直接碳固体氧化物燃料电池
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接以碳为燃料的直接碳燃料电池(Direct Carbon Fuel Cell,DCFC),理论转化效率高达100%以上,可使用经过简单加工处理的煤为燃料,为高效、清洁地使用煤提供了一种新途径。其中以固体氧化物为电解质的直接碳固体氧化物燃料电池(Direct Carbon Solid Oxide Fuel Cell,DC-SOFC)采用全固态结构,避免了使用液态电解质带来的腐蚀泄露问题,碳燃料潜在的电能达到~9Ah/g,因此DC-SOFC可能成为一种高储能密度电池,具有可观的发展前景。目前,DC-SOFC的研究还处在实验室基础研究阶段。
     本论文采用注浆成型工艺制备了YSZ电解质管,在1600oC下烧结4h后,机械强度高,微观结构致密,达到了制备电池的要求。
     本论文设计了一种结构简单,容易制作,采用全固态结构的管式YSZ电解质支撑的DC-SOFC装置。采用纯石墨为燃料研究了电池的输出性能,结果表明设计的DC-SOFC具有可行性,但电池衰减严重。通过热力学平衡计算了过量的碳和氧气反应在各个温度下达到平衡时产物的成分,在温度>750oC时产物主要是CO气体,温度<750oC时产物主要是CO2气体,结合实验结果和理论计算分析了DC-SOFC的反应机理,阳极上CO的电化学氧化反应和碳燃料的Boudouard反应是其关键反应。
     本论文改变碳燃料,使用活性炭为燃料进行了电池输出性能、阻抗性能和稳定性的研究。结果表明电池的界面极化电阻在电池总耗损中占主导,没有使用任何流化气体电池稳定运行了37h,比石墨燃料稳定,证明了电池可以自维持工作。指出电池的性能和燃料自身的性质有关,阳极上CO的电化学氧化反应和碳燃料的Boudouard反应两反应的反应速率相协调,电池才能维持长久稳定运行。
     本论文在电池阳极和碳燃料中添加了GDC和Fe催化剂,研究了其对电池输出性能,阻抗性能和稳定性的影响,表征了电池的微观结构和碳燃料在电池反应前后的变化。结果表明添加的GDC改善了阳极结构,催化了阳极上CO的电化学氧化反应,减小了界面极化电阻,大大提高了电池的性能,Fe催化剂促进了碳燃料的Boudouard反应,使得碳燃料充分被消耗,添加的催化剂也提高了电池的稳定性。EDX表征表明电池反应后燃料残余物中含C极少,可以忽略。XRD表征表明燃料残余物主要是纳米级的Fe_2O_3。
     本论文针对Boudouard反应催化剂,研究了Fe催化剂和Ni催化剂的含量对Boudouard反应的影响。当Fe含量为5-7%和Ni含量为5%及以上时,对活性炭Boudouard反应的催化效果达到最好。
     本论文制备了分别以Ag-SDC和Ni-SDC为阳极的YSZ电解管支撑型SOFC,研究了它在干CO燃料下的输出性能、阻抗性能和稳定性。干CO燃料下,Ag-SDC阳极的性能大大优于Ni-SDC阳极的;Ag-SDC阳极稳定运行了95h其性能只下降了8.3%,而Ni-SDC阳极只运行了37h,性能下降了77.6%。SEM表征表明Ag-SDC阳极在稳定性测试后,Ag有轻微的烧结现象,Ni-SDC阳极在稳定性测试后,结构发生很大变化,Ni烧结严重。EDX分析结果表明Ag-SDC阳极表面碳沉积很少,可以忽略;而Ni-SDC阳极表面碳沉积很严重。
Direct carbon fuel cell (DCFC), which converts the chemical energy of carbon directly to electricity with a theoretical conversion efficiency a little bit over 100%, can use simply processed coal as fuel, provides a new way for using coal cleanly and efficiently. Direct carbon solid oxide fuel cell (DC-SOFC) is a whole-solid state device which has no problem of liquid corrosion and leakage. As carbon has a theoretical energy density of ~9Ah/g, there is great potential to developt DC-SOFC into a high-performance battery. So DC-SOFC has a considerable development prospect. At present, the research of DC-SOFC is still in its early stage.
     In the work presented in this paper, YSZ electrolyte tubes have been prepared by slip casting. After sintered at 1600oC for 4h, they become dense and their mechanical strength is high. All these properties meet the requirements for preparing the SOFCs.
     In the present work, we have designed a YSZ electrolyte supporting tubular DC-SOFC device which has a simple and whole-solid-state structure. The output performance of the DC-SOFC using pure graphite as fuel has been researched. The results show that the designed DC-SOFC is feasible. However, the cell performance decayes seriously. The composition of the product produced by the reaction of sufficient carbon and O_2 has been calculated through the thermodynamic equilibrium theory. When the temperature is larger than 750oC, the produced gas is mainly CO, while when the temperature is smaller than 750oC, the produced gas is mainly CO_2. The reaction mechanism of DC-SOFC has been analysed through the experimental results and the theoretical calculation. It is pointed out that the electrochemical oxidation reaction of CO on the anode and the Boudouard reaction of carbon fuel are the key reactions in a DC-SOFC.
     In the present work, DC-SOFCs with activated carbon are prepared and their output performance, resistance and stability have been studied. The results show that the interfacial polarization resistance of the cell dominates the total loss in the cell. A 37h stable operation of a DC-SOFC with activated carbon has been realized, demonstrating that such DC-SOFCs can be self-sustaining. The cell performance is related to the nature of carbon fuel. It is suggested that the electrochemical oxidation reaction of CO on the anode and the Boudouard reaction of carbon fuel can maintain long-term stable operation as their reaction rates are coordinate.
     In the present work, GDC and Fe catalysts have been added to the anode and carbon fuel, respectively, and their influence on the cell output performance, impedance performance and stability have been studied. The change of the cell microstructure and carbon fuel micro-morphology before and after the cell reaction also has been characterized. The results show that the added GDC improves the anode structure and catalyses the electrochemical oxidation reaction of CO on the anode, and reduces the interfacial polarization resistance, so that the cell performance is greatly improved. Fe catalyst catalyses the Boudouard reaction of carbon fuel and makes the carbon fuel fully consumed. The stability of the cell is also improved by the added catalysts. EDX analysis shows that after the cell reaction, the fuel residue contains very little carbon that can be ignored. XRD analysis shows that the fuel residue is mainly nanoscale Fe_2O_3.
     In this paper, the influence of the content of Fe and Ni catalysts on the Boudouard reaction has been studied. When the content of Fe is 5-7% and Ni is of 5% or more, the catalytic effect is the best.
     In the present work, YSZ electrolyte supporting tubular SOFCs with Ag-SDC and Ni-SDC anode, respectively, have been prepared. The output performance, the impedance performance and stability operated on CO fuel have been studied. Performance of Ag-SDC anode is much better than that of Ni-SDC anode on dry CO fuel. After stable operation of a 95h, the performance of Ag-SDC anode declined only 8.3%, while the performance of Ni-SDC anode declined 77.6%, after stable operation of a 37h. SEM characterization shows that Ag is slightly sintered after the stability test of Ag-SDC anode, while the Ni-SDC anode structure changes considerably and Ni is sintered seriously. EDX and XRD analysis show that carbon deposition on Ag-SDC anode surface is rare that can be ignored, while carbon deposition on Ni-SDC anode surface is very serious.
引文
[1] Joon K. Fuel cells - a 21st century power system[J]. Journal of Power Sources. 1998, 71(1-2): 12-18.
    [2] Singhal S C. Advances in solid oxide fuel cell technology[J]. Solid State Ionics. 2000, 135(1-4): 305-313.
    [3] Minh N Q. Ceramic fuel cells[J]. Journal of the American Ceramic Society. 1993, 76(3): 563-588.
    [4] Kordesch K, Hacker V, Gsellmann J, et al. Alkaline fuel cells applications[J]. Journal of Power Sources. 2000, 86(1-2): 162-165.
    [5] Ledjeff-Hey K, Heinzel A. Critical issues and future prospects for solid polymer fuel cells[J]. Journal of Power Sources. 1996, 61(1-2): 125-127.
    [6] Bosio B, Costamagna P, Parodi F, et al. Industrial experience on the development of the molten carbonate fuel cell technology[J]. Journal of Power Sources. 1998, 74(2): 175-187.
    [7] Drenckhahn W. SOFC in dispersed power generation[J]. Journal of the European Ceramic Society. 1999, 19(6-7): 861-863.
    [8] Sjunnesson L. Utilities and their investments in fuel cells[J]. Journal of Power Sources. 1998, 71(1-2): 41-44.
    [9]衣宝廉.燃料电池—原理.技术.应用[M].北京:化学工业出版社, 2004: 428-515.
    [10]韩敏芳,彭苏萍.固体氧化物燃料电池材料及其制备[M].北京:科学出版社, 2004: 20-98.
    [11] Ji Y, Liu J, Lu Z, et al. Study on the properties of Al_2O_3-doped (ZrO_2)0.92(Y_2O_3)0.08 electrolyte[J]. Solid State Ionics. 1999, 126(3-4): 277-283.
    [12] Liu J, Barnett S A. Thin yttrium-stabilized zirconia electrolyte solid oxide fuel cells by centrifugal casting[J]. Journal of the American Ceramic Society. 2002, 85(12): 3096-3098.
    [13] Gaudon M, Menzler N H, Djurado E, et al. YSZ electrolyte of anode-supported SOFCs prepared from sub micron YSZ powders[J]. Journal of Materials Science. 2005, 40(14): 3735-3743.
    [14] Laguna-Bercero M A, Campana R, Larrea A, et al. Performance and Aging of Microtubular YSZ-based Solid Oxide Regenerative Fuel Cells[J]. Fuel Cells. 2011, 11(1):116-123.
    [15] Talebi T, Haji M, Raissi B, et al. YSZ electrolyte coating on NiO-YSZ composite by electrophoretic deposition for solid oxide fuel cells (SOFCs)[J]. International Journal of Hydrogen Energy. 2010, 35(17): 9455-9459.
    [16] Wang S, Hsu Y, Wang C, et al. Solid oxide fuel cells with Sm_(0.2)Ce_(0.8)O_(2-δ) electrolyte film deposited by novel aerosol deposition method[J]. Journal of Power Sources. 2011, 196(11): 5064-5069.
    [17] Wu W, Huang J, Chiba A. Synthesis and properties of samaria-doped ceria electrolyte for IT-SOFCs by EDTA-citrate complexing method[J]. Journal of Power Sources. 2010, 195(18): 5868-5874.
    [18] Chen M, Kim B H, Xu Q, et al. Preparation and electrochemical properties of Ni-SDC thin films for IT-SOFC anode[J]. Journal of Membrane Science. 2009, 334(1-2): 138-147.
    [19] Wang S, Inaba H, Tagawa H, et al. Nonstoichiometry of Ce0.9Gd0.1O1.95-x[J]. Solid State Ionics. 1998, 107(1-2): 73-79.
    [20] Kharton V V, Figueiredo F M, Navarro L, et al. Ceria-based materials for solid oxide fuel cell[J]. Journal of Materials Science. 2001, 36(5): 1105-1117.
    [21] Fuentes R O, Baker R T. Synthesis and properties of Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes[J]. International Journal of Hydrogen Energy. 2008, 33(13): 3480-3484.
    [22] Tianshu Z, Hing P, Huang H, et al. Ionic conductivity in the CeO_2-Gd_2O_3 system (0.05≤Gd/Ce≤0.4) prepared by oxalate coprecipitation[J]. Solid State Ionics. 2002, 148(3-4): 567-573.
    [23] Yan J, Matsumoto H, Akbay T, et al. Preparation of LaGaO_3-based perovskite oxide film by a pulsed-laser ablation method and application as a solid oxide fuel cell electrolyte[J]. Journal of Power Sources. 2006, 157(2): 714-719.
    [24] Guo W M, Liu J, Zhang Y H. Electrical and stability performance of anode-supported solid oxide fuel cells with strontium-and magnesium-doped lanthanum gallate thin electrolyte[J]. Electrochimica Acta. 2008, 53(13): 4420-4427.
    [25] Bi Z H, Yi B L, Wang Z W, et al. A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes[J]. Electrochemical and Solid State Letters. 2004, 7(5):A105-A107.
    [26] Jin C, Yang C, Zhao F, et al. Direct-methane solid oxide fuel cells with Cu1.3Mn1.7O4 spinel internal reforming layer[J]. Electrochemistry Communications. 2010, 12(10): 1450-1452.
    [27] Ye X, Wang S R, Hu Q, et al. Improvement of Cu-CeO_2 anodes for SOFCs running on ethanol fuels[J]. Solid State Ionics. 2009, 180(2-3): 276-281.
    [28] Fuerte A, Valenzuela R X, Daza L. Preparation and characterisation of SOFC anodic materials based on Ce-Cu[J]. Journal of Power Sources. 2007, 169(1): 47-52.
    [29] Lay E, Gauthier G, Rosini S B, et al. Ce-substituted LSCM as new anode material for SOFC operating in dry methane[J]. Solid State Ionics. 2008, 179(27-32): 1562-1566.
    [30] Ye X, Wang S R, Wang Z R, et al. Use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn0.5O_3 materials in composite anodes for direct ethanol solid oxide fuel cells[J]. Journal of Power Sources. 2008, 183(2): 512-517.
    [31] Zhang Y, Shen Y, Du X, et al. Nanostructured GDC-impregnated La_(0.7)Ca_(0.3)CrO_(3-δ) symmetrical electrodes for solid oxide fuel cells operating on hydrogen and city gas[J]. International Journal of Hydrogen Energy. 2011, 36(5): 3673-3680.
    [32] Zhu X, L Z, Wei B, et al. Fabrication and performance of membrane solid oxide fuel cells with La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3-δ) impregnated anodes[J]. Journal of Power Sources. 2010, 195(7): 1793-1798.
    [33] Sengodan S, Yeo H J, Shin J Y, et al. Assessment of perovskite-type La_(0.8)Sr_(0.2)Sc_xMn_(1-x)O_(3-δ) oxides as anodes for intermediate-temperature solid oxide fuel cells using hydrocarbon fuels[J]. Journal of Power Sources. 2011, 196(6): 3083-3088.
    [34] Liang M, Yu B, Wen M, et al. Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism[J]. Journal of Power Sources. 2009, 190(2): 341-345.
    [35] Ovenstone J, White J S, Misture S T. Phase transitions and phase decomposition of La_(1-x)Sr_xCoO_(3-δ) in low oxygen partial pressures[J]. Journal of Power Sources. 2008, 181(1): 56-61.
    [36] Liu Y, Yasumoto K, Hashimoto S, et al. Development of Ceria Based SOFCs With a High Performance La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3-Ce_(0.9)Gd_(0.1)O_(1.95)-Ag Composite Cathode[J]. Journal ofFuel Cell Science and Technology. 2010, 7(6): 61001-61003.
    [37] Leng Y, Chan S H, Liu Q. Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte[J]. International Journal of Hydrogen Energy. 2008, 33(14): 3808-3817.
    [38] Fu Y. Sm_(0.5)Sr_(0.5)Co_(0.4)Ni_(0.6)O_(3-δ)-Sm_(0.2)Ce_(0.8)O_(1.9) as a potential cathode for intermediate-temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy. 2010, 35(16): 8663-8669.
    [39] Yang S, He T, He Q. Sm_(0.5)Sr_(0.5)CoO_3 cathode material from glycine-nitrate process: Formation, characterization, and application in LaGaO3-based solid oxide fuel cells[J]. Journal of Alloys and Compounds. 2008, 450(1-2): 400-404.
    [40] Kim Y, Kim-Lohsoontorn P, Baek S, et al. Electrochemical performance of unsintered Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ), La_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_(3-δ), and La_(0.8)Sr_(0.2)MnO_(3-δ) cathodes for metal-supported solid oxide fuel cells[J]. International Journal of Hydrogen Energy. 2011, 36(4): 3138-3146.
    [41] Magnone E. A Systematic Literature Review on BSCF-Based Cathodes for Solid Oxide Fuel Cell Applications[J]. Journal of Fuel Cell Science and Technology. 2010, 7(0640016).
    [42]李兵,王培红.氢能经济发展现状及展望[J].上海电力. 2010(3): 173-175.
    [43]欧训民.氢能制取和储存技术研究发展综述[J].能源研究与信息. 2009, 25(1): 1-4.
    [44] Kuppler R J, Timmons D J, Fang Q, et al. Potential applications of metal-organic frameworks[J]. Coordination Chemistry Reviews. 2009, 253(23-24): 3042-3066.
    [45] Lu C, Worrell W L, Wang C, et al. Development of solid oxide fuel cells for the direct oxidation of hydrocarbon fuels[J]. Solid State Ionics. 2002, 152-153: 393-397.
    [46] Lin Y B, Zhan Z L, Liu J, et al. Direct operation of solid oxide fuel cells with methane fuel[J]. Solid State Ionics. 2005, 176(23-24): 1827-1835.
    [47] Liu J A, Barnett S A. Operation of anode-supported solid oxide fuel cells on methane and natural gas[J]. Solid State Ionics. 2003, 158(1-2): 11-16.
    [48] Zhu W, Xia C R, Fan J, et al. Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells[J]. Journal of Power Sources. 2006, 160(2): 897-902.
    [49] Costa-Nunes O, Gorte R J, Vohs J M. Comparison of the performance of Cu-CeO_2-YSZ and Ni-YSZ composite SOFC anodes with H_2, CO, and syngas[J]. Journal of Power Sources.2005, 141(2): 241-249.
    [50] An S, Lu C, Worrell W L, et al. Characterization of Cu-CeO_2 direct hydrocarbon anodes in a solid oxide fuel cell with lanthanum gallate electrolyte[J]. Solid State Ionics. 2004, 175(1-4): 135-138.
    [51] Lu C, Worrell W L, Vohs J M, et al. A comparison of Cu-ceria-SDC and Au-ceria-SDC composites for SOFC anodes[J]. Journal of the Electrochemical Society. 2003, 150(10): A1357-A1359.
    [52] He H P, Vohs J M, Gorte R J. Effect of synthesis conditions on the performance of Cu-CeO_2-YSZ anodes in SOFCs[J]. Journal of the Electrochemical Society. 2003, 150(11): A1470-A1475.
    [53] Jung S W, Lu C, He H P, et al. Influence of composition and Cu impregnation method on the performance of Cu/CeO_2/YSZ SOFC anodes[J]. Journal of Power Sources. 2006, 154(1): 42-50.
    [54] Tao S W, Irvine J. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nature Materials. 2003, 2(5): 320-323.
    [55] Huang Y H, Dass R I, Xing Z L, et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science. 2006, 312(5771): 254-257.
    [56] Homel M, Gur T M, Koh J H, et al. Carbon monoxide-fueled solid oxide fuel cell[J]. Journal of Power Sources. 2010, 195(19): 6367-6372.
    [57] Andreassi L, Toro C, Ubertini S. Modeling Carbon Monoxide Direct Oxidation in Solid Oxide Fuel Cells[J]. Journal of Fuel Cell Science and Technology. 2009, 6(0213072).
    [58] Offer G J, Brandon N P. The effect of current density and temperature on the degradation of nickel cermet electrodes by carbon monoxide in solid oxide fuel cells[J]. Chemical Engineering Science. 2009, 64(10): 2291-2300.
    [59] Wang F, Jung G, Su A, et al. Porous Ag-Ce_(0.8)Sm_(0.2)O_(1.9) cermets as anode materials for intermediate temperature solid oxide fuel cells using CO fuel[J]. Journal of Power Sources. 2008, 185(2): 862-866.
    [60] Pomfret M B, Owrutsky J C, Walker R A. In-situ studies of fuel oxidation in SOFCs[J]. Analytical Chemistry. 2007, 79(6): 2367-2372.
    [61] Sasaki K, Hori Y, Kikuchi R, et al. Current-voltage characteristics and impedance 98analysis of solid oxide fuel cells for mixed H_2 and CO gases[J]. Journal of the Electrochemical Society. 2002, 149(3): A227-A233.
    [62] Lauvstad G O, Tunold R, Sunde S. Electrochemical oxidation of CO on Pt and Ni point electrodes in contact with an yttria-stabilized zirconia electrolyte - I. Modeling of steady-state and impedance behavior[J]. Journal of the Electrochemical Society. 2002, 149(12): E497-E505.
    [63] Weber A, Sauer B, M Ller A C, et al. Oxidation of H_2, CO and methane in SOFCs with Ni/YSZ-cermet anodes[J]. Solid State Ionics. 2002, 152-153: 543-550.
    [64] Matsuzaki Y, Yasuda I. Electrochemical oxidation of H_2 and CO in a H_2-H_2O-CO-CO_2 system at the interface of a Ni-YSZ cermet electrode and YSZ electrolyte[J]. Journal of the Electrochemical Society. 2000, 147(5): 1630-1635.
    [65] Holtappels P, De Haart L, Stimming U, et al. Reaction of CO/CO_2 gas mixtures on Ni-YSZ cermet electrodes[J]. Journal of Applied Electrochemistry. 1999, 29(5): 561-568.
    [66] Yoshida N, Yamamoto T, Minoguchi F, et al. Effect of hydrogen on carbon deposition from carbon monoxide on nickel catalyst[J]. Catalysis Letters. 1994, 23: 237-243.
    [67] Sumi H, Lee Y, Muroyama H, et al. Effect of carbon deposition by carbon monoxide disproportionation on electrochemical characteristics at low temperature operation for solid oxide fuel cells[J]. Journal of Power Sources. 2011, 196(10): 4451-4457.
    [68] Du Y, Sammes N M, Tompsett G A. Optimisation parameters for the extrusion of thin YSZ tubes for SOFC electrolytes[J]. Journal of the European Ceramic Society. 2000, 20(7): 959-965.
    [69] Song J, Sammes N M. Fabrication of Anode-Supported Tubular Solid Oxide Fuel Cel lUsing an Extrusion and Vacuum Infiltration Techniques[J]. Journal of Fuel Cell Science and Technology. 2010, 7(6): 61011-61013.
    [70] Droushiotis N, Doraswami U, Ivey D, et al. Fabrication by Co-extrusion and electrochemical characterization of micro-tubular hollow fibre solid oxide fuel cells[J]. Electrochemistry Communications. 2010, 12(6): 792-795.
    [71] Sui J, Liu J. Slip-cast Ce_(0.8)Sm_(0.2)O_(1.9) cone-shaped SOFC[J]. Journal of the American Ceramic Society. 2008, 91(4): 1335-1337.
    [72] Ding J, Liu J, Yuan W S, et al. Slip casting combined with colloidal spray coating infabrication of tubular anode-supported solid oxide fuel cells[J]. Journal of the European Ceramic Society. 2008, 28: 3113-3117.
    [73] Cao D, Sun Y, Wang G. Direct carbon fuel cell: Fundamentals and recent developments[J]. Journal of Power Sources. 2007, 167(2): 250-257.
    [74] Cooper J F. Direct conversion of coal and coal-derived carbon in fuel cells[Z]. Rochester, NY, United States: 2004375-385.
    [75] Zecevic S, Patton E M, Parhami P. Carbon-air fuel cell without a reforming process[J]. Carbon. 2004, 42(10): 1983-1993.
    [76] Goret J, Tremillon B. Chemical and electrochemical properties in fused alkaline hydroxides. IV. Electrochemical behavior of some metals used as indicator electrodes.[J]. Electrochimica Acta. 1967, 12(8): 1065-1083.
    [77] Zecevica S, Pattona E M, Parhamia P. Direct electrochemical power generation from carbon in fuel cells with molten hydroxide electrolyte[J]. Chemical Engineering Communications. 2005, 192(12): 1655-1670.
    [78] Kudo T, Hisamitsu Y, Kihara K, et al. X-ray diffractometric study of in situ oxidation of Ni in Li/K and Li/Na carbonate eutectic[J]. Journal of Power Sources. 2002, 104(2): 272-280.
    [79] Cherepy N, Krueger R, Cooper J F. Direct electrochemical conversion of carbon anode fuels in molten salt media[M]. Pennington:Electrochemical Society Inc, 2001: 2000, 64-66.
    [80] Peelen W H A, Olivry M, Au S F, et al. Electrochemical oxidation of carbon in a 62-38mol% Li-K carbonate melt[J]. Journal of Applied Electrochemistry. 2000, 30(12): 1389-1395.
    [81] Li X, Zhu Z H, De Marco R, et al. Factors That Determine the Performance of Carbon Fuels in the Direct Carbon Fuel Cell[J]. Industrial & Engineering Chemistry Research. 2008, 47(23): 9670-9677.
    [82] Li X, Zhu Z, Chen J, et al. Surface modification of carbon fuels for direct carbon fuel cells[J]. Journal of Power Sources. 2009, 186(1): 1-9.
    [83] Li X, Zhu Z, De Marco R, et al. Evaluation of raw coals as fuels for direct carbon fuel cells[J]. Journal of Power Sources. 2010, 195(13): 4051-4058.
    [84] Li X, Zhu Z H, De Marco R, et al. Modification of Coal as a Fuel for the Direct CarbonFuel Cell[J]. Journal of Physical Chemistry a. 2010, 114(11): 3855-3862.
    [85] Li X, Chen J L, Zhu Z H, et al. Carbon Nanofibers Synthesized by Catalytic Decomposition of Methane and Their Electrochemical Performance in a Direct Carbon Fuel Cell[J]. Energy & Fuels. 2009, 23(7): 3721-3731.
    [86]王贵领,王静,曹殿学,等.炭在熔融碳酸盐中的直接电化学氧化性能[J].高等学校化学学报. 2008, 29(9): 1829-1833.
    [87] Cao D, Wang G, Wang C, et al. Enhancement of electrooxidation activity of activated carbon for direct carbon fuel cell[J]. International Journal of Hydrogen Energy. 2010, 35(4): 1778-1782.
    [88] Chen M M, Wang C Y, Niu X M, et al. Carbon anode in direct carbon fuel cell[J]. International Journal of Hydrogen Energy. 2010, 35(7): 2732-2736.
    [89] Baur E, Preis H. Fuel cells with rigid conductors[J]. Elektrochemie Und Angewandte Physikalische Chemie. 1937, 43: 727-732.
    [90] T. K M, A. M W, S. B L, et al. Performance of the Gen 3.1 Liquid Tin Anode SOFC on direct JP-8 fuel[J]. Ceramic Engineering and Science Proceedings. 2009, 29(5): 41-52.
    [91] Koslowske M T, Mcphee W A, Bateman L S, et al. Advanced cell development for increased direct JP-8 performance in the Liquid Tin Anode SOFC[J]. Ceramic Engineering and Science Proceedings. 2010, 30(4): 27-35.
    [92] Tao T T, Mcphee W, Koslowske M, et al. Liquid tin anode SOFC for direct fuel conversion - impact of coal and JP-8 impurities[J]. Ecs Transactions. 2009, 25(2): 1115-1124.
    [93] Tao T T, Mcphee W A, Koslowske M T, et al. Advancement in Liquid Tin Anode - Solid Oxide Fuel Cell Technology[J]. Ecs Transactions. 2008, 12(1): 681-690.
    [94] Bentley J, Tao T, Koslowske M. Direct fuel conversion using a Liquid Tin Anode SOFC[J]. Abstracts of Papers of the American Chemical Society. 2007, 234: 55.
    [95] Tao T, Bateman L, Bentley J, et al. Liquid Tin Anode Solid Oxide Fuel Cell for direct carbonaceous fuel conversion[J]. Ecs Transactions. 2007, 5(1): 463-472.
    [96] Tao T, Slaney M, Bateman L, et al. Anode Polarization in Liquid Tin Anode Solid Oxide Fuel Cell[J]. Ecs Transactions. 2007, 7(1): 1389-1397.
    [97] Tao T. Carbon-oxygen fuel cell[P]. US Patent No.6692861.
    [98] Program on Technology Innovation Systems Assessment of Direct Carbon FuelCells[R]. Palo Alto, CA: EPRI, 2008.
    [99] Lipilin A S, Balachov I I, Dubois L H, et al. Liquid anode electrochemical cell[P]. US Patent No. 20060019132.
    [100] Jain S L, Lakeman J B, Pointon K D, et al. A novel direct carbon fuel cell concept[J]. Journal of Fuel Cell Science and Technology. 2007, 4(3): 280-282.
    [101] Nabae Y, Pointon K D, Irvine J. Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte[J]. Energy & Environmental Science. 2008, 1(1): 148-155.
    [102] Jain S L, Nabae Y, Lakeman B J, et al. Solid state electrochemistry of direct carbon/air fuel cells[J]. Solid State Ionics. 2008, 179(27-32): 1417-1421.
    [103] Nabae Y, Pointon K D, Irvine J. Ni/C Slurries Based on Molten Carbonates as a Fuel for Hybrid Direct Carbon Fuel Cells[J]. Journal of the Electrochemical Society. 2009, 156(6): B716-B720.
    [104] Pointon K, Lakeman B, Irvine J, et al. The development of a carbon-air semi fuel cell[J]. Journal of Power Sources. 2006, 162(2): 750-756.
    [105] Nakagawa N, Ishida M. Performance of an Internal Direct-Oxidation Carbon Fuel Cell and Its Evaluation by Graphic Exergy Analysis[J]. Industrial & Engineering Chemistry Research. 1988, 27(7): 1181-1185.
    [106] Li S, Lee A C, Mitchell R E, et al. Direct carbon conversion in a helium fluidized bed fuel cell[J]. Solid State Ionics. 2008, 179(27-32): 1549-1552.
    [107] Lee A C, Li S, Mitchell R E, et al. Conversion of solid carbonaceous fuels in a fluidized bed fuel cell[J]. Electrochemical and Solid State Letters. 2008, 11(2): B20-B23.
    [108] Gur T M. Mechanistic Modes for Solid Carbon Conversion in High Temperature Fuel Cells[J]. Journal of the Electrochemical Society. 2010, 157(5): B751-B759.
    [109] Gur T M, Homel M, Virkar A V. High performance solid oxide fuel cell operating on dry gasified coal[J]. Journal of Power Sources. 2010, 195(4): 1085-1090.
    [110] Wu Y, Su C, Zhang C, et al. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochemistry Communications. 2009, 11(6): 1265-1268.
    [111] Liu R, Zhao C, Li J, et al. A novel direct carbon fuel cell by approach of tubular solidoxide fuel cells[J]. Journal of Power Sources. 2010, 195(2): 480-482.
    [112] Li C, Shi Y, Cai N. Mechanism for carbon direct electrochemical reactions in a solid oxide electrolyte direct carbon fuel cell[J]. Journal of Power Sources. 2011, 196(2): 754-763.
    [113] Saito H, Hasegawa S, Ihara M. Effective anode thickness in rechargeable direct carbon fuel cells using fuel charged by methane[J]. Journal of the Electrochemical Society. 2008, 155(4): B443-B447.
    [114] Hasegawa S, Iharaz M. Reaction mechanism of solid carbon fuel in rechargeable direct carbon SOFCs with methane for charging[J]. Journal of the Electrochemical Society. 2008, 155(1): B58-B63.
    [115] Zhao X Y, Yao Q, Li S Q, et al. Studies on the carbon reactions in the anode of deposited carbon fuel cells[J]. Journal of Power Sources. 2008, 185(1): 104-111.
    [116] Ihara M, Hasegawa S. Quickly rechargeable direct carbon solid oxide fuel cell with propane for recharging[J]. Journal of the Electrochemical Society. 2006, 153(8): A1544-A1546.
    [117] Li C, Shi Y, Cai N. Performance improvement of direct carbon fuel cell by introducing catalytic gasification process[J]. Journal of Power Sources. 2010, 195(15): 4660-4666.
    [118] Gur T M, Huggins R A. Direct Electrochemical Conversion of Carbon to Electrical Energy in a High Temperature Fuel Cell[J]. Journal of the Electrochemical Society. 1992, 139(10): L95-L97.
    [119] Huang T, Huang M. A new phenomenon of a fuel-free current during intermittent fuel flow over Ni-YSZ anode in direct methane SOFCs[J]. Journal of Power Sources. 2007, 168(1): 229-235.
    [120] Huang T, Wang C. Methane decomposition and self de-coking over gadolinia-doped ceria-supported Ni catalysts[J]. Chemical Engineering Journal. 2007, 132(1-3): 97-103.
    [121] Xie Z, Zhu W, Zhu B, et al. Fe_xCo_(0.5-x)Ni_(0.5)-SDC anodes for low-temperature solid oxide fuel cells[J]. Electrochimica Acta. 2006, 51(15): 3052-3057.
    [122] Su C, Wu Y Z, Wang W, et al. Assessment of nickel cermets and La_(0.8)Sr_(0.2)Sc_(0.2)Mn_(0.8)O_3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel[J]. Journal of Power Sources. 2010, 195(5): 1333-1343.
    [123] Papazisi K M, Balomenou S, Tsiplakides D. Synthesis and characterization of 103La_(0.75)Sr_(0.25)Cr_(0.9)M_(0.1)O_3 perovskites as anodes for CO-fuelled solid oxide fuel cells[J]. Journal of Applied Electrochemistry. 2010, 40(10): 1875-1881.
    [124] Huang T, Chou C, Chen W, et al. Coal syngas reactivity over Ni-added LSCF-GDC anode of solid oxide fuel cells[J]. Electrochemistry Communications. 2009, 11(2): 294-297.
    [125] Huang T, Chen C. Syngas reactivity over (LaAg)(CoFe)O_3 and Ag-added (LaSr)(CoFe)O_3 anodes of solid oxide fuel cells[J]. Journal of Power Sources. 2011, 196(5): 2545-2550.
    [126] Ohme H, Suzuki T. Mechanisms of CO_2 Gasification of Carbon Catalyzed with Group VIII Metals. 1. Iron-Catalyzed CO_2 Gasification[J]. Energy & Fuels. 1996, 10(4): 980-987.
    [127] Turkdog E T, Vinters J V. Catalytic oxidation of carbon[J]. Carbon. 1972, 10(1): 97-111.
    [128] Tanaka S, U-Emura T, Ishizaki K, et al. CO_2 Gasification of Iron-Loaded Carbons-- Activation of the Iron Catalyst with CO[J]. Energy & Fuels. 1995, 9(1): 45-52.
    [129] Suzuki T, Ohme H, Watanabe Y. Mechanisms of Alkaline-Earth Metals Catalyzed CO_2 Gasification of Carbon[J]. Energy & Fuels. 1994, 8(3): 649-658.
    [130] Cazorla-Amoros D, Linares-Solano A, De Lecea C S. A Temperature-Programmed Reaction Study of calcium-catalyzed carbon gasification[J]. Energy & Fuels. 1992, 6(3): 287-293.
    [131] Huang Y, Yin X, Wu C, et al. Effects of metal catalysts on CO_2 gasification reactivity of biomass char[J]. Biotechnology Advances. 2009, 27(5): 568-572.
    [132] Mitsuoka K, Hayashi S, Amano H, et al. Gasification of woody biomass char with CO_2: The catalytic effects of K and Ca species on char gasification reactivity[J]. Fuel Processing Technology. 2011, 92(1): 26-31.
    [133]郭培民,张临峰,赵沛.碳气化反应的催化机理研究[J].钢铁. 2008, 43(2): 26-30.
    [134] Figueiredo J L, Rivera-Utrilla J, Ferro-Garcia M A. Gasification of active carbons of different texture impregnated nikel, cobalt and iron[J]. Carbon. 1987, 25(5): 703-708.
    [135] Quyn D M, Hayashi J, Li C. Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO2[J]. Fuel Processing Technology. 2005, 86(12-13): 1241-1251.
    [136] Li S, Cheng Y. Catalytic gasification of gas-coal char in CO2[J]. Fuel. 1995, 74(3):456-458.
    [137] Li L Y, Morishita K, Mogi H, et al. Low-temperature gasification of a woody biomass under a nickel-loaded brown coal char[J]. Fuel Processing Technology. 2010, 91(8): 889-894.
    [138]贺天民,吕喆,刘江,等.改进注浆法制备(ZrO_2)_(0.92)(Y_2O_3)_(0.08)电解质薄管的电学性能及应用[J].中国稀土学报. 2002(1): 16-21.
    [139]贺天民,刘汉军,杨景东,等.真空注浆法制备YSZ电解质膜管及其在固体氧化物燃料电池中的应用[J].高等学校化学学报. 2002(5): 932-936.
    [140]隋静.电解质支撑的锥管串接式固体氧化物燃料电池单体及电池组的研制[D].华南理工大学, 2008.
    [141]丁姣.低成本阳极支撑型膜电解质固体氧化物燃料电池的研究[D].华南理工大学, 2010.
    [142]袁文生.小型阳极支撑锥管状固体氧化物燃料电池的制备[D].华南理工大学, 2008.
    [143]殷娟.注浆成型法制备的固体氧化物燃料电池镍基阳极及其性能研究[D].华南理工大学, 2009.
    [144]刘江,张耀辉,隋静,等.管式固体氧化物燃料电池的阳极支撑体制备方法[P]. 200710031105. 2008/04/16.
    [145]刘军,佘正国.粉末冶金与陶瓷成型技术[M].北京:化学工业出版社, 2005: 99-107.
    [146]西北轻工业学院等编.陶瓷工艺学[M].轻工业出版社, 1985: 221-230.
    [147]王树海,李安明,乐红志,等.先进陶瓷的现代制备技术[M].北京:化学工业出版社, 2007: 139-146.
    [148]张文兵,阎飞.陶瓷模型制作[M].北京:北京工艺美术出版社, 2005: 6-7.
    [149]刘维良,喻佑华.先进陶瓷工艺学[M].湖北:武汉理工大学出版社, 2004: 64-70.
    [150]注浆成型生产对环境温、湿度的要求[Z]. http://www.chinachina.net/Info-Center/ArticleShow.asp/ArticleID=21550, 2010.
    [151]华南工学院,南京化工学院,武汉建筑材料工业学院.陶瓷工艺学[M].北京:中国建筑工业出版社, 1981: 87-97.
    [152]刘江,吕喆,刘巍, et al. Research of processing techniques used in fabrication of solid oxide fuel cells and study of their selected properties[J]. Science in China,Ser.a. 1998(5):521-526.
    [153] Changfeng X, L. W T, Chongying X, et al. Fabrication of Ag-Y_2O_3-stabilized ZrO_2 composite films by metalloorganic chemical vapor deposition[J]. Journal of the Electrochemical Society. 1998, 145(1): L4-L8.
    [154]刘江,苏文辉,吕喆,等.使用金属导电胶进行固体氧化物燃料电池快速封接的方法[P]. 02133049. 2003/04/30.
    [155] Shinji Tanaka T U K I, Nagayoshi K, Ikenaga N, et al. CO2 Gasification of Iron-Loaded Carbons--Activation of the Iron Catalyst with CO[J]. Energy & Fuels. 1995, 9(1): 45-52.
    [156] Furimsky E, Sears P, Suzuki T. Iron-Catalyzed Gasification of Char in CO2[J]. Energy & Fuels. 1988, 2(5): 634-639.
    [157] Desclaux P, N Rnberger S, Rzepka M, et al. Investigation of direct carbon conversion at the surface of a YSZ electrolyte in a SOFC[J]. International Journal of Hydrogen Energy. 2010, In Press.
    [158] Irfan M F, Usman M R, Kusakabe K. Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review[J]. Energy. 2011, 36(1): 12-40.
    [159] Turkdogan E T, Olsson R G, Vinters J V. Pore characteristics of carbons[J]. Carbon. 1970, 8(4): 545-564.
    [160] Misra V N, Standish N. Reactivity of carbon in pyrometallurgical processes- A review of theoretical analysis and process variables[J]. 13Th Cmmi Congress-Metallurgy. 1986, 4: 143-154.
    [161] Chick L A, Pederson L R, Maupin G D, et al. Glycine-nitrate combustion synthesis of oxide ceramic powders[J]. Materials Letters. 1990, 10(1-2): 6-12.
    [162] Hu R, Xie L, Ding S, et al. CO oxidation and oxygen-assisted CO adsorption/desorption on Ag/MnOx catalysts[J]. Catalysis Today. 2008, 131(1-4): 513-519.
    [163] Murrell L L, Carlin R T. Silver on Ceria: An Example of a Highly Active Surface Phase Oxide Carbon Oxidation Catalyst[J]. Journal of Catalysis. 1996, 159(2): 479-490.
    [164] Wang F, Cheng S, Wan B. Porous Ag-CGO cermets as anode materials for ITSOFC using CO fuel[J]. Catalysis Communications. 2008, 9(7): 1595-1599.
    [165] Galetti A N E, Gomez M F, Arr A L A, et al. Hydrogen production by ethanol reforming over NiZnAl catalysts: Influence of Ce addition on carbon deposition[J]. AppliedCatalysis a: General. 2008, 348(1): 94-102.
    [166] Laosiripojana N, Assabumrungrat S. Kinetic dependencies and reaction pathways in hydrocarbon and oxyhydrocarbon conversions catalyzed by ceria-based materials[J]. Applied Catalysis B: Environmental. 2008, 82(1-2): 103-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700