相转化法制备锥管状阳极支撑固体氧化物燃料电池及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文利用相转化法制备了锥管状阳极支撑体,预烧结后组装出了固体氧化物燃料电池(SOFC)单电池和电池组并进行了电化学测试。实验结果为:单电池在700 oC时开路电压为1.0 V,在800 oC时时最大功率密度达到410 m W / cm2;两个单电池串联电池组在650 oC时开路电压为1.85 V,800 oC时最大功率为1.45 W;三个单电池串联电池组的开路电压在600 oC时为2.65 V,在800 oC时的最大功率为1.52 W。
     阻抗谱图分析显示:在单电池中,界面电阻占总电阻的大部分,优化电解质和电极的接触是下一步的工作目标;在电池组中,优化电池间的连接和提高单个电池的性能同一性是下步工作目标。
     扫描电镜(SEM)分析显示:阳极和阴极均呈现出疏松多孔结构,满足作为电极的要求,与电解质层接触良好且有明显的接触界面。
     论文研究了阳极支撑体的烧结过程并得出了合适的阳极烧结程序。比较了不同造孔剂对阳极支撑体微观结构的影响,认为在阳极支撑体中添加10 %的石墨造孔剂较佳。
     作为一种阳极支撑型锥管状SOFC制备工艺,相转化工艺流程简单,制备出生坯强度高,是一种净尺寸成型工艺,非常利用串接;制备出来的阳极结构疏松多孔、有利于燃料气在其上的催化氧化,且组装出的单电池及电池组的欧姆电阻非常小,有十分广阔的发展前途。但要实现商业化应用,还有很长的路要走,需要解决阳极层的厚度控制以及阳极支撑体烧结时的变形问题。
In this paper, cone-shaped anode substrates were prepared by phase-inversion method and single cell and cell stack were prepared after sintering. The electrochemical analysis shows that: Single cell open circuit voltage (OCV) reach 1.0 V at 700 oC and its maximum power density was 410 m W / cm2 at 800 oC; two cells in series OCV reach 1.85 V at 650 oC and its maximum power was 1.45 W at 800 oC; three cells in series OCV reach 2.65 V at 600 oC and its maximum power was 1.52 W at 800 oC.
     Impedance spectra analysis showed that: in single cell, most of the total resistance is interface resistance and optimization of electrolyte and electrode contact is the next target; in the power reactor, the next targets are optimization of connection between the batteries and to improve the performance of single-cell identity.
     SEM analysis showed that both anode and cathode owned porous structure which met the requirements as electrode and they contacted well with electrolyte and a clear interface was found between them.
     In the paper, anode substrates sintering process was researched and a suitable sintering process was given. Affect of different pore former on the anode microstructure was compared and to add 10 % graphite in the anode was a good choice.
     As a technology to prepare cone-shaped anode-supported SOFC, the phase-inversion method has a bright future. The process is simple and greens have high strength. Stack was assembled easily because it is a nearly size molding process. Anode has a porous structure, which helps oxidation of the fuel gas. And ohmic resistances of single cell and stack are small. But to achieve commercial application, there is still a long way to go. The thickness of anode and sintering deformation control are two problems to be resolved at present.
引文
[1]联合国气候变化公约(京都议定书中文版)[M]. 1997.
    [2]哥本哈根协议(中英文版). 2009.
    [3]世界经济编辑委员会.世界能源统计年鉴2003/ 2004[M].北京:中国统计出版社, 2005: 573.
    [4]世界经济编辑委员会.世界能源统计年鉴2008/ 2009[M].北京:中国统计出版社, 2009: 556.
    [5] [英]詹姆斯·拉米尼,安德鲁·迪克斯.燃料电池系统(原书第二版)[M].北京:科学出版社, 2006: 12.
    [6]衣宝廉.燃料电池[M].北京:化学工业出版社, 2000: 18.
    [7]王黎清.燃料电池的历史和现状[J].电力学报, 2002, 17(2): 99-104.
    [8] Lex P., Jonshagen B.. The zinc/bromine battery system for utility and remote area applications[J]. Power Engineering Journal, 1999, 13(3): 142-148.
    [9] Price A., Bartley S., Male S., et al. A novel approach to utility scale energy storage[J]. Power Engineering Journal, 1999, 13(3): 122-129.
    [10] Shibata A., Sato K.. Development of vanadium redox flow battery for electricity storage[J]. 1999, 13(3): 130-135.
    [11]张耀辉.固体氧化物燃料电池两种电解质膜制备方法的研究及应用[D].哈尔滨:哈尔滨工业大学博士论文, 2006.
    [12] Horms J., Pantelouris G. B., Balazsg B., et al. X -ray absorption near edge structure (XANES) measurements of ceria-based solid electrolytes[J]. Solid State Ionics, 2000, 136-137(2): 945-954.
    [13] Souza D. S., Steven J. B., Jonfhe L. C.. Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte[J]. Journal of the Electrochemical Society, 1997, 144(3): L35-L37.
    [14] Kim J.W., Virkar A.V., Fung K. Z., et al. Polarization effects in intermediate temperature anode-supported solid oxide fuel cells[J]. Journal of the Electrochemical Society, 1999, 146(1): 769-789.
    [15]张士军等.固体氧化物燃料电池[J].淮南师范学院学报, 2006, 8(2): 53-56.
    [16]闫瑞强.固体氧化物燃料电池电解质的制备科学研究[D].安徽:中国科技大学, 2006.
    [17] Subhash C., Singhal K. K..高温固体氧化物燃料电池-原理、设计和应用[M].北京:科学出版社, 2007: 128-1.
    [18] Sinfhal S. C.. Advances in solid oxide fuel cell technology[J]. Solid State Ionics, 2000, 135(1-4): 305-313.
    [19] Mogensen M., Jensen K. V., Jrgensen M. J., et al. Progress in under standing SOFC electrodes[J]. Solid State Ionics, 2002, 150(1-2): 123-129.
    [20]韩敏芳,蒋先锋.高温固体氧化物燃料电池[M].北京:科学出版社, 2007: 71-168.
    [21] Yuzaki A., Kishimoto A.. Effects of alumina dispersion on ionic conduction of toughened zirconia base composite[J]. Solid State Ionics, 1999, 116(1-2): 47-51.
    [22]王毓娟. SOFC阳极甲烷直接氧化电催化剂的性能[D].广东:华南理工大学, 2001.
    [23] Hassan A. A. E., Menzler N. H., Blass G., et al. Influence of alumina dopant on the properties of yttria - stabilized zirconia for SOFC applications[J]. Journal of Materials Science. 2002, 37(16): 3467-3475.
    [24] Sahibzada M., Rudkin R. A., Steele B. C. H., et al. Evaluation of PEN structures incorporating supported thick film Ce0.9Gd0.1O1.95 electrolytes[J]. Proceedings of the fifth International Symposium on Solid Oxide Fuel Cells, 1997, 5: 244-253.
    [25] Ralph J. M., Schoeler A. C., Krumpelt M.. Materials for lower temperature SOFC[J]. Journal of Material Science, 2001, 36: 1161-1172.
    [26] Steele B. C. H.. State-of-the-art SOFC ceramic materials[J]. Proceedings of the First European Solid Oxide Fuel Cell Forum, 1994, 1: 3-7.
    [27] Guo W. M., Liu J., Jin C., et al. Electrochemical evaluation of La0.6Sr0.4Co0.8Fe0.2O3-δ- -La0.9Sr0.1Ga0.8Mg0.2O3-δcomposite cathodes for La0.9Sr0.1Ga0.8Mg0.2O3-δelectrolyte SOFCs[J]. Journal of Alloys and Compounds. 2009, 473(1-2): 43-47.
    [28] Jin C., Liu J., Zhang Y. H., et al. Characterization and electrochemical performances of Ba2-xSrxFeO4+δas a novel cathode material for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2008, 182(2): 482-488.
    [29]江义.固体氧化物燃料电池最新发展动态[J].电化学, 1998, 4(4): 353-360.
    [30]侯明,衣宝廉.燃料电池技术发展现状[J].电源技术, 2008, 132(10):649-654.
    [31]毛宗强,黄建兵,王诚,等.低温固体氧化物燃料电池研究进展[J].电源技术, 2008, 132(2): 75-79.
    [32]许世森,朱宝田.探讨我国电力系统发展燃料电池发电的技术路线[J].中国电力, 2001, 34(7): 9-12, 81.
    [33]佚名.世界首台固体氧化物燃料电池电站诞生[J].农村电工, 2009, (2): 47.
    [34]郭为民.阳极支撑型电解质膜中温固体氧化物燃料电池的制备及其性能研究[D].广东:华南理工大学, 2008 .
    [35]隋静.电解质支撑的锥管串接式固体氧化物燃料电池单体及电池组的研制[D].广东:华南理工大学, 2008.
    [36] Liu J., Madsen B. D., Ji Z. Q., et al. A fuel-flexible ceramic-based anode for solid oxide fuel cells[J]. Electrochemical and Solid-State Letters, 2002, 5(6): A122-A124.
    [37] Haag J. M., Madsen B. D., Barnett S. A., et al. Application of LaSr0.2Fe0.2CrO9-δin solid oxide fuel cell anodes[J]. Electrochemical and Solid-State Letters, 2008, 11(4): B51-B53.
    [38] Lai T. S., Liu J., Barnett S. A.. Effects of cell with on segmented-in series SOFCs[J]. Electrochemical and Solid-State Letters, 2004, 7(4): A78-A81.
    [39] Pillai M. R., Bierschenk D. M., Barnett S. A.. Electrochemical partial oxidation of methane in solid oxide fuel cells: Effect of anode reforming activity[J]. Catalyst Letters, 2008, 121(1-2): 19-23.
    [40] Wilson J. R., Barnett S. A.. Solid oxide fuel cell Ni-YSZ anodes: Effects of composition on microstructure and performance[J]. Electrochemical and Solid-State Letters, 2008, 11(10): B181-B185..
    [41] Pillai M. R., Jiang Y., Mansourian N., et al. Solid oxide fuel cell with oxide anode-side support[J]. Electrochemical and Solid-State Letters, 2008, 11(10): B174-B177.
    [42] Lu C., Worrell W. L., Vohs J. M., et al. A comparison of Cu-Ceria-SDC and Au-Ceria-SDC Composites for SOFC Anodes[J]. Journal of the Electrochemical Society, 2003, 150(10): A1357-A1359.
    [43] Jayakumar A., Lee S., Hornes A., et al. A comparison of molten Sn and Bi for solid oxide fuel cell anodes[J]. Journal of the Electrochemical Society, 2010, 157(3): B365-B369.
    [44] Lee S. I., Vohs J. M., Gorte R. J.. A study of SOFC anodes based on Cu-Ni and Cu-Co bimetallics in CeO2-YSZ[J]. Journal of the Electrochemical Society, 2004, 151(9): A1319-A1323.
    [45] McIntosh S., He H. P., Lee S. I., et al. An examination of carbonaceous deposits in direct-utilization SOFC anodes[J]. Journal of the Electrochemical Society, 2004, 151(4): A604-A608.
    [46] Cross M. D., Vohs J. M., Gorte R. J. An examination of SOFC anode functional layers based on ceria in YSZ[J]. Journal of the Electrochemical Society, 2007, 154(7): B694-B699.
    [47] Costa-Nunes O., Gorte R. J., Vohs J. M. Comparison of the performance ofCu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H2, CO, and syngas[J]. Journal of Power Sources, 2005, 141(2): 241-249.
    [48] Lee S. I., Ahn K., Vohs J. M., et al. Cu-Co bimetallic anodes for direct utilization of methane in SOFCs[J]. Electrochemical and Solid-State Letters, 2005, 8(1): A48-A51.
    [49] Bidrawn F., Kim G., Aramrueang N. et al. Dopants to enhance SOFC cathodes based on Sr-doped LaFeO3 and LaMnO3[J]. Journal of Power Sources, 2010, 195(3): 720-728.
    [50] He H. P., Vohs J. M., Gorte R. J. Effect of synthesis conditions on the performances of Cu-CeO2-YSZ anodes in SOFCs[J]. Journal of the Electrochemical Society, 2003, 150(11): A1470-A1475.
    [51] Jung S., Gross M. D., Gorte R. J., et al. Electrodeposition of Cu into a highly porous Ni/YSZ cermet[J]. Journal of the Electrochemical Society, 2006, 153(8): A1539-A1543.
    [52] Kim J., Corre G., Irvine J. T. S., et al. Engineeting composite oxide SOFC anodes for efficient oxidation of methane[J]. Electrochemical and Solid-State Letters, 2008, 11(2): B16-B19.
    [53] Gross M. D., Vohs J. M., Gorte R. J.. Enhanced thermal stability of Cu-based SOFC anodes by electrodeposition of Cr[J]. Journal of the Electrochemical Society, 2006, 153(7): A1386-A1390.
    [54] He H. P., Gorte R. J., Vohs J. M.. Highly sulfur tolerant Cu-Ceria anodes for SOFCs[J]. Electrochemical and Solid-State Letters, 2005, 8(6): A279-A280.
    [55] Vohs J. M., Gorte R. J.. High-Performance SOFC cathodes prepared by infiltration[J]. Advanced Materials, 2009, 21(9): 943-956.
    [56] Wang W. S., Vohs J. M., Gorte R. J.. Hydrogen production via CH4 and CO assisted steam electrolysis[J]. Topics Catalysis, 2007, 46(4-6): 380-385.
    [57] Kim G., Lee S., Shin J. Y., et al. Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM[J]. Electrochemical and Solid-State Letters, 2009, 12(3): B48-B52.
    [58] Jung S. W., Vohs J. M. Gorte R. J.. Preparation of SOFC anodes by electrodeposition[J]. Journal of the Electrochemical Society, 2007, 154(12): A1270-A1275.
    [59] Lee S., Kim G., Vohs J. M. et al. SOFC anodes based on infiltration of La0.3Sr0.7TiO3[J]. Journal of the Electrochemical Society, 2008, 155(11): B1179-B1183.
    [60] Kim G., Gross M. D., Wang W. S., et al. SOFC anodes based on LST-YSZ composites on Y0.04Ce0.48Zr0.48O2[J]. Journal of the Electrochemical Society, 2008, 155(4): B360-B366.
    [61] Zhao F., Peng R. R., Xia C. R.. A La0.6Sr0.4CoO3-δ-based electrode with high durability for intermediate temperate solid oxide fuel cells[J]. Materials Research Bulletin, 2008,43(2): 370-376.
    [62] Ding D., Liu Z. B., Li L., et al. An octane-fueled low temperature solid oxide fuel cell with Ru-free anodes[J]. Electrochemistry Communication, 2008, 10(9): 1295-1298.
    [63] He F., Wu T. Z., Peng R. R., et al. Cathode reaction modals and performance analysis of Sm0.5Sr0.5CoO3-δ-BaCe0.8Sm0.2O3-δcomposite cathode for solid oxide fuel cells with proton conducting electrolyte[J]. Journal of Power Sources, 2009, 194(1): 263-268.
    [64] Zhu W., Xia C. R., Fan J., et al. Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2006, 160(2): 897-902.
    [65] Song H. Z., Xia C. R., Jiang Y. Z., et al. Deposition of Y2O3 stabilized ZrO2 thin flims from Zr(DPM)4 and Y(DPM)3 by aerosol-assisted MOVCD[J]. Materials Letters, 2003, 57(24-25): 3833-3838.
    [66] Zha S. W., Xia C. R., Meng G. Y.. Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells[J]. Journal of Power Sources, 2003, 115(1): 44-48.
    [67] Zhang L. S., Gao J. F., Liu M. F., et al. Effect of impregnation of Sm-doped CeO2 in NiO/YSZ anode substrate prepared by gel-casting for tubular solid oxide fuel cell[J]. Journal of Alloys and Compounds, 2009, 482(1-2): 168-172.
    [68] Zhu W, Xia C. R., Ding D., et al. Electrical properties of ceria-carbonate composite electrolytes[J]. Materials Research Bulletin, 2006, 41(11): 2057-2064.
    [69] Yin Y. H., Li S. Y., Xia C. R., et al. Electrochemical performance of IT-SOFCs with a double-layer anode[J]. Journal of Power Sources, 2007, 167(1): 90-93.
    [70] Xu X. Y., Cao C. B., Xia C. R., et al. Electrochemical performance of LSM-SDC electrodes prepared with ion-impregnated LSM[J]. Ceramics International, 2009, 35(6): 2213-2218.
    [71]郭为民,刘江.阳极支撑固体氧化物燃料电池的制备及性能[J].电源技术, 2008, 132(3): 180-183.
    [72] Sui J., Liu J.. Slip-cast Ce0.8Sm0.2O1.9 cone-shaped SOFC[J]. Journal of the America Ceramic Society, 2008, 91(4): 1335-1337.
    [73] Jin C., Liu J., Guo W. M., et al. Electrochemical characteristics of an La0.6Sr0.4Co0.2Fe0.8O3-La0.8Sr0.2MnO3 multi-layer composite cathode for intermediate -temperature solid oxide fuel cells[J]. Journal of Power Sources, 2008, 183(2): 506-511.
    [74] Jin C., Liu J., Li L. H., et al. Electrochemical properties analysis of tubular NiO-YSZ anode-supported SOFCs fabricated by phase-inversion method[J]. Journal of Membrane Science, 2009, 341(1-2): 233-237.
    [75]李连和,金超,刘江.相转化法制备锥管状阳极支撑SOFC[J].电源技术, 2010, 34(3): 265-267.
    [76]高鸿波.实心多孔支撑体全膜化微型固体氧化物燃料电池的制备及性能[J].硅酸盐学报, 2008, 36(9): 1325-1329.
    [77] Ding J., Liu J.. A novel design and performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack[J]. Journal of Power Sources, 2009, 193(2): 769-773.
    [78] Ding J., Liu J., Guo W. M.. Fabrication and study on Ni1-xFexO-YSZ anodes for intermediate temperature anode-supported solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2009, 480(2): 286-290.
    [79] Ding J., Liu J., Yuan W. S., et al. Slip-casting combined with colloidal spray coating in fabrication of tubular anode-supported solid oxide fuel cells[J]. Journal of the European Ceramic Society, 2008, 28(16): 3113-3117.
    [80]丁娇,郭为民,刘江.固体氧化物燃料电池的料浆喷涂法制备及性能[J].华南理工大学学报(自然科学版), 2007, 35(11): 77-80.
    [81]袁文生,刘江,隋静等.注浆成型法制备阳极支撑锥管状SOFC[J].电源技术, 2008, 132(7): 446-448.
    [82]殷娟,刘江,张耀辉.注浆成型制备阳极支撑SOFC及其性能[J].电源技术, 2008, 132(12): 835-837.
    [83] Bai Y. H., Liu J., Gao H. B., et al. Dip coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2009, 480(2): 554-557.
    [84] Bai Y. H., Liu J., Wang C. L.. Performance of cone-shaped tubular anode-supported segmented-of-series solid oxide fuel cell stack by dip coating technique[J]. International Journal of Hydrogen Energy, 2009, 34(17): 7311-7315.
    [85]郑领英,王学松.膜技术[M]第1版.北京:化学工业出版社,2000:28-31.
    [86] R.E凯斯廷.合成聚合物膜[M]第2版.北京:化学工业出版社,1992:233-276.
    [87]王湛.膜分离技术基础[M]第1版.北京:化学工业出版社,2000:74-77.
    [88] Liu S M, Gavalas G. R.. Oxygen selective ceramic hollow fiber membranes[J]. Journal of Membrane Science, 2005, 246(1): 103-108.
    [89] Liu S M, Gavalas G. R.. Preparation of oxygen ion conducting ceramic hollow fiber membranes[J]. Industrial & Engineering Chemistry Research, 2005, 44(20): 7633-7637.
    [90]金超,刘江,李连和.多孔陶醉支撑体的制备方法[P].中国: CP200810029152.9.
    [91]殷娟.注浆成型法制备的固体氧化物燃料电池镍基阳极及其性能研究[M].广东:华南理工大学, 2009.
    [92]殷娟,刘江,张耀辉.注浆成型制备阳极支撑SOFC及其性能[J].电源技术, 2008, 132(12): 835-837.
    [93]丁姣,郭为民,刘江.固体氧化物燃料电池的料浆喷涂法制备及性能[J].华南理工大学学报(自然科学版), 2007, 35(11): 77-80.
    [94]高鸿波,张耀辉,郭为民,等.实心多孔支撑体全膜化微型固体氧化物燃料电池的制备及性能[J].硅酸盐学报, 2008, 36(9): 1325-1329.
    [95] Zhang Y. H., Liu J., Yin J.. Fabrication of anode-supported tubular Solid oxide fuel cells by slip casting in combination with dip coating technique[J]. Journal of Fuel Cell Science and Technology, 2010, 7(1): 0110141-0110145.
    [96]谭训彦. ZrO2陶瓷基复合粉体的分散机制及成型工艺研究[D].山东:山东大学, 2004.
    [97]庞学满.氮化硅基陶瓷复合材料凝胶注模成型研究[D].天津:天津大学, 2008.
    [98] Zhang L. S., Gao J. F., Liu M. F., et al. Effect of impregnation of Sm-doped CeO2 in NiO/YSZ anode substrate prepared by gel - casting for tubular solid oxide fuel cell[J]. Journal of Alloys and Compounds, 2009, 482(1-2): 168-172.
    [99] Zhang L., Jiang S. P., Wang W., et al. NiO/YSZ anode-supported thin-electrolyte solid oxide fuel cells fabricated by Gel-casting[J]. Journal of Power Sources, 2007, 170(1): 55-60.
    [100] Pillai M. R., Gostovic D., Kim L., et al. Short-period segmented-in-series solid oxide fuel cells on flattened tube supports[J]. Journal of Power Sources, 2007, 163(2): 960-965.
    [101] Huang W. L., Zhu Q. S., Xie Z. H.. Gel - casting anode substrates for solid oxide fuel cells[J]. Journal of Power Sources, 2006, 162(1): 464-468.
    [102] Xia C. R., Zhu W., et al. Fabrication of NiO-SDC composite anodes using gel-casting for low-temperature SOFCs[J]. Materials Science Forum, 2005, 475-479 (Pt. 2, PRICM 5: The Fifth Pacific Rim International Conference on Advanced Materials and Processing, 2004: 1149-1152.
    [103] Lin B., Dong Y. C., Wang S. L., et al. Stable, easily sintered BaCe0.5Zr0.3Y0.16Zn0.04O3 electrolyte-based proton-conducting solid oxide fuel cells by gel-casting and suspensionspray[J]. Journal of Alloys and Compounds, 2009: 478(1-2): 590-593.
    [104] Yin. Y. H., Li S. Y., Xia C. R., et al. Electrochemical performance of gel-cast NiO–SDC composite anodes in low-temperature SOFCs[J]. Electrochimica Acta, 2006, 51(13): 2594–2598.
    [105] Yin. Y. H., Zhu W., Xia C. R., et al. Gel-cast NiO–SDC composites as anodes for solid oxide fuel cells[J]. Journal of Power Sources, 2004, 132(1-2): 36–41.
    [106] Dong D. H., Gao J. F., Liu X. Q., et al. Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gel casting[J]. Journal of Power Sources, 2007, 165 (1): 217-223.
    [107] Zhang Y. H., Liu J., Yin J., et al. Fabrication and performance of cone-shaped segmented-in-series solid oxide fuel cells[J]. Applied Ceramic Technology, 2008, 5(6): 568-573.
    [108]刘晓梅,李坤,刘江等. La1-xSrxMnO3阴极材料的制备及性能[J].吉林大学自然科学学报, 1999, 4: 44-46.
    [109]翟秀静,符岩,刘忠文等.微波合成固体氧化物燃料电池阴极材料La1-xSrxMnO3的研究[J].材料与冶金学报, 2002, 1(4): 294.
    [110] Prabhakaran K., Joseph J. Gokhale N.M., et al. Sucrose combustion synthesis of LaxSr(1?x)MnO3 (x≤0.2) powders [J]. Ceramics International, 2005, 31(2): 327-331.
    [111] Wang J.X., Tao Y.K., Shao J., et al. Synthesis and properties of (La0.75Sr0.25)0.95MnO3±δnano-powder prepared via Pechini route [J]. Journal of Power Sources, 2009, 186(2): 344-348.
    [112] Piao J.H., Sun K.N., Zhang N.Q. et al. Preparation and Characterization of La0.8Sr0.2MnO3-δCathode for SOFCs Fabricated Using Azeotropic Distillation Method [J]. Journal of Rare Earths, 2006, 24(1): 93-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700