:清华大学出版社,2003.
    [136]韩增尧,复杂航天器声振力学环境预示技术研究:(博士论文).北京:中国空天技术研究院,2000.
    [137]Wartsila Switzerland Ltd. R&D/Dynamics.2010.
    [138]张志华.动力装置振动数值计算.哈尔滨:哈尔滨工程大学出版社,2007.
    [139]Knoll G D, Peeken H J. Hydrodynamic lubrication of piston skirts. Trans. ASME J. Lubrication Technology,1982,104(4):504-509.
    [140]Rahnejat H. Multi-body dynamics:Vechicles, machines, and mechanisms. Professional engineering Publishing, London,1998.
    [141]Boysal A, Rahnejat H. Torsional vibration analysis of a multi-body single cylinder internal combustion engine model. Applied Mathematical Modeling.1997,21(8):481-483.
    [142]Offner G, Krasser J, Laback O. etc. Simulation of multi-body dynamics and elastohydro-dynamic excitation in engines especially considering piston-liner contact. Proceedings of the Institution of Mechanical Engineerings.2001, K215(2):93-102.
    [143]Hu K. A finite element formulation for coupled rigid and flexile dynamic analysis of an internal combustion engine crankshaft system. Ph.D. thesis, the University of Michigan,2002.
    [144]Loibnegger B, Mikosch T. Simulation and correlation of engine mount vibrations up to 1 kHz, JSAE Annual congress,2001.59:5-8.
    [145]杨连生.内燃机设计.北京:中国农业出版社,1985.
    [146]孙军,桂长林,李震.内燃机曲轴强度研究的现状、讨论与展望.内燃机学报,2002,20(2):179-184.
    [147]MSC.Nastran advanced dynamics analysis user's guide.Santa Ana(USA):MSC Software Corporation,2005.
    [148]ANSYS.ANSYS mechanical APDL theory reference. ANSYS Inc.,2005.
    [149]李震,桂长林,孙军.内燃机曲轴轴系振动分析研究的现状、讨论和展望.内燃机学报,2002,20(5):469-474.
    [150]温诗铸,黄平.摩擦学原理(第3版).北京:清华大学出版社,2008.
    [151]Paranjpe, R. S., Goenka, P. K.. Analysis of crankshaft bearings using a mass conserving algorithm. Tribology Transactions,1990,33 (3),333-344.
    [152]PADIR N. Application of average flow model to lubrication between rough sliding surfaces[J]. Transactions of the ASME,1979,101,220-230..
    [153]Krasser J. Thermo-elasto-hydrodyanmic analysis of dynamically loaded journal bearings[D]. Technology University of Graz,1996.
    [154]Ebrat O, Mourelatos Z.P., Hu K.X. An elastohydrodynamic coupling of a rotating crankshaft and a flexible engine block. ASME, Journal of Tribology.2004,126:233-241.
    [155]Greenwood J A, Tripp J H. The contact of nominally flat rough surface. Proc Inst Mech Engr, 1970,185 (46):625-633.
    [156]Krasser J. Thermo-elasto-hydrodyanmic analysis of dynamically loaded journal bearings [D]. Technology University of Graz,1996.
    [157]Sasa Bukovnik, Gunter Offner, Valdas Caika, et.al. Thermo-elasto-hydrodynamic lubrication model for journal bearing including shear rate-dependent viscosity. Lubrication science,2007,19: 231-245.
    [158]Dowson D, Hudson J, Hunter B, March C. An experimental investigation of the thermal equilibrium of steadily loaded journal bearings[C], Proc IMechE (Part 3B),1966,181:70-80
    [159]Satish C, Sharma, Vijay Kumar, S.C. Jain, T. Nagaraju. Study of hole-entry journal bearings system considering combined influence of thermal and elastic effects. Tribology international,2003, 36:903-920.
    [160]王晓力,温诗铸,桂长林.动载轴承的非稳态热流体动力润滑分析.清华大学学报,1999,39(8):30-33.
    [161]张锁怀,郭军.带螺旋桨的曲轴系统扭纵耦合非线性振动模型.机械工程学报,2010,46(11):121-128.
    [162]W. Schiffer, J. Jenzer,3-D shafting calculations for marine installations:static and dynamic, American Society of Mechanical Engineers, Internal Combustion Engine Division (Publication) ICE 40,(2003):297-303.
    [163]Lech M. Axial vibration of a propusion system taking into account the couplings and the boundary condtions. Marine Science and Technology,2004, (9):171-181.
    [164]Lech Murawski. Shaft line alignment analysis taking ship construction flexibility and deformations into consideration. Marine Structures,2005, (18):62-84.
    [165]沈嘉祺.柴油及推进轴系装置轴向振动.船舶工程,1984,6:47-56.
    [166]陈之炎.船舶推进轴系振动.上海:上海交通大学出版社,1986.
    [167]ABS. Ship vibration. Houston:American Bureau of Shipping,2006.
    [168]Veritec. Vibration control in ships. Marine Technology Consultants (Norway),1985
    [169]中国船级社.船上振动控制指南.北京:人民交通出版社.2000.
    [170]周瑞平.超大型船舶推进轴系校中理论研究:(博士论文).武汉:武汉理工大学,2005.
    [171]ClassNK. Guidelines on shafting alignment.2006.6.
    [172]周瑞平,姚世卫,张平,等.三弯矩方程的理论研究及在轴系校中中的应用.武汉理工大学学报,2005,27(5):76-79.
    [173]周继良,邹鸿钧.船舶轴系校中原理及其应用.北京:人民交通出版社,1985.
    [174]何芝仙,桂长林,李震,孙军.计入曲轴倾斜时曲轴-轴承系统动力学摩擦学和弹性力学耦合分析.内燃机工程,2009,30(3):86-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700