氧在La/SrMnO_3(001)吸附、解离和扩散的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池是一种将碳氢化合物的化学能通过电化学反应转化成电能的最有效的装置,近年来其在清洁、高效分布式发电领域中越来越受到人们的重视。固体氧化物燃料电池(SOFC)是已发明的由化学燃料直接转化为电能的最有效的装置。综合考虑La_(1-x)Sr_xMnO_3为最合适的SOFC阴极材料。阴极/电解质界面(LSC),阴极将氧分子还原为氧离子,该反应是在强的氧化气氛中进行的,而且钙钛矿材料表面对氧的吸附和扩散机理对其电化学性能的影响非常重要。利用同位素(~(18)O_2)示踪法分析反应机理,发现O_2/LSC表面发生氧吸附决定了阴极反应的速率;也就是说,第一步的吸附反应决定了固体阴极材料的性能好坏。因此采用基于密度泛函的第一性原理方法,系统研究La/SrMnO_3电学性能及导电机理并比较La/SrMnO_3(001)三种外表面对O原子的吸附,以及O_2分子在各表面解离过程具有重要的现实意义。
     我们对La/SrMnO_3采用vasp和castep软件进行了系统的晶格结构和电学基本性能计算的基础上,采用基于密度泛函的第一性原理的方法,同时结合Nudged Elastic Band方法,系统研究了O原子和O_2分子在La/SrMnO_3(001)表面的吸附过程。详细比较MnO_2、LaO和SrO作为(001)外层表面O原子吸附的性能和表面结构变化;给出O_2分子在MnO_2、LaO和SrO外表面的解离路径和势垒;研究O原子在三种表面的扩散过程,计算出各扩散路径的势垒和最稳定的吸附位置的基本情况。在此基础上,通过比较解离、扩散和放氧环节的激活能数据,提出O_2的解离和表面放氧过程均为速率控制步骤。进一步为La/SrMnO_3作为固体阴极材料时决定性能的第一步吸附反应提供了理论数据的支持。
More and more attention has been paid on the field of clean, efficient distributedgeneration in recent years. At the same time, the solid oxide fuel cell is the most effectivedevice to transform hydrocarbon energy to electrical energy through the electrochemicalreaction. The solid oxide fuel cell (SOFC) was invented to transform the chemical fueldirectly into electricity. So, it is most appropriate SOFC cathode materials.Cathode/electrolyte interface restore the oxygen molecules to oxygen ions. The reaction is astrong oxidizing atmosphere; perovskite surface oxygen adsorption and diffusion mechanismof their electrochemical performance is very important. Analysis of reaction mechanism, theisotope tracer method (~(18)O_2) found that O_2/LSC surface oxygen adsorption decide the cathodereaction rate. In other words, the first step of the adsorption reaction determines theperformance of the solid cathode materials. Therefore, using the first principles method basedon density functional theory. We study La/SrMnO_3electrical properties and conductivemechanism and compare La/SrMnO_3on (001) three exterior face of the adsorption of O atoms,and O_2molecules in each surface during the dissociation process, because it has importantpractical significance.
     We adopt VASP software to calculate lattice structure and electrical performance ofLa/SrMnO_3,using first-principle pseudopotential plane wave calculations and the NudgedElastic Band method based on density functional theory, to study the dissociation ofmolecular oxygen on La/SrMnO_3(001) surface and the subsequent diffusion of atomicoxygen into the magnesium substrate. We provide O_2molecules dissociation path on the outerMnO_2, LaO and SrO surface and the energy barrier, investigate diffusion processes of O atomon three outer surfaces La/SrMnO_3(001) by calculation for each position potential barrier andthe stability of the basic situation of the adsorption position. On this basis, we compare thevalues of the activation energies for the steps of dissociation, diffusion, and desorption,propose dissociation of O_2and release oxygen during surface rate-determining step. Finally,we propose that solid cathode material for the La/SrMnO_3as the first step in determiningperformance when the adsorption reaction provides a theoretical support for data.
引文
[1] Yokokawa H, Sahai N, Kawada T, Dokiya M. Chemical Thermodynamic of ReactionProfiles between LaMO3(M=Ni, Co, Mn) and Z1O2[J]. Electrochem. Soc,1991,138(9):2719-2727.
    [2] Dokiya M, Sakai N, Kawada T, et al. Solid Oxide Fuel Cells [M]. Wiley: M B Phys RevLett,1989:325.
    [3] Suzuki M, Sasaki H, Toshi S O, et al. Cathode Fabricated by Electrochemical VaporDeposition [J]. Electrochem Soc,1994,141(7):1928-1931.
    [4]杨凌波.固体氧化物燃料电池阴极材料制备及性能.上海交通大学硕士学位论文,2004,1-11
    [5]郭兰静. YBaCo_4O_7及其相关化合物氧吸附性能研究[D].郑州:郑州大学,2005.
    [6] Kermenic G, Nieto G M L, Tascon J M D, et al. Chemisorption and catalysis on lanthummetal oxides(LaMO3)[J]. J Chem Soc Faraday Trans,1985,81(4):939.
    [7] Seiyama T, Yamazoe N, Eguchi K. Characterization and activity of some mixed metaloxide catalysts [J]. Ind Eng Chem Prod Res Dev,1985,24:19.
    [8] Yokoi Y, Uchida H. Catalytic activity of perovskite-type oxide catalysts fordirectdecomposition of NO: Correlation between cluster model calculations andtemperature-programmed desorption experiments [J]. Catal Today,1998,42(1/2):167.
    [9] Yang Z H, Lin Y S, Zeng Y. High-Temperature Sorption Process for Air Separation andOxygen Removal [J]. Ind Eng Chem Res,2002,41(11):2775.
    [10] Zhu J J, Zhao Z, Xiao D H, et al. Study of La2xSrxCuO4(x=0.0,0.5,1.0) catalysts forNO+CO reaction from the measurements of O2-TPD, H2-TPR and cyclic voltammetry [J].J Mol Catal A,2005,238(1-2):35.
    [11] N. Q. Minh, Ceramics Fuel Cell [J]. Am. Ceram. Soc,1993,76,563-588.
    [12]吴浠.燃料电池及其发展概况[J].动力工程,2001,21(2):1172-1175.
    [13]彭茂公.加快我国燃料电池的研究进展[J].云南冶金,2000,29(4):46-51.
    [14]姚如志,刘志中,刘晓.燃料电池技术进展[J].源技术,2001,22(3):99-101.
    [15] Park, Y M. Choi, G M. Microstructure and electrical properties of YSZ-NiO composites.[J]. SolidState Ionics,1999,120:265-274.
    [16] Minh N Q. Science and Technology of Zirconia V. Technology Publishing Company [J]. Lancaster, PA,1993,652.
    [17] Bockris J, Reddy A. Modern Electrochemistry, Plenum Press, New York,1970,1530.
    [18] Cacciola G, Antonucci V, S Freni. Technology up date and new strategies on fuel cells [J]. PowerSources,2001,100.
    [19]钱伯章.燃料电池的发展现状与展望[J].节能.2004,3,3-7.
    [20]衣宝廉.燃料电池的原理、技术状态与展望[J].电池工业.2003,8(1),16-22.
    [21]韩敏芳,彭苏萍,李伯涛. SOFC电解质薄膜YSZ制备技术.电池,2002,32(3):156-158.
    [22] Etsell T H. Mater Sci Eng,2005,121:120.
    [23]袁文生,刘江,隋静,张耀辉.注浆成型法制备阳极支撑锥管状SOFC [J].电源技术.2008(32):46-48.
    [24] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev. B,1964,136:864-871.
    [25] Thomas H. The Calculation of Atomic Fields [J]. Proc. Camb. Phil. Soc,1927,23:542-548.
    [26] Fermi E. Unmethodo satistico par la determinazione di alcune propriet dell atome Accad[J]. Naz. Lincei,1927,6:602-607.
    [27] Kohn W, Sham L. J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev,1965, A140:1133-1138.
    [28] Payne M C, Teter M P, Allan D C, et a1. Iterative minimization techniques for abinitiototal-energy caculations: molecular dynamics and conjugate gradients [J]. Rev. Mod.Phys.1992,64:1045-1097.
    [29] Slater J. C. A Simplification of the Hartree-Fock Method [J]. Phys. Rev,1951,81:385-390.
    [30] Labanowski J. L, Andzelm J. W. Density Functional Methods in ChemistrySpringer-Verlag, New York.1991.
    [31] Perdew J P, Zunger. Self-interaction correction to density-functional approximations formany-electron systems [J]. Phys. Rev. B.,1981,23:5084-5079.
    [32] Perdew J P. Accurate density functional for the Energy:Real-space cut off of theGradient Expansion for the Exchange Hole [J]. Phys. Rev. Lett.,1985,55:1665-1668.
    [33]Perdew J P. Density-functional Approximation for the correlation energy of theinhomogeneous electron gas [J]. Phys. Rev. B.,1986,33:8822-8824.
    [34] Perdew J P, Wang Y. Accurate and simple density functional for the electronic exchangeenergy: Generalized Gradient Approximation [J]. Phys. Rev. B.,1986,33:8800-8802.
    [35] Perdew J P and Wang Y. Accurate and simple analytic representation of the electron-gascorrelation energy [J]. Phys. Rev. B.,1992,45:13244-13249
    [36] Perdew J P, Chevary J A, Vosko S H, et a1. Atoms,Molecules,solids and surfaces:Applications of the generalized gradient approximation for exchange and correlmion [J].Phys. Rev. B.,1992,46:6671-6678.
    [37] Payne. M. C, Teter. M. P, Allan. D. C.,Iterative minimization techniques for abinitiototal-energy calculations: molecular dynamics and conjugate gradients [J]. Rev. Mod.Phys,1992,64:1045-1049.
    [38] Kresse. G, Hanfner J. Ab inifio molecular dynamics for liquid metals [J]. Phys. Rev. B.,1993,47:558-563.
    [39] Kresse.G, Hanfner. Jab initio molecular-dynamics simulation of the liquid metalamorphous. Semiconductor transition in germanium [J]. Phys. Rev. B,1994,49:1425l-14256.
    [40] Kresse. G, Furthm H. Efficiency of ab-initio total energy calculations for metal andsemiconductors using a plane wave [J]. Comput. Mat. Sei,1996,6:15-20.
    [41] Kresse. G, Furthm L. Efficient iterative schemes for ab inifio total-energy calculationsusing a plane-wave basis set [J]. Phys. Rev. B.,1996,54:11169-11179.
    [42] Gan C. K, Srolovitz D. J. First-prindples study of wurtzite InN (0001) surfaces [J]Physical Review B.,2006,74,115319-115321.
    [43]汤富领.掺杂LaMnO3和La2CuO4的原子模拟.清华大学博士学位论文,2006,19-32.
    [44] Huang Q, Santoro A, Lynn J W, et al. Structure and magnetic order in undoped.lanthanum manganite [J]. Phys. Rev. B.,1997,55(22):14987-14999.
    [45] Minh N. Q. Am. Ceram [J] Soc,76(1993),563.
    [46] Hammouche. A, Sebert. E, Hammou A.[J] Mat. Res. Bull.,24(1989),367.
    [47]李正中.固体理论(高等教育出版社,北京,1985).
    [48] Msraccah. P, Googenough. J. B.[J] Phys. Res.,155(1967),932.
    [49] Kreesse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set [J]. Comput Mater Sci,1996,6:15.
    [50] Perdew J P, Chevary J A, Vosko S H. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation [J].Phys Rev B.,1992,46:6671.
    [51] Bloch P E. Projector augmented-wave method [J]. Phys Rev B,1994,50:17953.
    [52]闫治国,王会. LaMnO3(001)表面电子结构的第一性原理研究[J].武汉理工大学学报,2010,7:32.
    [53]耿滔,庄松林.掺杂型锰氧化物La1-xSrxMnO3的电子结构研究[J].上海理工大学学报,2008,30:103.
    [54] Hamada N, Sawada H, Terakura K. Electronic band structure of La1-xBaxMnO3[J]. JPhys Chem S,1995,56:1719-1720.
    [55] Gaubea J, Klein H. Studies on the reaction mechanism of the Fischer-Tropsch synthesison iron and cobalt [J]. J Mol Catal A Chemical,2008,283(1/2):60-68.
    [56] Schulz H M, Minor R. Major and Minor Reactions in Fischer–Tropsch Synthesis onCobalt Catalysts: Fischer-Tropsch Catalysis-Science and Practice [J]. Cobalt CatalystsTopics in Catalysis,2003,26(1/4):73-85.
    [57] Cheng J, Gong X Q, Hu P, et al. A Quantitative Determination of Reaction Mechanismsfrom Density Functional Theory Calculations: Fischer-Tropsch Synthesis on Flat andStepped Cobalt Surfaces [J]. Journal of Catalysis,2008,254(2):285-295.
    [58] Serhei P, Timo J. Oxygen adsorption at La1-xSrxMnO3(001) surfaces: Predictions fromfirst principles [J]. Phys Rev B,2011,83:073402.
    [59] Dal B, Sholl D S, Johnson K J. First Principles Investigation of Adsorption andDissociation of Hydrogen on Mg2Si Surfaces [J]. Phys Chem C,2007,111(18):6910.
    [60] Edwin S R, John A. Chemical and redox stabilities of a solid oxide fuel cell withBaCe0.8Y0.2O3-αfunctioning as an electrolyte and as an anode [J]. Solid state Ionics,2006,177:1742-1752.
    [61] Kratzer P, Pehlke E, Scheffler, et al. Highly Site-Specific H2Adsorption on Vicinal Si(001) Surfaces [J]. M B Phys Rev Lett,1998,81:5596.
    [62] Dall S, Logadottir A, Egeberg R C, et al. Role of Steps in N2Activation on Ru(0001)[J].J H Phys Rev Lett,1999,83:1814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700