核主泵用流体动静压型机械密封的性能研究与端面型槽优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一座百万千瓦级的压水堆核电站,有各种泵约130种,300台左右,其中反应堆冷却剂泵(Reactor Coolant Pump,简写为RCP,也简称为核主泵)属于核Ⅰ级泵,被称为反应堆安全运行的心脏。轴端机械密封是核主泵的关键部件,主要用于控制反应堆冷却剂沿核主泵泵轴的泄漏,与主泵的安全、可靠运行密切相关。据不完全统计,核电站放射性物质的泄漏原因40%起因于各类阀门密封不严,20%起因于核主泵轴端机械密封或轴承密封故障,其中最典型的事例是1979年美国三厘岛核泄漏事故,其起因就是核主泵轴端机械密封出现故障而引起,这次事故造成的直接经济损失高达7亿美元。目前,我国核主泵密封还完全依赖进口,不仅价格高,而且供货数量上还受限制,国家最高领导层及相关部委对此高度重视。因此,开展核主泵机械密封的设计理论与方法研究,揭示机械密封各结构件之间的协同作用原理与密封机理,准确预测机械密封在高参数状态下的工作模式与规律,研究并开发拥有我国自主知识产权的高参数核主泵机械密封,填补我国核技术领域的空白,从根本上解决目前迫切需要解决的核级密封问题,不仅对我国核电工业的快速与健康发展意义重大,而且对我国国民经济的长期持续发展与社会稳定具有十分重要的实际意义和战略意义。
     本文针对目前国内外在役使用核主泵机械密封的结构特点及其在高参数操作条件下易受端面热弹变形影响的工作特点,主要开展密封热-流-固耦合分析,在现有核主泵主型机械密封结构的基础上,发明新型结构并开展相关设计理论与加工制造方法研究。主要研究内容和结论如下:
     (1)考虑机械密封端面间密封流体流态的影响及流体粘度随压力与温度的变化,构建了三维稳态传热模型以及端面流体膜压力和密封环温度的控制方程,交叉采用有限元法及有限差分法并基于Matlab(?)件编制相应计算程序求解了有关方程;基于有限元轴对称变形理论计算密封环的热变形和力变形,对密封进行热-流-固耦合分析,研究了热弹变形对密封性能的影响规律;同时研究了端面温度、热弹变形、端面流体膜平衡间隙等参数随端面表面织构产生的变化规律。
     (2)提出了核主泵用双锥面流体静压型机械密封新结构,给出了锥面流体静压型机械密封端面几何参数的统一定义,并对其端面几何结构进行了优化设计;对比分析研究了双锥面与单锥面流体静压型机械密封在高操作参数条件下的密封性能,结果证明了双锥面机械密封具有比传统单锥面机械密封较大的液膜刚度和较高的可靠性,其中端面全加工双锥面机械密封比部分加工双锥面机械密封具有更好的稳定性与可靠性。
     (3)研究了不同流态下双锥面流体静压型机械密封的密封性能变化规律,揭示了不同流态下双锥面密封的密封环温度场、端面液膜压力分布和端面液膜刚度的变化规律,以及双锥面密封相比较单锥面密封对流态和端面倾角的敏感度;通过不同流态下摩擦副配对材料对双锥面密封性能影响的研究,证实了目前SiC-SiC、WC-WC和A1203-A1203三种常用配对副的合理性。
     (4)系统对比研究了端面毫微米跨尺度孔对多孔端面机械密封性能的影响,提出并证实了大孔端面机械密封应用于高操作参数条件下核主泵的优势;基于大孔端面的流体动压效应,综合流体静压型机械密封和流体动压型机械密封的各自优点,提出了新型锥-孔组合端面流体动静压型机械密封,证明其相比于双锥面密封不仅具有高开启特性和液膜刚度,而且具有优良的耐磨性,给出了核主泵操作条件下这种新型机械密封端面几何形貌的优选值。
     (5)基于密封环的变形可控原理,提出了核主泵流体静压型机械密封端面锥度的设计与加工方法,成功加工出具有较高精度的单锥面机械密封和双锥面机械密封,在此基础上采用激光蚀刻技术加工端面多孔,样品成功用于实验研究。
     (6)自主设计并搭建了核主泵用机械密封缩小型试验装置,通过测量端面温度,液膜厚度,泄漏率对核主泵用单锥度、双锥度流体静压型机械密封,锥面-微孔、锥面-大孔、锥面-超大孔组合端面流体动静压型机械密封进行了对比研究,验证了部分理论预测结果,证明了新型双锥-大孔组合端面流体动静压型机械密封的先进性和可靠性。
A million-kilowatt PWR plant has about130kinds of pumps. The reactor main coolant pump(RCP) is the heart of the reactor. The main pump seal is the key component mainly used for control the leakage along the pump shaft, which is important to the safty and reliability of the reactor main coolant pump. According to incomplete statistics,40%of the radioactive material leakage accident is due to the seal problem of the valve, and20%was caused by the mechanical seal for reactor main coolant pump. The accident at Three Mile Island nuclear power plant in America was caused by the failure of the mechanical seal, and the financial loss is about700million dollars. At present, the mechanical seals for reactor main coolant pump still depend on import completely, which have the high price and the limited supply quantity. The highest leadership and the related ministries and commissions have attached great importance to the problem. So to research the theory and methods of the design of the mechanical seal for reactor main coolant pumps, to explore the seal mechanism and the synergistic effect theory of each part of the seal, to predict the working mode and rule under the high parameter condition, to have the mechanical seal for high parameter condition with our own patents can solve the nuclear seal problem fundamentally and fill the gap in the fields of nuclear technology, which not only have big significance to the development of the nuclear power industry but also have strategic significance to the social stability and the long-term sustainable development of the national economy.
     This paper mainly worked on the thermal-fluid-solid coupling analysis and the invention of the new structure and the research of the design theory and the manufacture methods based on the property of the existing structure of the seal and the susceptibility to the thermal elastic deformation under the high parameter condition. The main contents and conclusions are as follows:
     (1) An3-D steady state heat transfer model and a thermo-elasto-hydrostatic coupling model were established by considering the variation of dynamic viscosity with fluid pressure and temperature, heat transfer between lubrication film and seal rings and the deformation of end faces. The governing equations for fluid film pressure and temperature were numerically solved by using finite difference method, and the thermal-mechanical deformations were simulated by using finite element method based on the program of Matlab. The thermal-fluid-solid coupled analyses were carried and the changes of the face temperature, thermo-elastic deformation and the equilibrium clearance with the surface texture and the effect to the sealing performance were studied.
     (2) A new type of double tapered hydrostatic mechanical seal was proposed, and the unified definition of face geometry parameter of the mechanical seal was given, and the optimization design face geometry structure was conducted. The comparison of performance of the single and double tapered hydrostatic mechanical seal in the high operation parameters was analysed. The results validated that the double tapered hydrostatic seal has much higher film stiffness and reliability compared with the traditional single tapered mechanical seal, from which we know that seal face with full double tapered structure have higher stability and reliability than partial tapered structure.
     (3) The performance variation laws of double tapered fluid hydrodynamic mechanical seal in different flow regime has been investigated. The seal temperature distribution field, face liquid film pressure distribution as well as the varying law of face liquid stiffness of double tapered seal in various flow regime were clarified, coupled with double tapered mechanical seal's sensitivity towards the flow regime and the face inclinational angle. In comparison to the single tapered structure. The rationality of the highly recommended selection of three friction pair matches, ie, SiC-SiC, WC-WC, Al2O3-Al2O3is verified through the investigation of the influence of matching materials in friction pair towards the double tapered mechanical seal performance in different flow regime.
     (4) The comparision of the influence of the pores with mm scale and urn scale on the seal performance of the laser textured surface mechanical seal was studied. The mechanical seal with big pores was proposed whose advantage was also proved. The new type of mechanical seal with both surface pores and convergent coning was proposed based on the hydrodynamic effect of the big pores and the advantage of hydrostatic and hydrodynamic mechanical seal, which proved that double tapered mechanical seal not only have high opening force and film stiffness but also have excellentg wear resistance. And the best geometrical structure of the new type of mechanical seal for reactor coolant pump.
     (5) The method of design and manufacture of the taper of the hydrostatic mechanical seal for reactor coolant pumps. Single tapered and double tapered mechanical seal were manufactured successfully and accurately.the pores manufactured successfully with laser etching technology, based on which sample was successfully used to experimental research.
     (6) The narrow type test device of the mechanical seal for main coolant pump was designed and built. By measuring the temperature, film thickness and the leakage rate, the comprison research of the single tapered mechanical seal and double tapered mechanical seal, the mechanical seal with both surface micropores and convergent coning, the mechanical seal with both surface big pores and convergent coning, the mechanical seal with both surface huge pores and convergent coning was studied, which proved the accuracy of the theoretical prediction and the advancement and reliability of the new type of mechanical seal with both big pores and convergent coning.
引文
[1]戴立操.核电厂安全目标及实现[J].工业安全与环保.2004,3:43-45.
    [2]国家将加快推进核电泵阀国产化工作[OL].行业信息.2006,3:50.
    [3]欧阳予.世界核电国家的发展战略历程与我国核电发展[J].中国核电.2008,1(2-3):118-125.
    [4]王昌彦.核电用泵浅谈[J].水泵技术.2004,2:1-4.
    [5]苏先顺,王勇.秦山核电二期工程主泵轴密封及保障其完整性而采取的措施[J].核动力工程.2003,24(2):180-184.
    [6]Kerr R W. Pump Application and Maintenance[C]. Proceedings of the American Power Conference, April 18-20 1995, Chicago, IL, USA:500-505.
    [7]陈捷.巴基斯坦恰希玛核电站主泵轴密封[M].水泵技术.2003,1:40-44.
    [8]刘莹,陈壵,高志等.二元乙丙密封材料不同工况下的摩擦性能[J].摩擦学学报.2010,30(5):461-465.
    [9]康玉茹,孟祥铠,彭旭东等.核主泵用流体静压型机械密封耦合模型与性能分析[J].流体机械,2011,39(11):22-27.
    [10]王玉明,黄伟峰,李永健.核电站一回路用机械密封[J].摩擦学学报.2011,31(4):408-416.
    [11]毛文军,刘军生.岭澳核电站反应堆冷却剂泵机械密封泄漏率异常的处理实践及原因初探[J].机械,2009,增刊:123-127.
    [12]陈捷.巴基斯坦恰西玛核电站主泵密封[J].水泵技术,2003,1:40-44.
    [13]魏琳宗,刘向锋,黄伟峰.等静压式机械密封结构参数研究及优化设计[J].润滑与密封,2010,35(6):20-23.
    [14]魏琳宗.核电站冷却剂主泵流固热耦合研究[D].北京:清华大学硕士学位论文,2010.
    [15]廖传军,黄伟峰,索双富等.流体静压型机械密封的半解析式流固耦合模型[J].机械工程学报,2010,46(20):145-151.
    [16]王晓雪,刘莹,李京浩等.核主泵用动静压波度机械密封机理[J].机械工程学报,2010,46(24):131-135.
    [17]穆东波,蔡纪宁,张秋翔等.流体静压式核电站主泵二级密封由接触式到非接触式转变的密封性能分析[J].润滑与密封.2009,34(7):33-36.
    [18]洪振旻.大亚湾核电站核主泵机械密封汇泄率异常研究[D].上海:上海交通大学,2009.
    [19]雷雯,王伟,闻永华.核电泵用机械密封摩擦有限元分析[J].流体机械,2011,39(7):22-25,59.
    [20]国家发展改革委员会,科学技术部,商务部,国家知识产权局.当前优先发展的高技术产业化重点领域指南(2004年度/2007年度)[OL]. http://www.sdpc.gov.cn.2007.
    [21]Wu Z X, Zhang Z Y. World Development of Nuclear Power System and High Temperature Gas-cooled Reacors[J]. Chinese Jounal of Nuclear Science and Engineering,2000,20(3):211-219.
    [22]Tim Abram, Sue Ion. Generation-Ⅳ nuclear power:A review of the state of the science [J].Energy Policy,2008,36:4323-4330.
    [23]Zhao R K. The Technical Path for Development of Chinese Nuclear Power:A Historical Perspective [J]. Science & Technology Review,2007(25):1.
    [24]Zhu H. Atomic Energy and Nuclear Power Plants [M]. Hangzhou:Zhejiang University Press, 2009.
    [25]Mitsubishi Heavy Industries, Ltd. Mitsubishi Nuclear Plants [EB/OL]. http://www.mhi.co.jp/en/nuclear/introduction/contents/pdf/H500_N02R09E1_F_0.pdf,2006-5-7 /2010-10-21.
    [26]Mayer. E. Performance of Rotating High Duty Nuclear Seals[J]. Lubrication Engineering,1989, 45(5):275-286.
    [27]Zottola, Gene. Testing Materials for Use In a Hydrostatic Radial Taper Seal[J]. Lubrication Engineering,1987,43(6):426-432.
    [28]卢东,袁宗久,王延合等.浅谈压水堆核电站主泵的设计、运行和维护[J].水泵技术.1993(3):14-18.
    [29]洪振旻.大亚湾核电站核主泵机械密封泄漏率异常研究[D].上海交通大学硕士学位论文,2009.
    [30]Green, I. Gyroscopic and Damping Effects on the Stability of a Noncontacting Flexibley Mounted Rotor Mechanical Face Seal[J]. Dynamics of Rotating Machinery (Eds J. H. Kim and W.-J. Yang)), 1990:153-173 (Hemisphere).
    [31]Min Zou, Joshua Dayan and Itzhak Green. Parametric Analysis for Contact Control of a Noncontacting Mechanical Face Seal[C]. In Proceedings of Vibration, Noise and Structural Dynamics 99, Venice, Italy,1999:493-499.
    [32]Min Zou, Joshua Dayan and Itzhak Green. Sensitity Analysis for the Design and Operation of a Non-Contacting Mechanical Face Seal[C]. Proc Instn Mech Engrs,2000,214, Part C.
    [33]Etsion, I., and Constantinescu, I. Experimental Observation of the Dynamic Behavior of Noncontacting Conedface Mechanical Seals[J]. ASLE Transactions,1984,27(3):263-270.
    [34]Etsion, I. Mechanical Face Seal Dynamics Update[J]. The Shock and Vibration Digest,1985,17(4): 11-15.
    [35]Green, I., and Etsion, I. Stability Threshold and Steady-State Response of Noncontacting Coned-Face Seals[J]. ASLE Transactions,1985,28(4):449-460.
    [36]Green, I., and Etsion, I. A Kinematic Model for Mechanical Seals with Antirotation Locks or Positive Drive Devices[J]. ASME J. Tribol.,1986,108 (1):42-45.
    [37]Green, I., and Etsion, I. Nonlinear Dynamic Analysis of Noncontacting Coned-Face Mechanical Seals[J]. ASLE Transactions,1986,29(3):383-393.
    [38]Green, I. The Rotor Dynamic Coefficients of Coned-Face Mechanical Seals with Inward or Outward Flow[J]. ASME J. Tribol.,1987,109(1):129-135.
    [39]Green, I. Gyroscopic and Damping Effects on the Stability Threshold of a Noncontacting Flexibly-Mounted Rotor Mechanical Face Seal[C]. The Second International Symposium on Transport Phenomena, Dynamics, and Design of Rotating Machinery, Honolulu, Hawaii,1988, 77-97.
    [40]Green, I. Gyroscopic and Support Effects on the Steady-State Response of a Noncontacting Flexibly Mounted Rotor Mechanical Face Seal[J]. ASME J. Tribol.,1989,111:200-208.
    [41]Green, I.. Gyroscopic and Damping Effects on the Stability of a Noncontacting Flexibly Mounted Rotor Mechanical Face Seal[M]. Dynamics of Rotating Machinery, Hemisphere Publishing Company,1990,153-173.
    [42]Lee, A. S., and Green, I. Higher Harmonic Oscillation in a Flexibly Mounted Rotor Mechanical Seal Test Rig[J], ASME J. Vibr. Acoust.1994,116(2):161-167.
    [43]Lee, A. S., and Green, I. Physical Modeling and Data Analysis of the Dynamic Response of Flexibly Mounted Rotor Mechanical Seal[J]. ASME J. Tribol.,1995,117(1):130-135.
    [44]Lee, A. S., and Green, I. An Experimental Investigation of the Steady-State Response of a Noncontacting Flexibly Mounted Rotor Mechanical Face Seal. Trans[J]. ASME, J. Tribol.,1995, 177(1):153-159.
    [45]An Sung Lee, Itzhak Green. Rotordynamics of a Mechanical Face Seal Riding on a Flexible Shaft[J].ASME J.Tribol.1994,116(4):345-350.
    [46]Zou, M., and Green, I. Real-Time Condition Monitoring of Mechanical Face Seal[C]. Proceedings the 24th Leeds-Lyon Symposium on Tribology, London, Imperial College,1997:423-430.
    [47]Zou, M., and Green, I. Clearance Control of a Mechanical Face Seal[J]. STLE Tribol. Trans.,1999, 42(3):535-540.
    [48]Salant, R. F., Miller, A. L., Kay, P. L. etc. Development of an Electrically Controlled Mechanical Seal[C]. Proceedings 11th International Conference on Fluid Sealing, BHRA,1987:576-595.
    [49]Heilala, A. J., and Kangasneimi, A., Adjustment and Control of a Mechanical Seal against Dry Running and Severe Wear[C]. Proceedings 11th International Conference on Fluid Sealing, BHRA, 1987:548-575.
    [50]Etsion, I., Palmor, Z. J. and Harari, N. Feasibility Study of a Controlled Mechanical Seal[J]. Lubrication Engineering,1991,47(8):621-625.
    [51]Wolff, P., and Salant, R. F. Electronically Controlled Mechanical Seal for Aerospace Applications: Part Ⅱ—Transient Tests[J]. Tribol. Trans.,1995,38(1):51-56.
    [52]Min Zou, Joshua Dayan and Itzhak Green. Feasibility of Contact Elimination of a Mechanical Face Seal Through Clearance Adjustment[J]. ASME J. Tribol.,2000,122(7):478-484.
    [53]Miner, J. R., Mohn, J. H., Grant, D. H., and Lee, V. H. High Speed Seal Development, Part 1, Interim Report to Wright[J]. Laboratory Air Force Materiel Command, WL-TR-92-21(1). Technical Report, United Technologies, Pratt and Whitney,1992.
    [54]Wileman, J. M., and Green, I., The Rotordynamic Coefficients of Mechanical Seals Having Two Flexibly Mounted Rotors[J]. ASME J. Tribol.1991,113(4):795-804.
    [55]Wileman, J. M. Dynamic Analysis of Eccentric Mechanical Face Seals[D].Doctoral dissertation, Georgia Institute of Technology,1994.
    [56]Wileman, J., and Green, I. The Rotor Dynamic Coefficients of Eccentric Mechanical Face Seals[J]. ASME J. Tribol.,1996,118(1):215-224.
    [57]Wileman, J., and Green, I. Steady-State Analysis of Mechanical Seals with Two Flexibly Mounted Rotors[J]. ASME J. Tribol.,1997,119(1):200-204.
    [58]Wileman, J., and Green, I. Stability Analysis of Mechanical Seals with Two Flexibly Mounted Rotors[J]. ASME J. Tribol.,1998,120(2):145-151.
    [59]Griskin, E. N., Study of Face Seals with Eccentric Rotation[M]. Soviet Journal of Friction and Wear, Allerton Press, New York,1987.
    [60]Wileman, J. Dynamic Response of Eccentric Face Seals to Synchronous Shaft Whirl[J]. ASME J. Tribol.,2004,126(4):301-309.
    [61]Childs, D. W., and Kim, C.-H., Analysis and Testing for Rotordynamic Coefficients of Turbulent Annular Seals with Different, Directionally-Homogeneous Surface-Roughness Treatment for Rotor and Stator Elements[J]. ASME J. Tribol.,1985,107(3):296-306.
    [62]Hashimoto, H., and Wada, S. Theoretical Approach to Turbulent Lubrication Problems Including Surface Roughness Effects[J]. ASME J. Tribol.1989,111(1):17-22.
    [63]Nelson, C. C., and Nguyen, D. T. Comparison of Hirs'Equation with Moody's Equation for Determining Rotordynamic Coefficients of Annular Pressure Seals[J]. ASME J. Tribol.1987, 109(1):144-148.
    [64]San Andres, L. A. Analysis of Turbulent Hydrostatic Bearings with a Barotropic Cryogenic Fluid[J]. ASME J. Tribol.1992,114(4):755-765.
    [65]Childs, D. A.. Turbomachinery Rotordynamics—Phenomena, Modeling & Analysis, Wiley Interscience, John Wiley & Sons, New York,1993.
    [66]Brunetiere, N. Study of Hydrostatic Mechanical Face Seal Operating in a Turbulent Rough Flow Regime[J]. ASME J. Tribol,2009,131(7):1-11.
    [67]Brunetiere, N., Tournerie, B., and Frene, J. Influence of Fluid Flow Regimes on Performances of Non-Contacting Liquid Face Seals[J]. ASME J, Tribol.,2002,124(3):515-523.
    [68]Brunetiere, N. Finite Element Solution of Inertia Influenced Flow in Thin Fluid Films[J]. ASME J. Tribol.,2007,129(10):876-886.
    [69]Yasuna, J. A., and Hughes, W. F. Squeeze Film Dynamics of Two-phase Seals:Part Ⅱ—Turbulent Flow[J], ASME J. Tribol.,1994,116, (3):479-488.
    [70]Zirkelback, N., and San Andres, L. Bulk-Flow Model for the Transition to Turbulence Regime in Annular Pressure Seals[J]. Tribol. Trans.,1996,39,No.4:835-842.
    [71]Bouard, L., Fillon, M., and Frene, J. Comparison between Three Turbulent Models-Application to Thermohydrodynamic Performances of Tilting-Pad Journal Bearings[J], Tribol. Int.,1996,29(1): 11-18.
    [72]Brunetiere, N. A Modified Turbulence Model for Low Reynolds Num-bers:Application to Hydrostatic Seals[J]. ASME J. Tribol.,2005,127(1):130-140.
    [73]Koga, T., and Fujita, T. The Hydrostatic Noncontact Seal Including Fluid Inertia Effect[J]. ASLE Trans.,1986,29(1):35-442.
    [74]Hirs, G. G. Bulk Flow Theory for Turbulence in Lubricant Films[J]. ASME J. Lubr.Technol.,1973, 95(2):137-146.
    [75]Childs, D. A. Turbomachinery Rotordynamics—Phenomena, Modeling & Analysis, Wiley Interscience, John Wiley & Sons, New York,1993.
    [76]Miiller, H. K., Externally Pressurised Barrier Shaft Seals[C]. Proc 4th International Conf. on Fluid Sealing, Philadelphia, PA, May 6-9, BHRA,1969:361-371.
    [77]Hughes WF, Beller RM. Turbulent Two-Phase Fow in Ring and Face Seals[C]. Proceedings of 9th international conference on fluid sealing. Noordwijkerhout, Netherlands:BHRA; 1981:185-202.
    [78]Szeri, A. Z. Fluid Film Lubrication-Theory & Design[D]. Cambridge University Press, Cambridge, Chap.5,1998.
    [79]Brunetiere, N., Tournerie, B., and Frene, J. TEHD Lubrication of Mehanical Face Seals in Stable Tracking Mode. Part 1:Numerical Model and Experiments [J]. ASME J. Tribol.,2003,125(3): 608-616.
    [80]Brunetiere, N., Tournerie, B., and Frene, J. TEHD Lubrication of Mehanical Face Seals in Stable Tracking Mode. Part 2:Parametric Study[J]. ASME J. Tribol.,2003,125(3):617-627.
    [81]Galenne, E., and Pierre, I, Thermo-Elasto-Hydro-Dynamic Modeling of Hydrostatic Seals in Reactor Coolant Pumps[C]. Third World Tribology Congress, Washington DC, Paper No. WTC 2005-63194,2005.
    [82]Metz, J., Pierre-Danos, I., Cailleaux, J. P., and Randrianarivo, L. Hydrostatic Seal Operation in Reactor Coolant Pumps of French Pressurized Water Reactor Nuclear Power Plant[C]. Proceedings of High Performance Rotary Shaft Seals Workshop, Poitiers, France,2003:C1-C10.
    [83]W. F. KEY. Analysis of a Mechanical Seal with Deep Hydropads[C]. Proc. of the ASME/STLE Tribology Conference, Society of Tribologists and Lubrication Engineers, Baltimore, Mayland, USA,1988.
    [84]Z Luan, M M Khonsari. A Thermohydrodynamic Analysis of a Lubrication Film between Rough Seal Faces[C]. Engineering Tribology, Pro. ImechE,2009,223:665-673.
    [85]Dumbrava, M. A., and Morariu, Z., Thermohydrodynamic Aspects of the Double Mechanical Seals[C]. Proc.11th International Conference on Fluid Sealing, BHRA,1987:394-406.
    [86]Morariu, z. and Pascovici, M. The Thermal Study of the Double Mechanical Seals[C]. Proc.5th Conf.011 Friction Lub. And Wear TRIBOTEHNICA 87,1987:319-327.
    [87]Doust, T. G. and Parmar, A. Experimental and Theoretical Study of Pressure and Thermal Distortions in Mechanical Seals[J]. ASLE Transactions,1986,29,2:151-159.
    [88]Doust, T. G, and Parmar, A. Transient Thermoelastic Effects in a Mechanical Face Seal[C]. Proc. 11th International Conference on Fluid Sealing, BHRA,1987:407-422.
    [89]Buck, G. S. Heat Transfer in Mechanical Seals[J]. Proc.6th Iirll Pump Users Symp.1989:9-15.
    [90]Doane, J. C., Myrum, T. A., and Beard, J. E. An Experimental-Computational Investigation of the Heat Transfer in Mechanical Face Seals[C]. Int. J. Heat Mass Transf.,1991,34(4/5):1027-1041.
    [91]Phillips, R. L., Jacobs, L. E., and Merati, P. Experimental Determination of the Thermal Characteristics of a Mechanical Seal and Its Operating Environment J]. Tribol. Trans.,1997,40(4): 559-568.
    [92]Lebeck, A. O., Nygren, M. E., Shirazi, S. A., and Soulizat, R. Fluid Temperature and Film Coefficient Prediction and Measurement in Mechanical Face Seals-Experimental Results[J]. Tribol. Trans.,1998,41(4):411-422.
    [93]Zeus, D. Viscous Friction in Small Gaps-Calculations for Non-Contacting Liquid or Gas Lubricated End Face Seals[J]. Tribol. Trans.,1990,33(3):454-462.
    [94]Lebeck, A. O., Principles and Design of Mechanical Face Seals[M]. Wiley Interscience Publication, John Wiley and Son,1991.
    [95]M. D. Pascovici, Etsion, I. A Thermo-Hydrodynamic Analysis of a Mechanical Face Seal[J]. ASME J. Tribol.,114, No.3,1992:639-645.
    [96]Tournerie, B., Danos, J.C. and Frene, J. Three-dimensional modeling of THD lubrication in face-seals[J]. ASME J. Tribol.,2001,123:196-204.
    [97]Etsion, I, M. D. Pascovici. A Thermohydrodynamic Analysis of a Misaligned Mechanical Face Seal[J]. ASME J. Tribol.,1993,36(4):589-596.
    [98]Etsion, I., and Groper, M. The Accuracy of Analytical Solutions for the Temperature Distribution in Mechanical Face Seals[C]. Proc.14th International Conference on Fluid Sealing, BHRGroup, Cannes, France, paper F4,1994:407-422.
    [99]Buck, G.S. Heat Transfer in Mechanical Seals[C]. Proc.6th Pump Users Symposium, Texas A&M University, Houston, Texas,1989:9-15.
    [100]Knoll, G., Peeken, H., and Hoft, H. W. Thermohydrodynamic Calculation of End Face Seals[C]. Proceeding of the 14th International Conference on Fluid Sealing, BHRGroup Ltd, Firenze, Italy,1994.
    [101]Pascovici, M. D., and Cicone, An improved THD Analytical Model Fort A Non-Contacting[C], Aligned Mechanical Face Seal. World Tribology Congress, London,1997:396.
    [102]Person, V., Tournerie, B. and Frene, J. THD Aspects in Misaligned and Wavy Face Seals[C]. In Proceedings of the 15th International Conference on Fluid Sealing, BHRG, Maastricht, Netherlands,1997,9:505-519.
    [103]Tournerie, B., Danos, J.C. and Frene, J. Three-Dimensional Modeling of THD Lubrication in Face-Seals [J]. ASME J. Tribol.,2001,123:196-204.
    [104]Shirazi, S. A., Soulisa, R., Lebeck, A. O., etc. M. A. Fluid Temperature and Film Coefficient Prediction and Measurement in Mechanical Face Seals—Numerical Results[J]. Tribol. Trans., 1998,41(4):459-470.
    [105]Merati, P., Okita, N. A., Phillips, R. L., etc. Experimental and Computational Investigations of Flow and Thermal Behavior of a Mechanical Seal[J]. Tribol. Trans.,1999,42(4):731-738.
    [106]Salant. R. F. and Key, W. E. Development of an Analytical Model for Use in Mechanical Seal Design[C]. In Proc.10th Int. Conf. on Flrrid Sealing. BHRA, April, Insbmck, Austria, 1984:325-343.
    [107]Salant, R.F. and Key, W.E. Improved Mechanical Seal Design through Mathematical Modeling[J]. In Proceedings of the First International Pump Symposium, Texas A&M University,1984:37-46.
    [108]Parmar, A. Thermal Cycling in Mechanical Seals—Causes, Predictions, Preventions[C]. Proc.13th International Conference on Fluid Sealing, BHRGroup, Brugge, Belgium,1992:507-526.
    [109]Zhu, G. Computer Prediction of Mechanical Seal Performance and Experimental Validation [J]. ImechE, Journal of Engineering Tribology, Part J,1999,213:433-449.
    [110]Noel Brunetiere, Tournerie, B., Frtne. J. A Simple and Easy-To-Use TEHD Model for Non-Contacting Liquid Face Sesls. Trans [J]. ASME J. Tribol.,2003,46(2):187-192.
    [111]Brunctiere, N., Tourticric, B. and Frene, J. TEHD Lubrication of Mechanical Face Seals in Stable Tracking Mode. Part 1:Numerical Model and Experiment[C]. In Proc. STLE/ASME Int. Joint Trih. Conf., Cancun, Mexico,2002.
    [112]Brunctiere, N., Tourticric, B. and Frene, J. TEHD Lubrication of Mechanical Face Seals in Stable Tracking Mode. Part 2:Parametric Study[C]. In Proc. STLE/ASME Int. Joint Trih. Conf., Cancun, Mexico,2002.
    [113]Galenne E, Pierre-Danos I. Thenno-Elasto-Hydro-Dynamic Modeling of Hydrostatic Seals in Reactor Coolant Pumps[C]. In:Proceedings of the third world tribology congress, Washington DC, Paper WTC205-63194,2005.
    [114]Erwan Galenne and Isabelle Pierre-Danos. Thermo-Elasto-Hydro-Dynamic Modeling of Hydrostatic Seals in Reactor Coolant Pumps[J]. Trans. Jour.of Trib.,2007,50(4):466-476.
    [115]Noel Brunetiere., Erwan Galenne, Tournerie, B., Danos. Modelling of Non-Laminar Phenomena in High Reliability Hydrostatic Seals Operating in Extreme Conditions[J]. Tribology International 2008,41,211-220.
    [116]Salant, R. F., and Hassan, S. F. Large Scale Thermoelastic Instability in Hydrostatic Mechanical Seals[C].12th Int. Conference on Fluid Sealing, BHRA,1989:75-88.
    [117]Waidner, P. Evaporation in the Gap of Face Seals—Theoretical Calculations and Results for Hot Water Application[C].12th Int. Conference on Fluid Sealing, BHRA,1989:127-146.
    [118]Salant, R. F. and Blasbalg, D. A. Dynamic Behavior of Two-Phase Mechanical Seals[J]. Trib. Tram.,1991,34(1):122-130.
    [119]Yasuna, J. A. and Hughes, W. F. Squeeze Film Dynamics of Two Phase Seals[J]. ASME J. Tribol., 1992,14(2):236-247.
    [120]Etsion, I. Mechanical Face Seal Dynamics 1985-1989[J]. The Shock and Vib. Dig.,1991, 23(4):3-7.
    [121]Green, I., and Etsion, I. Stability Threshold and Steady-State Response of Noncontacting Coned-Face Seals[J]. ASLE Transactions.1985,28(4):449-460.
    [122]Green, I., and Etsion, I. Nonlinear Dynamic Analysis of Noncontacting Coned-Face Mechanical Seals[J]. ASLE Transactions,1986,29(3):383-393.
    [123]Salant, R. F., and Blasbalg, D. A. Dynamic Behavior of Two-Phase Mechanical Seals[J]. ASLE Transactions,1990,34(1):122-130.
    [124]Digard de Cuisard J., Gentile M., Bouchon M., etc. Experimental Study on Lubrication Mode in Low Pressure Mechanical Seals[C]. Proc.11th Int. Conference on Fluid Sealing, BHRA, Cannes, France, paper F2,1987:505-519.
    [125]Cicone, T., Tournerie, B., and Brunetiene, N. Analysis of Lubrication Regime Transition, Experimentally Observed in Liquid Face Seals, Using an Analytical Model for Thermoelastic Face Distortion[C]. Proc.16th International Conference on Fluid Sealing, BHRGroup, Brugge, Belgium, 2000:449-462.
    [126]Parmar, A. Thermal Cycling in Mechanical Seals-Causes, Prediction, Prevention[C]. In Proceedings of the 13th International Conference on Fluid Sealing, BHRA, Brugge, Belgium, April, 1992:507-526.
    [127]P. Basu and W. F. Hughes. Thermal Instability in Two Phase Face Seals[C]. Proc.11th International Conference on Fluid Sealing, BHRA,1987:423-441.
    [128]Yasuna, J. A. and Hughes, W. F. A Continuous Boiling Model for Face Seals[J]. ASME J. Tribol., 1990,112:266-274.
    [129]Lau, S. Y., Hughes. W. F., Basu, P. and Beatty, P. A. A Simplified Model for Two Phase Seal Design[J]. Trib. Trairc,1990,33(3):315-324.
    [130]Pascovici, M.D., Olariu, V. and Cicone, T. Transient Thermohydrodynamic Analysis of a Mechanical Face Seal. Part Ⅰ:The Case of Insulated Stator[C]. In Proceedings of the 6th International Conference VAREHD-6, Suceava, Romania, June,1992.
    [131]Pascovici, M.D., Cicone, T. and Kucinschi, B. Transient Thermohydrodynamic Analysis of a Mechanical Face Seal. Part Ⅱ:The Apportionment of the Heat Flux[C]. In Proceedings of Micro-CAD 1994-International Computer Science Conference, Miskolc, Ungaria.1994,2(3), Section K2:6-13
    [132]Blasbalg, D.A. and Salant, R.D. Numerical Study of Two-Phase Mechanical Seal Stability[J]. STLE Tribology Trans.1995,38(4):791-800.
    [133]Harp, S.R. and Salant, R.F. Analysis of Mechanical Seal Behavior during Transient Operation[.I]. ASME Paper, No 75-Lub-22,1997.
    [134]Cicone, T. Study of Thermohydrodynamic Problems in Fluid Film Mechanical Face Seals[D]. PhD Thesis, University Polytehnica of Bucarest,1997.
    [135]Danos, J.C., Tournerie, B., Frene, J. THD Lubrication of Mechanical Face Seals during Transient Period after Start-Up:2D Modelisation[C]. In Proceedings of the 29th Leeds-Lyon Symposium on Tribology, Leeds, York, UK,3-6 September,2002.
    [136]Tournerie, B., Noel Brunetiere, Danos.2D Numerical Modeling of the TEHD Transient Behavior of Mechanical Face Seals[J]. Sesling Technology,2003:10-13.
    [137]M. A. Azarm, J. L. Boccio and S. P. MITRA. The Impact of Mechanical and Maintenance-Induced Failure of Main Reactor Coolant Pump Seals on Plant Safety[R]. NUREG/CR.,4400, Brookhavcn National Laboratory, Upton, NY,1985.
    [138]Ruger. C. J., Higgins. J. C. Reactor Coolant Pump Seal Issues and Their Applicability to New Reactor Designs[C]. Conference:16. Rector operations international topical meeting, Long Island, NY (United States),1993,8:15-18
    [139]C. H. Campen and W. D. Tauche, Reactor Coolant Pump Seal Performance Following a Loss of All AC Power[R]. WCAP-10541, Revision 2, Westinghouse Owners Group. Westinghouse Proprietary Class 2; not publicly available,1986.
    [140]T. Boardman et al. Leak Rate Analysis of the Westinghouse Reactor Coolant Pump[R]. NUREG/CR-4294, Energy Technology Engineering Center, Rockwell International Corporation, Canoga Park, CA,1985.
    [141]Draft Regulatory Guide DG-1008, Reactor Coolant Pump Seals[R]. DG-1008, U.S. Nuclear Regulatory Commission, Washington, D.C.,1991.
    [142]S. K. Shaukat, J. E. Jsckson, and D. F. Thatcher. Regulatory Analysis for Generic Issue 23:Reactor Coolant Pump Seal Failure[R]. NUREG/CR-1401, Draft Report for Comment, U.S. Nuclear Regulatory Commission, Wash, ington, D.C,1991.
    [143]P. A. Finn. Sealing Systems for a Heavy Water Reactor[J], Fusion Technology,1992, (21): 377-382.
    [144]Galenne, E., Pierre-Danos, I., Brunetiere, N. etc. Influence of Secondary O-rings on Hydrostatic Mechanical Seals in PWR Reactor Coolant Pumps[C]. Proc. Advanced Topics and Technical Solutions in Dynamic Sealing Workshop, Poitiers, Paper F,2005.
    [145]Carl J. Czajkowski. Investigation of a Reactor Coolant Pump Seal from Indian Point Unit No.2[J]. Int. J. Pres. Ves.& Piping,1987,27:325-334.
    [146]Pugh, M. Westinghouse Reactor Coolant Pump Seal Performance Improvement Guide: Supplement to EPRI Main Coolant Pump Seal Maintenance Guide[R]. EPRI, CA:2000.1000050, 2000.
    [147]C. A. Kittmer et al. Reactor Coolant Pump Seal Behavior during Station Blackout[R]. NUREG/CR.4077, Idaho National Engineering Laboratory, Idaho Falls, ID,1985.
    [148]W. F. KEY. Analysis of a Mechanical Seal With Deep Hydropads[C]. Proc. of the ASME/STLE Tribology Conference, Society of Tribologists and Lubrication Engineers, Baltimore, Mayland, USA,1988.
    [149]Metz, J. and Pierre-Danos, I. Hydrostatic Seal Operation in Reactor Coolant Pumps of French Pressurized Water Reactor Nuclear Power Plant [C]. Proc. High Performance Rotary Shaft Seals Workshop, Poitiers, Paper A,2003.
    [150]Zottola, G. Westinghouse Owners Group Seal Performance Improvement Program [R]. WCAP-16229-P,2004.
    [151]Koga,T., T., Uchibori, Z., Yonehara, Y., etc. On the Material Selection of Seal Rings for Mechanical Seal[C]. Proc. JSLE Int. Trib. Conf Tokyo,1985:811-816.
    [152]Erwan Galenne and Isabelle Pierre-Danos. Thermo-Elasto-Hydro-Dynamic Modeling of Hydrostatic Seals in Reactor Coolant Pumps[J]. Trans. Jour, of Trib.,2007,50(4):466-476.
    [153]C. J. Ruger, J. C. Higgins and A. Fresco. Evaluation of Reeireulation Pump Seal Faiiure in BWRs[R]. Technical Report A-3806.4-93 (Rev.1), Brookhaven National Laboratory, Upton, NY, 1993.
    [154]Richard F., Salant. The Use of Modeling to Understand Malfunction and Failure in Mechanical Seals[J]. Sealing Technology,2003,12:8-12.
    [155]D. B. Rhodes, R. G. Hill, and R. G. Wensel. Reactor Coolant Pump Shaft Seal Stability during Station Blackout[R]. NUREG/CR-4821, Idaho National Engineering Laboratory, Idaho Falls, ID, 1987.
    [156]Fuse,T., Shimizu,T., Nishiyama, K. Development of High Reliable Mechanical Seal for Nuclear Power Plant[C]. International Conference on Fluid Sealing,17th International Conference on Fluid Sealing,2003:405-419.
    [157]Marsi, J. A. Mechanical Seal[P]. U.S.Patent No.5,076,589,1991.
    [158]David Zagres. Advanced Mechanical Seals For Primary Coolant Pumps In PWR Service[C], Proceedings of ICAPP'05 Seoul, KOREA, May 15-19,2005.
    [159]Marsi, J.A. Development of a 9 Inch (228mm) Nuclear Primary Coolant Seal[J]. Lubrication Engineers,1989,45(5):311-321.
    [160]J. A. MARSI. A BWR Mechanical Seal Cartridge Tolerant of Suspended Solids[C]. Proc. of the Sixth International Workshop on Main Coolant Pumps, EPRI, Toronto, Ontario, CAN,1993.
    [161]Salak D. W. The Westinghouse Reactor Coolant Pump Shaft Seal System, eving to Improve Availability[R]. ASME Paper 84-PVP-80,1984.
    [162]Zottola, Gene. Testing Materials For Use In a Hydrostatic Radial Taper Seal[J]. Lubrication Engineering,1987,43(6):426-432.
    [163]Key, W.E., Salant, R.F., Payvar, P., etc. Analysis of a Mechanical Seal with Deep Hydropads[J]. STLE Tribology Transactions,1989,32(4):481-489.
    [164]Zou, M. and Green, I. Real-Time Condition Monitoring of a Mechanical Face Seal[C]. In Proceedings of the 24th Leeds-Lyon Symposium on Tribology, Imperial College, London, UK,4-6 September,1997:423-430.
    [165]Zou, M. and Green, I. Clearance Control of a Mechanical Face Seal[J]. STLE Tribology Transactions,1999,42(3):535-540 (presented at the ASME-STLE Tribology Conference, Toronto, Canada,1998)
    [166]Zou, M., Dayan, J. and Green, I. Parametric Analysis for Contact Control of a Noncontacting Mechanical Face Seal. In Proceedings of Vibration, Noise & Structural Dynamics[J], Venice, Italy, 1999,4(28-30):493-499.
    [167]Zou, M., Dayan, J. and Green, I. Dynamic Simulation and Monitoring of a Noncontacting Flexibly Mounted Rotor Mechanical Face Seal[C]. IMechE, Proc. Instn. Mech. Engrs.2000,214(C9), Part C:1195-1206.
    [168]Dayan, J., Zou, M. and Green, I. Sensitivity Analysis for the Design and Operation of a Noncontacting Mechanical Face Seal. ZMechE, hoc. Znsn. Mech. Engrs.2000,214(C9) Part C 1207-1218.
    [169]Zou, M., Dayan, J. and Green, I. Feasibility of Contact Elimination of a Mechanical Face Seal through Clearance Adjustment J]. Trans. ASME, Journal of Engineering for Gas Turbines and Power.2000,122(3):478-484.
    [170]Dayan, J., Zou, M. and Green, I. Contact Elimination in Mechanical Face Seals Using Active Control[C]. In Proceedings of the IEEE 7th Mediterranean Conference on Control and Automation, Haifa, Israel,1999,28-30:618-419.
    [171]Green, I., and Barnsby, R. M. A Simultaneous Numerical Solution for the Lubrication and Dynamic Stability of Noncontacting Gas Face Seals[J]. ASME J. Tribol.,2001,123:388-394.
    [172]Ruan, B. Numerical Modeling of Dynamic Sealing Behaviors of Spiral Groove Gas Face Seals[J]. ASME J. Tribol.,2002,124:186-195.
    [173]Czeslaw Kundera. Determination and Analysis of Cross-Couplings of Axial and Angular Vibrations of a Flexibly Mounted Ring in a Non-Contacting Face Seal[J]. ASME J. Tribol.,2003, 125:797-803.
    [174]Ruger. C. J., Higgins. J. C. Reactor Coolant Pump Seal issues and Their Applicability to New reactor designs[C].16th Rector operations international topical meeting, Long Island, NY (United States),1993,8:15-18.
    [175]Harrison, D., and Watkins, R. Evaluation of the Fourties Main Oil Line Pump Seals[C]. Proceedings of the 10th International Conference on Fluid Sealing, BHRA Fluid Engineering, Cranfield, U.K., Paper Al,1984.
    [176]Dolan, P. J., Harrison, D., and Watkins, R. Mechanical Seal Selection and Testing[C]. Proceedings of the Eleventh International Conference on Fluid Sealing, BHRA Fluid Engineering, Cranfield, U.K., Paper Al,1987.
    [177]Mings, W. J. Reactor Coolant Pump Shaft Seal Behavior during Blackout Conditions[C], Conference:ASME pressure vessel and piping division conference,1985.
    [178]Reactor Risk Reference Document. NUREG-1150[R], Draft Report, U.S. Nuclear Regulatory Commission,1987.
    [179]C. A. Kittaer. Reactor Coolant Pump Shaft Seal Behavior during Station Blackout[R]. NUREG/CR-4077, U.S. Nuclear Regulatory Commission,1985.
    [180]F. Kappler. Primary-System Integrity of French Pressurized-Water Reactors during Station Blackout[J]. Nucl.Saf.,1985,26(4):427.
    [181]J. Jackson. Failure of Reactor Coolant Pump Seals [C]. Proc.8th Int. Conf. Structure Mechanics in Reactor Technology, Brussels, Belgium,1985,8(19-23), Paper D55.
    [182]R.C.Hill, Behavior of Primary Coolant Pump Shaft Seals During Station Blackout Conditions[C]. Proc. Int. Topl. Mtg. Operability of Nuclear Power Systems in Normal and Adverse Environments, Albuquerque, New Mexico, September 29-October 3,1987:193, American Nuclear Society.
    [183]S. K. Cheng. Modeling of Reactor Coolant Pump Seal LOCA Following Loss of Emergency Service Water[C]. Proc. Int. Top1. Mtg. Probabilistic Safety Assessment and Risk Management, Zurich, Switzerland, August 31-September 4,1987, Paper B.3.
    [184]Cheng, Shih-Kuei. Seal Loss-of-Coolant Accident and Recovery Actions Following Loss of Component Cooling Water[J].Source:Nuclear Technology,1989,84(3):305-314.
    [185]N. Lee. Discussions on Loop Seal Behaviour during Cold Leg Small Break LOCAs of a PWR[J]. Nucl. Engrg. Des.1987,99:453-458.
    [186]S.M. Bajorek and P.E. Meyer. Flow Distribution Due to Multiple Loop Seal Venting during a Small Break Loss-of-Coolant Accident[C]. ANS Prec.1987 National Heat Transfer Conference, Pittsburgh, PA, August 9-12,1987:80-86.
    [187]Hard Tuomisto and Pirjo Kajanto. Two-Phase Flow in a Full-Scale Loop Seal Facility[J]. Nuclear Engineering and Design,1988,107:295-305.
    [188]C.D. Fletcher and R. A. Callow. Long-Term Recovery of Westinghouse Pressurized Water Reactors Following a Large Break Loss-of-Coolant Accident[J]. Nuclear Engineering and Design,1988, 110:313-328.
    [189]C.D. Fletcher and R. A. Callow. Long-Term Recovery of Pressurized Water Reactors Following a Large Break Loss-of-Coolant Accident[R]. EG&G Idaho, Inc., EGG-TFM-7993,1989.
    [190]Sinisa Sadek. RCP Seal Leakage Analysis during Station Blackout for NPP Krsko[C]. International Conference Nuclear Energy for New Europe,2005.
    [191]Hill, R. C, and Rhodes, D. B. Behavior of Primary Coolant Pump Shaft Seals during Station Blackout Conditions[C]. International ANS/ENS Topical Meeting on Operability of Nuclear Power Systems in Normal and Adverse Environments, Sept.29-Oct.3,1986
    [192]Rhodes, D. B., Hill, R. C, and Wensel, R. G. Reactor Coolant Shaft Seal Stability during Station Blackout[R]. U.S. Nuclear Regulatory Commission Report NUREG/CR-4821,1987.
    [193]J. A. MARSI and S. Gopalakrishan. Full-Scale Station Blackout Test Conducted on Advanced RCP Mechanical Seal[J]. Nuclear Plant Journal,1988, (6):5.
    [194]Yasuna, J. A., and Hughes, W. F. A Continuous Boiling Model for Face Seals[J]. ASME J. Tribol, 1990,112(2):266-274
    [195]Rhodes, D. B., and Metcalfe, R. Preventing Dryout and Popping-Open Failures in End Face Seals[C]. Fourth ACOT Research Seminar, Sarnia, Ontario, May 28-29,1987.
    [196]Basu, P., Hughes, W. F., and Beeler, R. M. Centrifugal Inertia Effects in Two-Phase Face Seal Films[J].ASLE Transactions,1987,30(9):177-186.
    [197]Beatty, P. A., and Hughes, W. F. Turbulent Two-Phase Flow in Face Shaft Seals[J]. ASLE Transactions,1987,109(1):91-99.
    [198]Lau, S. Y., Hughes, W. F., Basu, P., and Beatty, P. A. A Simplified Model for Two Phase Face Seal Design[J]. STLE Transactions,1990,33(3):315-324.
    [199]Basu, P. Thermal Effects in Two-Phase Flow through Face Seals[D]. Ph. D. thesis, Carnegie-Mellon University, Pittsburgh, PA,1988.
    [200]Yasuna, J. A., and Hughes, W. F. Squeeze Film Dynamics of Two-Phase Seals[J]. ASME J. Tribol., 1992,114(2):236-247.
    [201]Yasuna, J. A., and Hughes, W. F. Squeeze Film Dynamics of Two-Phase Seals:Part Ⅱ-Turbulent Flow[J]. ASME J. Tribol.1994,116(7):479-487.
    [202]Etsion, I. and M. D. Pascovici. Phase Change in a Misaligned Mechanical Face Seal[J]. ASME J. Tribol.,1986,118(1):109-115.
    [203]Salant.R.F. Dynamic Behavior of Two-Phase Seals[J]. Trib. Trans.,1991,34:122-130.
    [204]Blasbalg. D. A. The Dynamic Stability of Two-Phase Mechanical Seals[D]. Ph.D. Thesis. Georgia Institute of Technology, Atlanta, GA,1994.
    [205]David A. Blasbalg. Numerical Study of Two-Phase Mechanical Seal Stability[C]. the 50th Annual Meeting, May 14-19,1995.
    [206]Etsion. I. Phase Change in a Misaligned Mechanical Face Seal[C]. STLE/ASME Trib. Conf., ASME Preprint No.95-Trib-2,1995.
    [207]Etsion. I. Hydrodynamic Effects on the Boiling Interface in a Misaligned, Two-Phase, Mechanical Seal[J]. ASME J. Tribol.1996,39(4):922-928.
    [208]Young, L. A. and Lebeck, A. O. The Design and Testing of Moving-Wave Mechanical Face Seals under Variable Operating Conditions in Water[J]. Lubrication Engineering,1986,42(11):667-685.
    [209]Young, L. A. and Lebeck, A. O. The Design and Testing of a Wavy-Tilt-Dam Mechanical Face Seal[J]. Lubrication Engineering,1989,45(5):322-329.
    [210]Etsion I, Burstein L. A Model for Mechanical Seals with Regular Microsurface Structure[J]. Tribology Transactions,1996,39(3):677-683.
    [211]Kaneko S. Application of Porous Materials to Annular Plain Seals:Part1—Static Characteristics [J]. ASME J. Tribol.,1989,112(4):655-660.
    [212]Kaneko S. Application of Porous Materials to Annular Plain Seals:Part2-Dynamic Characteristics[J]. ASME J. Tribol.,1990,112(4):624-630.
    [213]Etsion I, Michael O. Enhancing Sealing and Dynamic Performance with Partially Porous Mechanical Face Seals[J]. Tribology Transactions,1994,37(4):701-710.
    [214]Etsion I, Halperin, Greanberg. Increasing Mechanical Seals Life with Laser-Textured Seal Faces[C]. Proceeding of 15th International Conference on Fluid Seal. London:Professional Engeneering Publishing Limited,1997:3-10.
    [215]Etion I, Kligerman Y. Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces [J]. Tribology Transactions,1999,42(3):511-516.
    [216]Burstein L, Ingman D. Effect of Pore Ensemble Statistics on Load Support of Mechanical Seals With Pore-Covered Faces[J]. Tribology Transactions,1999,121:927-932.
    [217]Etion I, Halperin G. A Laser Surface Textured Hydrostatic Mechanical seal [J]. Sealing Technology, 2003(3):6-10.
    [218]于新奇等.激光加工多孔端面机械密封的摩擦特性试验研究[J].流体机械,2003,31(1):7-9.
    [219]于新奇.激光加工多孔端面机械密封的性能研究[D].华东理工大学博士学位论文,2004.
    [220]于新奇,蔡仁良.激光加工多孔端面机械密封的动压分析[J].华东理工大学学报,2004,30(4):481-484.
    [221]于新奇,陈钟祥,蔡仁良.激光加工多孔端面机械密封的参数研究[J].机械设计与制造,2005,8:83-85.
    [222]于新奇,彭培英,王振辉等.激光加工多孔密封端面的摩擦性能试验研究[J].润滑与密封,2006,8:34-37.
    [223]彭旭东,杜东波,李纪云.不同型面微孔对激光加工多孔端面机械密封性能的影响[J].摩擦学报,2006,26(4):367-371.
    [224]杜东波,骆建国,胡滨,彭旭东.激光加工多孔端面机械密封的理论研究[J].流体机械,2006,34(5):12-14.
    [225]潘晓梅,蔡永宁,骆建国等.激光加工多孔端面机械密封静压分析[J].流体机械,2007,35(3):18-20.
    [226]潘晓梅,彭旭东,骆建国等.激光加工多孔端面机械密封中空化边界条件的比较[J].润滑与密封,2007,32(2):47-50.
    [227]蔡永宁,潘晓梅,彭旭东.激光加工多孔端面机械密封变形的数值分析[J].润滑与密封,2007,32(2):81-84.
    [228]顾永泉.机械端面密封[M].东营:石油大学出版社,1994.
    [229]顾永泉.机械密封的空化和空化边界确定.流体机械.1998,26(12):16-20.
    [230]Dowson D, Taylor C M. Cavitation in Bearings. Annual Reviews[J]. Fluid Mechanics.1979,3: 35-66.
    [231]Findley J. A. Cavitation in Mechanical Face Seals[J]. Journal of Lubrication Technology.1968, 90(2):356-364.
    [232]Lebeck A O. A Study of Mixed Lubrication in Contacting Mechanical Face Seals[C]. Proc. of 4th Leeds-Lyon Symposium, London.1997:45-67.
    [233]Nau B S. Observation and Analysis of Mechnical Seal Film Characteristics[C]. Journal of Lubrication Technology.1997,102(3):41-347.
    [234]Elrod H G. A Cavitation Algorithm. Journal of Lubrication Technology[J]. Transactions of the ASME.1981,103(3):350-354
    [235]M. Rodriguez and A. Linan. Cavitation in Short Bearings[J]. Transactions of the ASME.1985, 107(1):142-144.
    [236]Bayada G, Chambat M, and Alaoui M. Variational Formulations and Finite Element Algorithms for Cavitation Problems[J]. Transactions of the ASME.1990,112 (4):398-403.
    [237]A.Kumar and J.F.Booker. A Finite Element Cavitation Algorithm[J]. Transactions of the ASME. 1991,113(4):276-286.
    [238]Kumar A. and J.F.Booker. A Finite Element Cavitation Algorithm:Application/Validation[J]. Journal of Tribology.1991,113(4):255-261.
    [239]P.Payvar, R.F.Salant. A Computational Method for Cavitation in a wavy Mechanical Seal[J]. Journal of Tribology.1992,114(1):199-204.
    [240]卢文跃.L2RCP主泵一号轴封泄漏流域异常上升[R].内部运行事件报告.2004,12.
    [241]Denny, D. F. Some Measurements of Fluid Pressure between Plane Parallel Thrust Surfaces with Special Reference to Radial-Face Seals[J]. Wear,1961,4:64-83.
    [242]Orcutt, F. K. An Investigation of the Operation and Failure of Mechanical Face Seals[J]. ASME J. Lubr. Technol.,1969,91(4):713-725.
    [243]Digard de Cuisard J., Gentile M., Bouchon M., etc. Experimental Study on Lubrication Mode in Low Pressure Mechanical Seals[J]. Proc.11th Int. Conference On Fluid Sealing, BHRA, Cannes, France, paper F2,1987:505-519.
    [244]Tournerie, B., Reungoat, D., and Frene, J. Temperature Measurements by Infrared Thermography in the Interface of a Radial Face Seal[J]. ASME J.Tribol.,1991,113(3):571-576.
    [245]Cicone T., Tournerie, B., Reungoat, D., etc. Start-Up Transient Temperature Distribution in a Mechanical Face Seal[C]. First World Tribology Congress, London.1997.
    [246]Doust, T. G., and Parmar, A. An Experimental and Theoretical Study of Pressure and Thermal Distortions in Mechanical Seal[J]. ASLE Trans.,1986,29(2):151-159.
    [247]Doust, T. G., and Parmar, A. Transient Thermoelastic Effects in a Mechanical Face Seal[C]. Proc. 11th International Conference on Fluid Sealing, BHR Group, Cannes, France paper F4,1987: 407-422.
    [248]Parmar, A. Thermal Cycling in Mechanical Seals—Causes, Predictions, Preventions[C]. Proc.13th International Conference on Fluid Sealing, BHRGroup, Brugge, Belgium,1992:507-526
    [249]Cicone, T., Tournerie, B., and Brunetiene, N. Analysis of Lubrication Regime Transition, Experimentally Observed in Liquid Face Seals, Using an Analytical Model for Thermoelastic Face Distortion[C]. Proc.16th International Conference on Fluid Sealing, BHR Group, Brugge, Belgium, 2000:449-462.
    [250]Diaz, S., and San Andres, L. Air Entrainment Versus Lubricant Vapor-ization in Squeeze Film Dampers:An Experimental Assessment of Their Fun-damental Differences[J]. ASME J. Eng. Gas Turbines Power,2001,12(3):871-877.
    [251]Hayden, M.A., Stephens, L.S. Experimental Results for a Heat Sink Mechanical Seal[C]. Proceedings of the 59th STLE Meeting, Toronto, Ontario,2004, May 17-20.
    [252]Daryl S. Schneider, Lyndon S. Stephens. An Experimental Examination of the Effect of Interface Cooling on Thermal Wear Mechanisms in Carbon Graphite[C].Proceedings of WTC2005 World Tribology Congress Ⅲ, Washington, D. C., USA,2005, September 12-16.
    [253]M. Kaneta, M. Fukahori. Pumping Action of Aligned Smooth Face Seals Due to Axial Vibrations-Experiment[J]. Transactions of the ASME.1996,108 (1):46-52.
    [254]Lambert, Philippe. A Condition-Based Monitoring System for Mechanical Seals. Sealing Technology[J],1998, (57):7-9.
    [255]Ray Clark, Henri Azibert, Lanre Oshinowo. Computer simulation of mechanical seal leads to design change that improves coolant circulation [J]. Materials & Design,2002,23(1):113-117.
    [256]宋鹏云,陈匡民.零压差零泄漏液体润滑螺旋槽机械密封性能的实验研究[J].流体机械.2000,28(7):11-14.
    [257]宋鹏云,陈匡民.端面内侧开螺旋槽机械密封性能的实验研究[J].润滑与密封.2000,4:34-36.
    [258]任宝杰,郝木明.多工况机械密封性能实验装置及测控系统设计[J].润滑与密封.2009,34(12):98-102.
    [259]周剑锋,顾伯勤.机械密封试验机及测试技术研究[J].石油化工设备.2003,32(6):4-6.
    [260]周剑锋,顾伯勤.机械密封试验机用传感器选型及误差分析[J].机床与液压.2004,6:27,157-158.
    [261]仲剑锋,于天明.双列反向螺旋槽上游泵送密封性能实验研究[J].石油机械.2008,36(1):22-24,32.
    [262]杨宝亮,郝木明.双向零泄漏作接触式机械密封的研究及应用[J].润滑与密封.2006,3:132-135.
    [263]郝木明,胡丹梅.新型上游泵送机械密封的性能研究[J].化工机械.2001,28(1):12-18.
    [264]李叶枫,盛颂恩.多孔端面气体密封无压开启特性的实验研究[J].润滑与密封.2010,35(8),8-11.
    [265]M. Pugh. Westinghouse Reactor Coolant Pump Seal Performance Improvement Guide[R],2000, Technical Report.
    [266]Reynolds O. On the Theory of Lubrication and Its Application to Mr. Beauchamp Tomer's Experiments Including an Experimental Determination of the Viscosity of Olive Oil[C]. Philosophical Transactions of the Royal Society, London,1986,177:157-254.
    [267]吴望一.流体力学[M].北京:北京大学出版社,1983.
    [268]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992.
    [269]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2000.
    [270]周剑锋.机械密封中的热流体动力效应研究[D].南京工业大学,2006.
    [271]史里希廷.边界层理论[M].北京:科学出版社,1988.
    [272]杨沛然.流体润滑数值分析[M].北京:国防工业出版社,1998.
    [273]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [274]赵中,彭旭东,盛颂恩等.多孔扇形分布端面机械密封性能的数值分析[J].化工学报,2009,60(4):965-971.
    [275]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [276]徐荣桥.结构分析的有限元法与MATLAB程序设计[M].北京:人民交通出版社,2006.
    [277]刘伟.核主泵用流体静压型机械密封热弹流效应理论研究[D].浙江工业大学硕十学位论文,2010.
    [278]Brunetiere N, Galenne E, Tournerie B, et al. Modelling of Non-Laminar Phenomena in High Reliability Hydrostatic Seals Operating in Extreme Conditions[J], Tribo. International,2008,41(4): 211-220.
    [279]Rcutt F K. An Investigation of the Operation and Failure of Mechanical Face Seals[J]. ASME Journal of Lubrication Technology,1969,91(4):713-725.
    [280]Tournerie B, Reungoat D, Frene J. Temperature Measurements by Infrared Thermography in the Interface of a Radial Face Seal[J]. ASME J. Tribol.,1991,113(3):571-576.
    [281]PENG Xudong, FENG Xiangzhong, HU Danmei, et al. Numerical analysis of deformation of a non-contacting gas lubricated seal [J]. Tribology,2004,24(6):536-540.
    [282]彭旭东,刘伟.热弹变形对核主泵用流体静压型机械密封性能影响的研究[J].机械工程学报,2010,46(2):146-153.
    [283]Gene Zottola. Testing Materials for Use in a Hydrostatic Radial Taper Seal[J], Lubrication Engineering,1987,43(6):426-432.
    [284]Etsion I. State of the Art in Laser Surface Texturing[J]. Transactions of the ASME,2005,127(1): 248-253.
    [285]Arghir M, Billy F, Pineau G, et al. Theoretical Analysis of Textured "Damper" Annular Seals[J]. J. of Tribology,2007,129(3):669-678.
    [286]Razzaque M M, Faisal M. Performance of Mechanical Face Seals with Surface Micropores[J]. Journal of Mechanical Engineering,2007,37(6):77-80.
    [287]Stachowiak G, Podsiadlo P.3-D Characterization, Optimization, and Classification of Textured Surfaces [J]. Tribology Letter,2008,32(1):13-21.
    [288]Brizmer V, Kligennan Y, Etsion I. A Laser Surface Textured Parallel Thrust Bearing[J]. Tribology Trans.,2003,46(3):397-403
    [289]Zhao Zhong, Peng Xudong, Sheng Song'en, et al. Numerical Analysis of Laser Textured Mechanical Seals with a Porous Sector Face [J]. J. of CIESC,2009,60(4):965-971.
    [290]顾伯勤.流体力学[M].北京:中国科学文化出版社,2002.
    [291]Snegovsky F. P., Buljuk N. G. Study of Lubrication of Sliding Bearing with Microcavities on Journals[J]. Friction and Wear,1983,4(2):321-328.
    [292]Feldman Y., Kligerman Y., Etsion I. A Hydrostatic Laser Surface Textured Gas Seal[J]. Tribology Letter,2006,22(4):21-28.
    [293]A. Jameson, W. Schmidit, F. Turkel. Numerical Solution of the Euler Equations by Finite Volume Methods Using Rung-Kuta Time-Stepping Schemes[J]. AIAA paper,1981:81-125.
    [294]Reddi M M. Finite Element Solution of the Incompressible Lubrication Problem[J]. ASME J. of Lubr.Tech.,1969,91(3):524-533.
    [295]Booker J F, Huebner K H. Application of Finite Element Methods to Lubrication:An Engineering Approach[J].ASME J. of Lubr.Tech.,1972,94(4):313-323.
    [296]Ruan B. Finite Element Analysis of the Spiral Groove Gas Face at the Slow Speed and the Low Pressure Condition-Slip Flow Consideration[J]. Tribology Transactions,2000,43(3):411-418.
    [297]Faria M T C. An Efficient Finite Element Procedure for Analysis of High-Speed Spiral Groove Gas Face Seals[J]. ASME J.of Tribology,2001,123(1):205-210.
    [298]王美华,董勋.人字形螺旋槽机械密封热变形及力变形[J].流体工程,1992,20(5):34-38.
    [299]吴宗祥,郝木明,顾永泉.低速干气端面密封性能研究[J].流体机械,1994,22(6):7-11.
    [300]胡丹梅,吴宗祥.直线槽端面气体密封的分析计算[J].流体机械,1996,24(9):16-22.
    [301]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1990.
    [302]刘暾,刘育华,陈世杰等.静压气体润滑[M].哈尔滨:哈尔滨工业大学出版社,1990.
    [303]章本照.流体力学中的有限元方法[M].北京:机械工业出版社,1986.
    [304]李开泰,黄艾香,黄庆怀.有限元方法及其应用[M].西安:西安交通大学出版社,1984.
    [305]何光渝,高永利Visual Fortran常用数值算法集[M].北京:科学出版社,2002.
    [306]孙大成.润滑力学讲义[M].北京:北京友谊出版社,1990.
    [307]Salant R F, Homiller S J. The Effects of Shallow Groove Patterns on Mechanical Seals LeakagefJ]. Tribology Transactions,1992,35(1):142-148.
    [308]Feldman, Y., Kligerman Y, Etsion I. Stiffness and Efficiency Optimization of a Hydrostatic Laser Surface Textured Gas Seal[J]. ASME J.Tribol,2007,129(2):407-410.
    [309]Peng Xudong, Li Jiyun, Sheng Songen, et al. Laser-Textured Mechanical Seals with Various Porous Faces[P]:CN,200710067282.7.2008-07-16.
    [310]GB/T 14211-93,机械密封试验方法[S].1993.
    [311]赵增顺,贾丽.高参数机械密封试验台数据采集及控制系统[J].石油机械,2004,32(1):1-3.
    [312]赖华强,刘录.变工况机械密封的研制与开发[J].水泵技术,1999,(2):13-16.
    [313]彭旭东,顾永泉.相态监控机械密封的研制和应用[J].石油化工设备技术,1995,16(3):30-33.
    [314]Mayer E.机械密封[M].北京:化学工业出版社,1981.
    [315]雅贤,李松虎.流体动压效应在机械密封里应用——介绍弧形槽流体动压型机械密封[J].北京化工学院学报,1986,13(4):1-8.
    [316]周剑峰,顾伯勤.机械密封试验机及测试技术研究[J].石油化工设备,2003,32(6):5-6.
    [317]杨光,史小路,杨家春等.霍尔传感器在轧辊速度测量中的应用[J].机械制造与自动化,2006,35(4):63-65.
    [318]袁希光.传感器技术手册[M].北京:国防工业出版社,1989.
    [319]姚平喜.压力传感器的正确选用与安装[J].锻压机械,1991,(4):52-54.
    [320]曲波,肖圣兵,吕建平.工业常用传感器选型指南[M].北京:清华大学出版社,2002.
    [321]杨帮文.新编传感器实用宝典[M].北京:北京航空航天大学出版社,1993.
    [322]陈志焕,符永宏,袁润等.全液体润滑机械密封及其加工技术[J].润滑与密封,2005,172:190-194.
    [323]虞钢,虞和济.激光智能加工工程[M].北京:冶金工业出版社,2002.
    [324]李晓莹.传感器与测试技术[M].北京:高等教育出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700