姜黄素键合硅胶液相色谱固定相的制备、评价及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用我国丰富的植物药用资源,将植物药用成分均匀地化学修饰到硅胶表面,能制备得到一种具有色谱分离和药用价值的双功能新材料,其色谱分离功能的研究及其应用是色谱学与相关应用科学交叉的前沿研究课题,具有重要的学术和应用价值。
     本学位论文工作首次利用药用姜黄素作配体,成功地制备了一种新型的姜黄素键合硅胶固定相,旨在先期研究其色谱功能和初步的分析应用。除采用常规的红外光谱、热重分析和元素分析进行结构表征外,还首次展示了电喷雾离子化质谱表征硅胶表面姜黄素配体结构的新用途。选用多种结构特征的溶质为探针,从新固定相基本色谱性能的评价研究入手,由浅入深,分别较系统地考察新固定相对各种溶质探针、含系列极性化合物的简单样品到复杂中草药提取液样品等的综合色谱分离能力,并探讨了姜黄素键合固定相的色谱保留机理。
     研究表明,由于姜黄素配体含易极化的较大芳环电子系统,与溶质间存在多种协同作用,在含氮的碱性化合物和极性化合物的分离方面显现出优势,有较好的色谱应用开发前景。此外,这种表面含天然药用成分的材料在抗菌医药等领域将有应用前景,这为中草药有效成分深加工利用提供了一条新途径。包括如下研究内容:
     1.从色谱固定相制备、色谱保留机理和分析应用的角度,较全面地综述了近年来国内外新型高效液相色谱键合硅胶固定相的研究进展。同时展望了植物活性成分作为固定相键合配体在色谱分离科学中的应用前景,并以此作为本论文的选题、研究内容和技术路线设计的依据。
     2.以γ-[(2,3)-环氧丙氧]丙基三甲氧基硅烷(KH-560)为偶联剂,采用固液表面连续反应法,在温和的反应条件下,将植物药用成分姜黄素键合到硅胶上,首次制备了姜黄素液相色谱键合固定相(CCSP)。采用红外光谱、热重分析、元素分析和质谱对其结构进行表征,并对键合反应的制备路线和反应条件进行了一定的优化。结果表明,配体姜黄素被成功地键合到球形硅胶表面,测得配体键合量为0.129mmolg~(-1),该固定相有良好的物理和化学稳定性。不同批次的键合相具有相近的键合量,表明该键合反应路线简便易行,制备方法重现性较好。
     3.以联苯为溶质探针,甲醇-水(55∶45,v/v)为流动相,测得CCSP的柱效为8221块/米。采用纯有机溶剂或酸性流动相长时间冲洗,发现该固定相仍保持稳定的色谱性能。首先采用公认的Kimata小组发展的方法,对新固定相的基本色谱性能进行了综合评价,这其中包括疏水性能、氢键能力、立体选择性和离子交换能力等。然后根据新固定相的特点,侧重细评其疏水性、电荷转移能力和对芳香烃位置异构体的分离能力。通过对中性、碱性和酸性化合物分离的考察,展示新固定相在复杂样品体系分离分析中的优势,溶质包括:非极性难电离的芳烃、极性大易电离的芳香酸和芳香胺、水溶性极性强且有生化分析意义的维生素和核苷碱基等特征结构的探针群体。并引用传统的商品化反相填料ODS柱作参比相。力求从多个方面较全面地把握CCSP对不同类型化合物的色谱分离性能,结合机理研究,为其未来的实际应用提供理论依据。研究结果表明:CCSP是一种疏水性较弱的反相色谱填料,能与溶质发生疏水、氢键、偶极-偶极以及电荷转移等作用,协同作用的结果使得CCSP能够克服ODS单一疏水性作用的缺陷,在对极性化合物的快速分离中占优势。
     4.为进一步评价新的硅胶固定相(CCSP)对碱性溶质的分离能力,实验选用11种含氮的碱性化合物为溶质探针,考察了流动相中甲醇含量、pH值对分离的影响,研究了该固定相的亲硅醇基活性和相关色谱保留机理。结果发现,在不含任何添加剂的甲醇水简单流动相中,未经封尾处理的姜黄素键合硅胶固定相能分别实现三组碱性化合物的基线分离。在相同色谱条件下,CCSP对碱性物质的选择性比ODS高。且N,N-二甲基苯胺和β-萘胺、N-甲苯胺和间硝基苯甲醛在新固定相的洗脱顺序与ODS不同,说明二者的保留机理存在差异。明显地,新固定相在反相色谱条件下对碱性化合物的分离除与疏水作用有关外,还与氢键作用、偶极-偶极作用、n-π和π-π电荷转移等作用有关。新固定在分离碱性化合物方面体现出优势:一是由于其较弱的疏水性和多种作用位点,更易接近碱性化合物,进行丰富的相互识别作用,从而在短时间内能够实现良好的分离;二是偶联剂间隔臂的屏蔽作用和配体的立体保护效应能有效地抑制硅胶表面残存的硅醇基效应,克服了碱性溶质的拖尾现象,在CCSP上的色谱峰对称性明显优于ODS,且碱性化合物的容量因子κ’均随甲醇含量的增大而减小,这个变化过程中始终未观察到不理想的“U”形曲线。
     5.以易电离的13种极性取代芳香酸为探针,考察不同流动相和pH值的条件下,CCSP对取代芳香酸色谱行为的影响,探讨新固定相对芳香酸类化合物的色谱保留机理。结果表明,在不同含量的甲醇-0.02molL~(-1)NaH_2PO_4(pH=2.5)流动相体系中,三组芳香酸溶质在CCSP上实现基线分离。在相同条件下,CCSP对13种取代芳香酸类化合物的洗脱顺序与ODS具有较大的不同,其中5种溶质在CCSP上比在ODS上的保留更强,与两固定相的疏水性和键合量不符,这归因于CCSP的协同作用。例如,姜黄素配体的酚羟基和羰基能与酸性化合物的极性基团发生氢键作用、偶极.偶极作用,与此同时,n-π和π-π等电荷转移作用也普遍存在于姜黄素配体的芳环与溶质的苯环之间。在分离芳香酸时,含姜黄素配体的CCSP有多种作用机制,这使得它对极性的和离子化的溶质如:水杨酸、对硝基苯甲酸、3,4,5-三羟基苯甲酸、邻苯二甲酸和邻溴苯甲酸等具有较强的保留,同时由于本身较弱的疏水性,苯甲酸和邻氯苯甲酸在CCSP上的保留不会像在ODS上那么强,这样分离时间缩短,分离度也有明显的改善。
     6.分别研究了5种水溶性维生素和5种核苷在CCSP上的色谱行为,考察了甲醇含量、流动相pH值和离子强度对CCSP分离这类极性化合物的影响,探讨了色谱保留机理。结果表明,CCSP能较好地分离5种水溶性维生素,而核苷的分离是仅用水为流动相的条件下实现的。与ODS柱相比,在相同条件下,CCSP对5种水溶性维生素具有较高的选择性,洗脱顺序与ODS具有较大的差异。相同色谱条件下,CCSP对核苷的保留比ODS弱,胸苷与黄苷的洗脱顺序也与ODS不同,仅用水做流动相就可快速分离核苷,节省了分析时间和费用。在相对短时间内分离选择性却有提高,这归因于极性溶质与姜黄素配体的极性基团间的各种非疏水性相互作用,这些作用使新固定相更适用于极性化合物的分离分析。
     7.将CCSP分别用于四种较复杂的实际样品的色谱分析,样品包括:复方水杨酸搽剂、四川大蒜粉、常见中草药五味子和白术的提取液。以ODS为参比相,初步地考察了新固定相对复杂样品的分离能力,探讨了相关色谱保留机理。结果表明,该固定相在对复杂样品的分离中以疏水作用为主,同时存在氢键、偶极-偶极以及n-π和π-π电荷转移等作用,这有利于改善分离选择性,协同作用使CCSP能够在较简单的条件下实现复杂样品的有效快速分离。
It is well known that there is abundant herb plant resource in our country. Traditional Chinese Medicine is very valuable treasure derived from nature. In order to make full and deeply use of them, this thesis focused on the exploration of their new chromatographic separation usage based on the natural chemical structural ligand. The scheme dealt with the preparation of separation materials with both chromatographic and pharmaceutical functions by chemical modification of the medicinal components onto the surface of silica gel for high performance liquid chromatography (HPLC). It is an attractive subject with great significance for the researches of theory and practice in the overlapping area among modern chromatography and related applied sciences to study the chromatographic retention mechanism and application of such novel separation materials.
     In this thesis, a new curcumin-bonded silica gel stationary phase (CCSP) was prepared so as to study its chromatographic functions and exploit its application for the first time. Its structure was characterized by electrospray mass spectrometry creatively, besides ordinary Fourier transform infrared spectrometry, elemental analysis and thermal analysis. Different structural solutes were used as probes to study the chromatographic property of CCSP systematically, including the basic chromatographic performance and the characteristic chromatographic separation evaluations. The probes covered a wide structural range from common probes, simple polar compound samples to complicate Chinese herbs extracts. Meanwhile, the retention mechanisms were also discussed.
     The results showed that CCSP exhibited excellent separation abilities for many polar compounds due to its large aromatic rings electronic system and various action sites. It has a promising prospect in the separations of basic compounds and many polar compounds for chromatography. Additionally, materials modifed with natural medical ingredients have potential application in the field of antibacterial medicines, which provides a new way pointing to the modern deep-processing of active components of TCM in the future. The major contents are as follows:
     1. The recent advances of the study in the preparation, chromatographic retention mechanisms and their application of novel bonded silica gel stationary phases for HPLC at home and abroad were reviewed systematically. The application prospect of the active components from plants as the bonded ligands for HPLC and related separation technologies in the future was also discussed. Above all will contribute to the research foundation and start point to explore new natural medicinal ligand bonded stationary phases.
     2. An herb medicinal active component curcumin was chemically immobilized to the surface of silica gel as stationary phase by the solid-liquid phase reaction method under mild conditions by usingγ-glycidoxy-propyltrimethoxy-silane (KH-560) as coupling reagent for high performance liquid chromatography. The structure of new curcumin-bonded stationary phase (CCSP) was characterized by Fourier transform infrared spectrometry, elemental analysis, thermal analysis and mass spectrometry. The preparative scheme and reaction conditions were also partially optimized via investigation under different reaction conditions. The result showed that the curcumin ligand was successfully immobilized on the surface of spherical silica gel with a 0.129 mmolg~(-1) of bonded amount, and CCSP had high physical and chemical stability. In addition, the bonded amounts of the packings in different batches were similar to each other, which indicated that the above preparation procedure was practical and reliable.
     3. Biphenyl was used as probe to determine the column efficiency (8221 plates per meter) in methanol-water (55:45, v/v) mobile phase. The stability of CCSP in strong organic solvent and acidic mobile phase were investigated, respectively. The basic chromatographic properties of CCSP, including hydrophobicity, charge transfer capacity, hydrogen bonding capacity, steric selectivity and ion exchange capacity were systematically evaluated, according to an authorized column validation method proposed by Kimata's group. Subsequently, various structural probes and conventional ODS were employed so as to profound study of new CCSP for a wide apllications in the future. The intensive chromatographic properties lie on the hydrophobicity, charge transfer and recognization abilities for aromatics and their positional isomers. The advantages of CCSP were showed in the separation procecesses by using probes, including many neutral, basic and acidic compounds. For example, nonploar aromatic carbonhydrons, polar and ionized aromatic acids and amines, water-soluble vitamins and nucleosides etc. Some comparative study was also carried out by adopting as reference under the same conditions. According to the chromatographic behavior of probes on CCSP, some retention mechanisms of new packing were also proposed, which will partially be used as the theoretic foundation for its practical application in the future. The results indicated that CCSP performed as a versatile reversed-phase material with a relatively weak hydrophobicity, especially, various action sites located in the curcumin ligand, such as hydrophobic, hydrogen bonding, dipoledipole, charge transfer action sites for different analytes. Hence, CCSP was endowed advantage over only hydrophobic ODS in rapid separations of polar compounds.
     4. Eleven basic compounds containing nitrogen-atom were employed as solute probes so as to further study the separation ability of new curcumin bonded stationary phase for basic compounds, which is important to the bonded silica gel stationary without end-capped process. The effects of mobile phase variables, such as methanol content and pH in mobile phases on the chromatographic behaviors of the basic compounds, as well as the silanophilic activity of CCSP were investigated in detail via the comparative study with ODS. The behavior change was used to clarify the related retention mechanism of the analytes on CCSP. The results indicated that baseline separation of three series of basic compounds on CCSP (no end-capped) could be achieved only with methanol-water as binary mobile phases without addition of buffer solution, respectively. CCSP exhibited better separation selectivity for the above basic compounds than that of ODS. It could also be noticed that the elution order of N,N-dimethylaniline andβ-naphthylamine, N-methylaniline and m-nitrobenzaldehyde were very different under the same reversed-phase chromatographic conditions. Obviously, CCSP had different retention mechanism to the basic compounds as compared with conventional ODS. According to the chromatographic data, some conclusion could be made that the versatile separation ability of CCSP derived from the synergetic interactions between the curcumin and analytes, including hydrophobic, hydrogen-bonding, dipole-dipole, n-πandπ-πcharge transfer interactions. CCSP had two advantages in the separation for basic compounds. On one hand, the rapid separation of basic compounds can easily be realized because of weak hydrophobicity and multi-sites of CCSP. On the other hand, the side effect of residual silanols on the surface of silica gel was despressed by the polar linkage spacer. Thus, symmetrical peak shapes can be observed by using only methanolwater as mobile phase. Moreover, the unfavorable "U" shape of retention factor (k') of the basic solutes never appeared with increasing of methanol content.
     5. Subsequently, thirteen aromatic carboxylic acids were used as acidic probes to characterize new CCSP. In the same way, the comparative study with ODS was also done under the same reversed-phase chromatographic conditions. After some investigation of influence factors, it could be found that baseline separation of three series of aromatic carboxylic acids on CCSP were easily achieved, instead of ODS. CCSP behaved as a reversed-phase packing and its separation selectivity for aromatic carboxylic acids was better than that of ODS. The different elution orders of some acidic compounds were also observed on both CCSP and ODS. Among them, five of solutes exhibited stronger affinities to CCSP, which was inconsistent with the hydrophobicities and bonded amount of both packings. It was obvious that CCSP exhibited better separations whether acidic or basic compounds, which was mainly independent of the ionization property of solutes and dependent on the synergetic interactions providing by CCSP. For example, hydrogen bonding, dipole-dipole interactions existed between the phenolic hydroxyl or carbonyl groups of the curcumin and polar groups of acidic compounds. The CCSP containing curcumin ligand had two advantages over ODS. On one hand, the polar and ionized analytes, such as salicylic acid, p-nitrobenzoic acid, 3,4,5-trihydroxybenzoic acid, phthalic acid and o-bromobenzoic acid showed stronger affinities to CCSP because of various synergistic mechanisms. On the other hand, the retention of benzoic acid and o-chlorobenzoic acid can be successfully separated on CCSP within a short time because of its weak hydrophobicity.
     6. Five water-soluble vitamins and five nucleosides were chromatographied for the further study. Their chromatographic behaviors were studied on both CCSP and ODS, respectively. Some influence of mobile phase variables such as methanol content, pH and ionic strength on the retention behavior of analytes was investigated so as to clarify the retention mechanism. The results showed that a better separation of five water-soluble vitamins on CCSP was achieved by using methanol-0.01molL~(-1) NaH_2PO_4 (40:60, v/v, pH3.5) as mobile phase, and the separation of nucleosides was carried out with only water as mobile phases. CCSP had better separation ability for vitamins and provided the different retention order for the analytes as compared With ODS. CCSP could also achieved effective separation of nucleosides and with different selectivity for thymidine and xanthosine from ODS within a relatively short analytical time. The various interactions and weak hydrophobicity of CCSP contributed to its advantages over only hydrophobic ODS in the separations of the above polar compounds.
     7. CCSP was employed for the preliminary separations of four complicate samples, including salicylic acid liniment, Sichuan garlic Allium Sativum L powder extracts, Sichsandra sphenanthera Rehd. et wils. seed extract and Atractylodes macrocephala Koidz. extract. The separation ability for complicate samples and the chromatographic retention mechanisms on CCSP were studied as compared with ODS. It was found that besides hydrophobic interaction other interactions such as hydrogen bonding interaction, dipole-dipole interaction, n-πandπ-πcharge transfer interaction could also tailor the chromatographic retention behaviors of analytes and facilitate to the separations. Rapid separations of the above samples can be achieved on CCSP under simple chromatographic conditions with the help of the synergistic interactions.
引文
[1] Fishbein L. Chromatography of environmental hazards, Amsterdam, Elsevier Pub. Co., 1982
    [2] 师治贤,王俊德.子能生物大分子的液相色谱分离和制备.北京:科学出版社,1992,173~205
    [3] Snyder L R, Kirkland J J, Glajch J L. Practical HPLC method development. 2nd. Chichester, England: John Wiley & Sons Inc., 1997
    [4] 邹汉法,张玉奎,卢佩章.高效液相色谱法.北京:科学出版社,1998,79~125
    [5] 达世禄.色谱学导论(第二版).武汉:武汉大学出版社,1999,307~343
    [6] 于世林.高效液相色谱方法及应用.北京:化学工业出版社,2000,245~322
    [7] 陈立仁,蒋生祥,刘霞等.高效液相色谱基础与实践.北京:科学出版社,2001,69~123
    [8] Stout R W, Sivakoff S I, Ricker R D, et al. J. Chromatogr., New ion-exchange packings based on zirconium oxide surface-stabilized, diol-bonded, silica substrates. 1986, vol. 352: 381~397
    [9] Chicz R M, Shi Z, Regnier F E. Preparation and evaluation of inorganic anion-exchange sorbents not based on silica. J. Chromatogr., 1986, vol. 359: 121~130
    [10] Nobuhara K, Kato M, Nakamura M, et al. Preparation and evaluation of magnesia-coated silica as column packing material for high-performance liquid chromatography. J. Chromatogr. A, 1995, vol.704(1/2): 45~53.
    [11] 杨新立,王俊德,熊博晖.高效液相色谱用硅质填料的进展.色谱,2000,18(4):308~312
    [12] 刘国诠,余兆楼.色谱柱技术.北京:化学工业出版社,2001
    [13] Da S L, Feng Y Q, Da H N, et al. Preparation and characterization of 3-(Aza-18-crown-6) propylsilyl bonded phase for reversed-phase liquid chromatography. J. Chromatogr. Sci., 1999, vol.37(5): 137~144
    [14] Takeuchi T, Fukuma D, Matsui J. Combinatorial molecular imprinting: An approach to synthetic polymer receptors, Anal. Chem., 1999, vol. 71: 285~290
    [15] Zhang Q, Zou H F, Wang H L, et al. Synthesis of a silica-bonded bovine serum albumin striazine chiral stationary phase for high-performance liquid chromatographic resolution of enantiomers. J. Chromatogr. A, 2000, vol.866: 173~181
    [16] Feng Y Q, Xie M J and Da S L. Preparation and characterization of an L-tyrosine-derivatized β-cyclodextrin-bonded silica stationary phase for liquid chromatography. Anal. Chim. Acta. 2000, vol. 403(1/2): 187~195
    [17] 赵藻藩,周性尧,张悟铭等.仪器分析.北京:高等教育出版社,1990
    [18] Engelhardt H, Arangio M, Lobert T. A chromatographic test procedure for reversed-phase HPLC column evaluation. LC-GC., 1997, vol.15(9): 856~866
    [19] Engelhardt H, Jungheim M. Comparison and Characterization of Reversed Phases. Chromatographia, 1990, vol.29(1/2): 59~68
    [20] Kirkland J J, Henderson J W. Reversed-phase HPLC selectivity and retention characteristics of conformationally different bonded alkyl stationary phases. J, Chromatogr. Sci., 1994, vol.32(11): 473~480
    [21] Kirkland J J, Adams J B, van Straten M A, et al. Bidentate silane stationary phases for reversed phase high-performance liquid chromatography. Anal. Chem, 1998, vol.70(20): 4344~4352
    [22] Kirkland J J, Henderson J W, Martosella J D, et al. A highly stable alkyl-amide silica-based column packing for reversed-phase HPLC of polar and ionizable compounds. LC GC N. Am., 1999, vol.7(17): 634~636
    [23] Hirayama C, Ihara H, Mukai T. Lipid-membrane analogs-specific retention behavior in comb-shaped telomer-immobilized porous silica-gels. Macromolecules, 1992, vol. 25(23): 6375~6376
    [24] Fukumoto T, Ihara H, Sakaki S, et al. Chromatographic separation of geometrical isomers using highly oriented polymer-immobilized silica gels. J. Chromatogr. A, 1994, vol.672(1/2): 237~241
    [25] O'Gara J E, Alden B A, Walter T H, et al. Simple preparation of a C8 HPLC stationary phase with an internal polar functional group. Anal. Chem., 1995, vol. 67(20): 3809~3813
    [26] Wirth M J, Fatunmbi H O. Horizontal polymerization of mixed trifunctional silanes on silica.2. application to chromatographic silica-gel. Anal. Chem., 1993, vol. 65(6): 822~826
    [27] David V, Calley M. Comparison of the performance of conventional C_(18) phases with others of alternative functionality for the analysis of basic compounds by reversed-phase high performance liquid chromatography. J. Chromatogr. A, 1999, vol.844(1): 23~28
    [28] Liu X D, Bordunov A V, Pohl C A. Preparation and evaluation of a hydrolytically stable amide-embedded stationary phase. J. Chromatogr. A, 2006, vol.1119: 128~134
    [29] 王萍,王俊德,丛润滋等.用于碱性物质分离的高效液相色谱键合相的制备及评价.色谱,1997,15(3):189~192
    [30] 黄晓佳,王俊德,刘学良.新型烷基醚型键合固定相的制备及评价.色谱,2001,19(6):485~488
    [31] 黄晓佳,刘学良,王俊德等.新型酯型反相高效液相色谱填料的制备表征及性能评价.高等学校化学学报,2002,23(9):1684~1687
    [32] 黄晓佳,王俊德,刘学良.酰胺型键合相的简便制备及评价.色谱,2002,20(3):19~222
    [33] 黄晓佳,王俊德,刘学良等.胺型键合反相固定相的制备及评价.分析化学,2002,30(8):962~966
    [34] 黄晓佳,王俊德,刘学良等.双胺型键合固定相的制备及评价.分析化学,2002,30(9):1048~1052
    [35] 龙远德,杨晓晔,黄天宝.十四烷基胺键合同定相的反相色谱性能.色谱,1999,17(4):339~341
    [36] 景玉青,龙远德,黄天宝.一种新型液相色谱屏蔽键合相的色谱性能.高等学校化学学报,2002,23(2):210~212
    [37] 马言顺,龙远德,翦英红等.新型高效液相色谱酰胺键合固定相的制备与评价.分析化 学,2004,32(2):232~236
    [38] 李来生,刘旭,黄志兵等.3,5-二硝基苯甲酰基高效液相色谱键合硅胶固定相的制备与评价.色谱,2005,23(2):123~128
    [39] 余琼卫,屈粒,何海波等.芘基丁酸键合硅胶固定相对含π电子物质的高效液相色谱分离研究.高等学校化学学报,2006,27(4):622~626
    [40] Nerurkar SG, Dighe SV, Williams RL. Bioequivalence of racemic drugs. J Clin Pharmacol, 1992, vol.32(10): 935~943
    [41] Maier N M, Franco P, Lindner W. Separation of enantiomers: needs, challenges, perspectives. J Chromatogr. A, 2001, vol.906: 3~33
    [42] Hyun M H, Na M S, Jin J S. Chiral recognition models for the liquid chromatographic resolution of π-acidic racemates on a chiral stationary phase derived from N-phenyl-N-alkylamide of(S-naproxen). J. Chromatogr. A, 1996, vol.752: 77~84
    [43] Pirkle W H, and House D W. Chiral high-performance liquid chromatographic stationary phases. 1. Separation of the enantiomers of sulfoxides, amines, amino acids, alcohols, hydroxy acids, lactones, and mercaptans. J Org, Chem, 1979, vol.44(12): 1957~1960
    [44] Hyun M Ho, Na M S, Min C S. Improved chiral stationary phase derived from(S)-naproxen for the liquid chromatographic resolution of enantiomers. J. Chromatogr. A, 1996, vol.732: 209~214
    [45] Oi S, Ono H, Tanka H, et al. Axially dissymmetric bianthracene-based chirai stationary phase for the high-performance liquid chromatographic separation of enantiomers. J. Chromatogr. A, 1994, vol.679: 35~46
    [46] 蔡小军,徐秀珠,张大同等.高效液相色谱手性固定相法分离酸性化合物对映体.分析化学,2004,32(2):134~138
    [47] 唐琴,宋航,付超等.高效液相色谱手性固定相法拆分克伦特罗对映体.分析化学,2004,32(6):755~758
    [48] 潘春秀,吴清洲,沈报春等.芳氧苯氧丙酸类除草剂在两种手性柱上的分离.分析化学.2006,34(2):159~164
    [49] Zhang D D, Li F M, Hyun M H. Preparation and application of a novel Pirkle-type chiral stationary phase in liquid chromatography. Pharmazie, 2007, vol.62(4): 258~261
    [50] 化学分离富集方法及应用编委.化学分离富集方法及应用.长沙:中南工业大学出版社,2000
    [51] Blasius E, Adrian W, Janzen K P, et al. Darstellung und eigenschaften von austauschern auf basis von kronenverbindungen. J. Chromatogr. A, 1974, vol.96: 89~97
    [52] Kaplan L, Sousa L R, Hoffman D H, et al. Total optical resolution of amino esters by designed host-guest relations in molecular complexation. J. Am. Chem. Soc, 1974, vol.96(22): 7100~7101
    [53] Horvath G, Huszthy P, Szarvas S, et al. Preparation of a new chiral pyridino-crown etherbased stationary phase for enantioseparation of racemic primary organic ammonium salts Industrial and Engineering Chemistry Research., 2000, vol. 39(10): 3576~3581
    [54] Hyun M H, Han S C, Jin J S, et al. Separation of the stereoisomers of racemic fluoroquinolone antibacterial agents on a crown-ether-based chiral HPLC stationary phase. Chromatographia, 2000, vol.52(7/8): 473~476
    [55] Hyun M H, Han S C, Lipshutz B H, et al. New chiral crown ether stationary phase of the liquid chromatographic resolution of α-amino acid enantiomers. J Chromatogr. A, 2001, vol.910(2): 359~365
    [56] Hyun M H, Min H J, Cho Y J. Enantiomeric separation of tocainide and its analogues on an optically active crown ether-based stationary phase by liquid chromatography. J Chromatogr. A, 2003, vol.996(1/2): 233~237
    [57] Steffeck R J, Zelechonok Y, Gahm K H. Enantioselective separation of racemic secondary amines on a chiral crown ether-based liquid chromatography stationary phase. J Chromatogr. A, 2002, vol.947(2): 301~305
    [58] Lee W, Bang E, Lee W. Chiral resolution of diphenylalanine by high-performance liquid chromatography on a crown-ether-based chiral stationary phase and by NMR spectroscopy. Chromatographia, 2003, vol.57(7/8): 457~461
    [59] Hirose K, Nakamura T, Nishioka R, et al. Preparation and evaluation of novel chiral stationary phases covalently bound with chiral pseudo-18-crown-6 ethers. Tetrahedron Letters, 2003, vol.44(8): 1549~1551
    [60] Hirose K., Jin Y Z, Nakamura T, et al. Preparation and evaluation of a chiral stationary phase covalently bound with chiral pseudo-18-crown-6 ether having 1-phenyl-1, 2-cyclohexanediol as a chiral unit. J. Chromatogr. A, 2005, vol.1078(1/2): 35~41
    [61] Farkas V, Toth T, Orosz G, et al. Enantioseparation of protonated primary arylalkylamines and amino acids containing an aromatic moiety on a pyridino-crown ether based new chiral stationary phase. Tetrahedron-asymmetry. 2006, vol.17(12): 1883~1889
    [62] Jin Y Z, Hirose K, Nakamura T, et al. Preparation and evaluation of a chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether having a phenolic hydroxy group for enantiomer separation of amino compounds. J. chromatogr. A. 2006, vol.1129(2): 201~207
    [63] 达世禄,何国亮.高效液相色谱二氮杂冠醚键合相的合成及性能研究.高等学校化学学报.1993,14(12).1677~1681
    [64] Da S L, Yue W G, Wen Y F, et al. Preparation and characterization of bonded stationary phases of nitrogen-containing crown ether for high-performance liquid chromatography. Anal. Chim. Acta, 1994, vol.299(2): 239~247
    [65] 龚银汉.高效液相色谱氮杂冠醚键合固定相的合成及性能研究.高等学校化学学报,1998,19(5):720~722
    [66] 达世禄,齐广才.氮杂冠醚键合固定相的RP—HPLC色谱性能研究.高等学校化学学报,1995,16(8):1219~1223
    [67] 达世禄,范畴.多功能基和氮杂冠醚键合固定相的制备与鉴定.色谱,1995,13(3):161~165
    [68] 冯钰琦,龚银汉.氮杂冠醚,环糊精混合功能基键合砖胶液相色谱固定相的合成与评价. 高等学校化学学报,1999,20(4):552~554
    [69] 肖玉秀,岳卫华,达世禄.氮杂18-冠-6键合硅胶固定相上小分子肽的高效液相色谱研究.氨基酸和生物资源.2000,22(2):49~53
    [70] 傅若农.色谱分析概论.北京:化学工业出版社,2000.192
    [71] Hargitai T, Kaida Y, Okamoto Y. Preparation and chromatographic evaluation of 3, 5-dimethylphenyl carbamoylated β-cyclodextrin stationary phases for normal-phase highperformance liquid chromatographic separation of enantiomers J. Chromatogr., 1993, vol.628: 11~22
    [72] Berthod A, Chang C D, Armstrong D W. β-Cyclodextrin chiral stationary phases for liquid chromatography-effect of the spacer arm on chiral recognition. Talanta, 1993, vol.40: 1367~1373
    [73] Gong Y H, Lee H K. Application of naphthylcarbamate-substituted beta-cyclodextrin bonded silica particles as stationary phase for high-performance liquid chromatography. J. Sep. Sci., 2003, vol.26(6/7): 515~520
    [74] Zhou A L, Lv X Y, Xie Y X, et al. Preparation and evaluation of mono(6(A)-N-ethylenediamine-6(A)-deoxy)-functionalized beta-cyclodextrin bonded stationary phases for normal and reverse-phase high-performance liquid chromatography. Chromatographia, 2004, vol.60(5/6): 281~285
    [75] Lai X H, Bai Z W, Ng S C, et al. Preparation and enantioseparation characteristics of two chiral stationary phases based on mono(6(A)-azido-6(A)-deoxy)-perphenylcarbamoylated alpha-and gamma-cyclodextrin. Chirality, 2004, vol.16(9): 592~597
    [76] Bai Z W, Chen L, Ching C B, et al. Preparation and enantioseparation properties of chiral stationary phases derived from arylcarbamoylated beta-cyclodextrin. J. liq. Chromatogr. R. T., 2005, vol.28(6): 883~897
    [77] Zhong Q Q, He L F, Thomas E. Beesley, et al. Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography. J. Chromatogr. A, 2006, vol. 1115: 19~45
    [78] 冯钰琦,达世禄.甘氨酸衍生化β-环糊精键合硅胶液相色谱固定相的合成与评价.色谱,2000,18(3):224~228
    [79] 范毅,冯钰琦,达世禄.2,4,6-三硝基苯酚衍生化β-环糊精键合硅胶液相色谱固定相的合成与评价.分析测试学报,2001,20(5):5~8
    [80] 陈慧,吕宪禹,黄君民等.衍生化环糊精键合固定相色谱保留和手性识别机理的研究(Ⅰ).高等学校化学学报,2000,21(4):562~565
    [81] 黄君珉,陈慧,高如瑜等.衍生化环糊精键合固定相色谱保留和手性识别机理的研究.(Ⅱ).高等学校化学学报,2001,22(11):1838~1842
    [82] 黄君珉,陈慧,王琴孙等.衍生化环糊精键合固定相对N-苄氧甲酰基-α-氨基膦酸酯化合物色谱保留和手性识别机理的研究.化学学报.2001,59(8):1299~1305
    [83] 何建峰,朱全红,刘岚等.高效液相色谱法拆分生物碱类手性药物对映体.中山大学学报.自然科学版,2002,41(1):35~38
    [84] 周爱玲,王秀玲,黄君珉等.新型衍生化β-环糊精键合硅胶手性固定相的合成与性能研究.高等学校化学学报,2003,24(9):1610~1614
    [85] 柏正武,吴小聪,程志斌.1-萘氨基甲酸酯β-环糊精手性固定相的合成及其手性分离特性.分析科学学报,2004,20(4):379~381
    [86] 刘立文,罗爱芹,戴荣继等.2,6-二-O-戊基-β-环糊精键合硅胶固定相的合成与色谱性能考察.色谱,2004,22(6):630~633
    [87] 罗爱芹,刘立文,戴荣继等.对联苯二酚桥联环糊精键合硅胶固定相的合成与色谱性能测试.北京理工大学学报,2004,24(7):646~649
    [88] 罗爱芹,刘立文,戴荣继等.2,6-二-O-苄基-β-环糊精键合硅胶固定相的合成与色谱性能.北京理工大学学报,2005,25(1):87~90
    [89] 罗爱芹,侯爱军,戴荣继等.七(2,6-二-O-丁基)-β-环糊精键合硅胶固定相的合成与评价.北京理工大学学报,2005,25(8):745~748
    [90] 方敏,周智明,罗爱芹.新型α-希夫碱衍生化β-环糊精键合硅胶手性固定相的合成与色谱性能研究.高等学校化学学报,2005,26(8):1443~1445
    [91] Liu M, Da SL, Feng yQ, et al. Study on the preparation method and performance of a new beta-cyclodextrin bonded silica stationary phase for liquid chromatography. Anal. Chim. Acta, 2005, 533(1): 89~95
    [92] Zhou Z M, Fang M, Yu C X. Synthesis and chromatographic properties of alpha-Schiff bases (6-imino)-beta-cyclodextrin bonded silica for stationary phase of liquid chromatography. Analytica Chimica Acta, 2005, vol.539(1/2): 23~29
    [93] 许志刚,艾萍,袁黎明等.苯基氨基甲酸酯全衍生化环糊精键合相的制备及手性拆分应用.分析化学,2006,34(1):77~79
    [94] Isaksson R, Erlandsson P, Hansson L, et al. Triacetylcellulose as a chiral stationary phase for high performance liquid chromatography. J Chromatogr. A, 1990, vol.498: 257~780
    [95] Kubota T, Kusano T, Yamamoto C, et al. Cellulose 3, 5-dimethylphenylcarbamate immobilized onto silica gel via copolymerization with a vinyl monomer and its chiral recognition ability as a chiral stationary phase for HPLC. Chem. Lett., 2001, vol.355(7): 724~725
    [96] Kubota T, Yamamoto C, Okamoto Y. Preparation of chiral stationary phase for HPLC based on immobilization of cellulose 3, 5-dimethylphenylcarbamate derivatives on silica gel. Chirality, 2003, vol.15: 77~82
    [97] Kubota T, Yamamoto C, Okamoto Y. Preparation and chiral recognition ability of Cellulose 3, 5-dimethylphenylcarbamate immobilized on silica gel through radical polymerization. J. Polym. Sci. pol. Chem., 2003, vol.41(22): 3703~3712
    [98] Kubota T, Yamamoto C, Okamoto Y. Phenylcarbamate derivatives of cellulose and amyiose immobilized onto silica gel as chiral stationary phases for high-performance liquid chromatography. Journal of polymer science part A-polymer chemistry, 2004, vol.42(18): 4704~4710
    [99] Garces J, Franco P, Oliveros L, et al. Mixed cellulose-derived benzoates bonded on allylsilica gel as HPLC chiral stationary phases: influence of the introduction of an aromatic moiety in the fixation substituent. Tetrahedron-asymmetry, 2003, vol.14(9): 1179~1185
    [100] Chen X M, Qin F, Liu Y Q, et al. Synthesis of chiral stationary phases with radical polymerization reaction of cellulose phenylcarbamate derivatives and vinylized silica gel. J. Chromatogra. A, 2004, vol.1034(1/2): 109~116
    [101] 秦峰,陈小明,邹汉法等.聚合反应制备键合型纤维素-三(4-甲基苯基甲酸酯衍生物类手性固定相.色谱,2004,22(6):569~574
    [102] Kasuya N, Kusaka Y, Habu N, et al. Development of chiral stationary phases consisting of low-molecular-weight cellulose derivatives covalently bonded to silica gel. Cellulose, 2002, vol.9(3/4): 263~269
    [103] Francotte E, Huynh D. Immobilized halogenophenylcarbamate derivatives of cellulose as novel stationary phases for enantioselective drug analysis. J. Pharmaceut. Biomed., 2002, vol. 27(3/4): 421~429
    [104] Chen X M, Liu Y Q, Qin F, et al. Synthesis of covalently bonded cellulose derivative chiral stationary phases with a bifunctional reagent of 3-(triethoxysilyl)propyl isocyanate. J. Chromatogr. A, 2003, vol.1010(2): 185~194
    [105] Chankvetadze B, Ikai T, Yamamoto C, et al. High-performance liquid chromatographic enantioseparations on monolithic silica columns containing a covalently attached 3, 5-dimethylphenylcarbamate derivative of cellulose. J. Chromatogr. A, 2004, vol.1042(1/2): 55~60
    [106] 邵保海,徐秀珠,吕建德等.三种甲氧基黄烷酮在纤维素衍生物手性柱上的对映体分离及手性识别机理研究.化学学报,2003,61(3):440~444
    [107] 王萍,周志强,叶贵标等.江树人.高效液相色谱纤维素类手性固定相对外消旋稻丰散的拆分.农药,2004,43(12):542~543,546.
    [108] 韩小茜,盛丽,李静萍等.几种手性化合物的液相色谱直接手性拆分.化学试剂.2005,27(2):91~92,118
    [109] 孙艳伟,梁晓梅,吴景平.一种新型纤维素衍生物固定相的制备及对硝基苯胺异构体的分离.化学试剂,2005,27(11):671~672,698
    [110] 林炳承.手性分子的色谱分离,色谱,1990,8(6):363~367
    [111] 谷焕鹏,胡升芳,高明堂.手性固定相在高效液相色谱中的应用研究进展.中国药房,2005,16(18):1421~1423
    [112] Okamoto Y, Aburatni R, Kaida Y, et al. Chromatographic resolution 19 direct optical resolution of carboxylic-acids by chiral HPLC on tris-(3, 5-dimethylphenylcarbamate)s of cellulose and amylose. Chem. Lett., 1988, vol.17(7): 1125~1128
    [113] 刘国诠,余兆楼.色谱柱技术.北京:化学工业出版社,2001,243~255
    [114] 于兆文,刘霞,蒋生祥等.单硫代和双硫代甘油醚在直链淀粉三(3,5-二甲基苯基氨基甲酸酯)固定相上的手性拆分.色谱,2000,18:39~41
    [115] 于兆文,李梅晔,陶偌偈等.手性固定相法拆分咔唑羧酸衍生物对映异构体.分析化学.2001,29(6):692~694
    [116] Yamamoto C, Hayashi T, Okamoto Y, et al. Direct resolution of C-76 enantiomers by HPLC using an amylose-based chiral stationary phase. Chem. Commun. 2001,(10): 925~926
    [117] Wang P, Liu DH, Lei XQ, et al. Enantiomeric separation of chiral pesticides by highperformance liquid chromatography on an amylose tris-(S)-1-phenylethylcarbamate chiral stationary phase. Journal of Separation Science, 2006, vol.29(2): 265~271
    [118] Yamamoto C, lnagaki S, Okamoto Y. Enantioseparation using alkoxyphenylcarbamates of cellulose and amylose as chiral stationary phase for high-performance, liquid chromatography. Journal of Separation Science, 2006, vol.29(6): 915~923
    [119] 李凌云,王立新,叶勇等.含磷手性化合物在多聚糖类手性固定相上的手性分离.分析试验室.2004,23(5):14~17
    [120] 王铁杰,李军,王玉等.氟西汀衍生物对映体在直链淀粉手性固定相上的拆分.药物分析杂志.2004,24(3):318~320
    [121] 周婕,杨亦文,吴平东等.直链淀粉手性固定相拆分氟西汀对映体.药物分析杂志.2006,26(12):1818~1822
    [122] 谷焕鹏,胡升芳,高明堂.手性固定相在高效液相色谱中的应用研究进展.中国药房,2005.16(18):1421~1423
    [123] Gotmar G, Albareda N R, Fornstedt T. Investigation of the heterogeneous adsorption behavior of selected enantiomers on immobilized alpha(1)-acid glycoprotein. Anal. Chem., 2002, vol.74: 2950~2959
    [124] Karlsson A, Skoog A, Ohlen K. Effect of temperature on the reversal in the retention order of the enantiomers ofmosapride on Chiral-AGP(R). J. Biochem. Biophys. Methods, 2002, vol. 54: 347~356
    [125] Millot M C, Taleb N L, Sebille B. Binding of human serum albumin to silica particles by means of polymers: a liquid chromatographic study of the selectivity of resulting chiral stationary phases. J. Chromatogr. B, 2002, vol. 768: 157~166
    [126] Andrisano V, Gotti R, Recanatini M., et al. Stereoselective binding of 2-(4-biphenylyl)-3-substituted-3-hydroxy-propionic acids on an immobilised human serum albumin chiral stationary phase. J. Chromatogr. B, 2002, vol.768: 137~145
    [127] Kato M, Saruwatari H, Sakai-Kato K, et al. Silica sol-gel/organic hybrid material for protein encapsulated column of capillary electrochrolnatography J. Chromatogr. A, 2004, vol.1044: 267~270
    [128] Brumbt A, Raveler C, Grosset C, et al. Chiral stationary phase based on a biostable L-RNA aptamer. Anal. Chem., 2005, vol.77: 1993~1998
    [129] 封顺,张强,邹汉法等.羰基咪唑法合成牛清白蛋白键合手性固定相.高等学校化学学报,2002,23(7):1251~1254
    [130] 杨凌,冉桂梅,张才华等.α1-酸性糖蛋白柱拆分布洛芬对映体.沈阳药科大学学报,2004,21(4):279~281
    [131] 杨凌,冉桂梅,张才华等.α1-酸性糖蛋白柱拆分马来酸曲美布汀对映体.分析化学,2005,33(5):668~670
    [132] 谢智勇,钟大放,李岩.酸糖蛋白手性柱分离6种手性化合物.分析化学,2006,34(2):223~226
    [133] 祝馨怡,韩小茜,齐邦峰等.硅胶键合手性配体交换固定相键合量对α-氨基酸拆分的影响色谱.2002,20(3):223~226
    [134] 郑文丽,宋航,梁彦明等.利用二硝基苯甲酰-苯基甘氨酸型手性固定相直接拆分丙卡特罗药物对映体.爱色谱,2003,21(3):239~241
    [135] 丁国生,黄晓佳,刘莺等.硅胶键合手性配体交换色谱固定相拆分α-氨基酸.分析测试学报,2003,22(6),32~35
    [136] Lee S L, Yang C M, Shieh K J, et al. The separation of alanine enatiomer derivatives by the proton-inhibition method. J. Chin. Chem. Soc., 2000, vol.47: 1247~1249
    [137] Schulte M, Devant R, Grosser R. Enantioseparation of Gantofiban precursors on chiral stationary phases of the poly-(N-acryloyl amino acid derivative)-type, J. Pharm. Biomed. Anal., 2002, vol.27(3/4): 627~637
    [138] Chen Z L, Hobo T. Chemically L-phenylalaninamide-modified monolithic silica column prepared by a sol-gel process far enantioseparation of dansyl amino acids by ligand exchange-capillary electrochromatography. Anal. Chem., 2001, vol.73(14): 3348~3357
    [139] Huang J M.; Zhang, P.; Chen H, et al. Preparation and evaluation of proline-based chiral columns. Anal. Chem., 2005, vol.77: 3301~3308
    [140] 徐修容,唐琴梅,施铭英等.高效液相色谱手性固定相的研究Ⅱ、数种L-缬氨酸-酰胺型固定相的制备及拆分对映体的比较.色谱,1984,1:22~26
    [141] 徐修容,唐琴梅,汪润英,高效液相色谱手性固定相的研究I:L-缬氨酸-叔丁酰胺型固定相的制备及对映体拆分.化学学报,1983,41(3):262~268
    [142] 王晓东,姚金水,魏明星等.手性识别及氨基酸手性固定相的研究进展.有机化学,2006,26(7):912~921
    [143] Glennon J D, O'Connor K, Srijaranai S, et al. Enhanced chromatographic selectivity for sodium ions on a calixarene-bonded stationary silica phase. Anal. Lett., 1993, vol.26: 153~162
    [144] Sliwka-Kaszynska M, Jaszczolt K, Witt D, et al. High-performance liquid chromatography of di-and trisubstituted aromatic positional isomers on 1, 3-alternate 25, 27-dipropoxy-26, 28-bis-(3-propyloxy)-calix[4]arene-bonded silica gel stationary phase. J. Chromatogr. A, 2004, vol.1055(1/2): 21~28
    [145] Sliwka-Kaszynska M, Jaszczolt K, Kolodziejczyk A, et al. 1, 3-alternate 25, 27-dibenzoiloxy-26, 28-bis-(3-propyloxy)-calix[4]arene-bonded silica gel as a new type of HPLC stationary phase. Talanta, 2006, vol.68(5): 1560~1566.
    [146] Sliwka-Kaszynska M, Jaszczolt K, Hoczyk A, et al. Preparation and evaluation of 1, 3-alternate 25, 27-dibenzyloxy-26, 28-bis-(3-propyloxyl)-calix[4]arene-bonded silica stationary phase for high performance liquid chromatography. Chemia Analityczna, 2006, vol.51(1): 123~133
    [147] Xiao Y X, Xiao X Z, Feng Y Q, et al. HPLC of some nucleosides and bases on p-tert-butyl-calix[6]arene-bonded silica gel stationary phase. J. Liq. Chromatogr. R. T., 2001, vol. 24(19): 2925~2942
    [148] Xiao Y X, Xiao X Z, Feng Y Q, et al. High-performance liquid chromatography of sulfonamides and quinolones on p-tert-butyl-calix[6] arene-bonded silica gel stationary phase. Talanta, 2002, vol.56(6): 1141~1151
    [149] 李文智,敦惠娟,韩小茜等.对-叔丁基杯[6]芳烃键合固定相的制备和评价.色谱,2003,21(5):483~486
    [150] 李文智,柳春辉,张红丽等.对-叔丁基杯[8]芳烃键合固定相的制备及表征.分析测试技术与仪器,2004,10(1):24~29
    [151] 李文智,王霞,张红丽等.对-叔丁基杯[4]芳烃键合固定相的制备及表征.分析测试学报,2004,23(1):19~22
    [152] 李文智,王霞,窦建民等.新型杯[4]芳烃高效液相色谱固定相的制备及表征.化学学报,2004,62(4):405~409
    [153] Li L S, Da S L, Feng Y Q, et al. Preparation and Characterization of a New p-tert-Butyl-calix[8] arene-bonded Stationary Phase for High-Performance Liquid Chromatography. Anal. Sci., 2004, vol.20(3): 561~564
    [154] Liu M., Li L S, Da S L, et al. Preparation of p-tert-Butyi-Calix[8]arene bonded silica stationary phase and separation for steroid hormone medicines. Anal. Lett., 2004, 37(14): 3017~3031
    [155] Li L S, Da S L, Feng Y Q, Liu M. HPLC separation of neutral, acidic, and basic compounds on a p-tert-butyl-calix[8]arene-bonded stationary phase. Anal. Lett., 2004, vol.37(13): 2805~2817
    [156] Li L S, Da S L, Feng Y Q, et al. Preparation and evaluation of a new calix[4]arene-bonded stationary phase for HPLC. J. Liq. Chromatogr. R. T., 2004, vol.27(14): 2167~2188
    [157] 李来生,刘敏,达世禄等.大黄蒽醌衍生物在杯[8]芳烃键合固定相上色谱行为的研究.分析化学,2004,32(4):511~515
    [158] 刘敏,达世禄,冯钰琦等.杯[8]芳烃键合硅胶固定相的制备、表征及色谱性能.高等学校化学学报,2004,25(7):1254~1256.
    [159] 李来生,达世禄,冯钰琦,刘敏.脱叔丁基杯[8]芳烃键合固定相的制备及其液相色谱性能.高等学校化学学报,2005,26(2):241~243
    [160] Li L S, Liu M, Da S L, et al. High performance liquid chromatography of aromatic carboxylic acids on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase. Talanta, 2004, 62(3): 643~648
    [161] Li L S, Liu M, Da S L, et al. Studies on the chromatographic behavior of nucleosides and bases on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase by HPLC. Talanta, 2004, vol.63(2): 443~451
    [162] Li L S, Da S L, Feng Y Q, et al. Study on the chromatographic behavior of water-soluble vitamins on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase by HPLC. Talanta, 2004, vol.64(2): 373~379
    [163] Li L S, Da S L, Feng Y Q, et al. Preparation and characterization of a p-tert-butyl-calix[6]-1, 4-benzocrown-4-bonded silica gel stationary phase for liquid chromatography. J. Chromatogr. A, 2004, vol.1040(1): 53~61
    [164] Liu M, Li L S, Da S L, et al. High performance liquid chromatography with cyclodextrin and calixarene macrocycle bonded silica stationary phases for separation of steroids. Talanta, 2005, vol.66(2): 479~486
    [165] Huai Q Y, Zhao B, Zuo Y M. Preparation and Evaluation of an End-Capped p-tert-Butyi-Calix[4]arene-Bonded-Silica Stationary Phase for Reversed-Phase High-Performance Liquid Chromatography. Chromatographia, 2004, vol.59(9/10): 637~646
    [166] 怀其勇,左育民.对-叔丁基-杯[4]芳烃键合硅胶及其它硅胶基质键合固定相的色谱保留性质.分析化学,2006,34(7):919~922
    [167] Armstrong D W, Tang Y B, Chen S S, et al. Macrocyclic antibiotics as a new class of chiral selectors for liquid-chromatography. Anal. Chem., 1994, vol.66(9): 1473~1484
    [168] Ilaria D'Acquarica. New synthetic strategies for the preparation of novel chirai stationary phases for high-performance liquid chromatography containing natural pool selectors. J. Pharmaceut. Biomed., 2000, vol.23(1): 3~13
    [169] Desiderio C, Aturki Z, Fanali S. Use of vancomycin silica stationary phase in packed capillary electrochromatography Ⅰ. Enantiomer separation of basic compounds. Electrophoresis, 2001, vol.22(3): 535~543
    [170] 丁国生,刘莺,丛润滋等.去甲万古霉素键合手性固定相拆分β-受体阻滞剂类药物及其结构类似物的研究.色谱.2004,22(4):386~389
    [171] 丁国生,丛润滋,王俊德.去甲万古霉素键合手性固定相在反相条件下拆分氨基酸类衍生物.分析化学.2004,32(5):606~610
    [172] 孟晓荣,史玲,周华凤等.万古霉素手性固定相的制备与对映体分离研究.色谱,2005,23(3):247~250
    [173] House D W. Chiral stationary phase based on yohimbine, United States Patent 6, 132, 606. 2000
    [174] Calleri E, Massolini G, Loiodice F, et al. Evaluation of a penicillin G acylase-based chiral stationary phase towards a series of 2-aryloxyalkanoic acids, isosteric analogs and 2-arylpropionic acids, J. Chromatogr. A, 2002, vol.958(1/2): 131~140
    [175] 江苏新医学院.中药大辞典.上海:上海科学技术出版社,1994,111~115
    [176] 赵锦卉,耿淑清.浅谈大蒜的抗菌作用.黑龙江医药,2000,13(2):112
    [177] 季宇彬.抗癌中药药理与应用.黑龙江科学技术出版社,1999,2:94~106
    [178] 于新蕊,丛月珠.大蒜的化学成分及其药理作用研究进展.中草,1994,25(3):158~160
    [179] 杨汉荣.大蒜新素二烯丙基三硫化物键合硅胶液相色谱固定相的制备与表征:[硕士论文].南昌:南昌大学分析测试中心,2007
    [180] 国家药典委员会.中华人民共和国药典(一部).北京:化学工业出版社,2000,248;附录IO;44
    [181] 陈雄泉.黄芩苷键合硅胶色谱固定相的制备、表征及应用:[硕士论文].南昌:南昌大学分析测试中心,2007
    [182] 郑建仙,植物活性成分开发.北京:国轻工业出版社,2005,320~323
    [183] 刘国诠,余兆楼.色谱柱技术.第二版.北京:化学工业出版社,2006,250~266
    [184] 梁广,杨树林,李校堑.姜黄属植物的植物化学研究进展.化学通报,2006,69:w068
    [185] 宋小妹,唐志书.中药化学成分提取分离与制备.北京:人民卫生出版社,2004,380~381
    [186] 秦炜,郑涛,原永辉,等.超声场对姜黄素提取过程的强化.清华大学学报(自然科学版),1998,38(6):46~48
    [187] 董海丽,纵伟.酶法提取姜黄素的研究.纯碱化工,2000(6):55~56
    [188] 王贤纯.活性炭柱层析分离姜黄素.生物学杂志,2000,17(6):8~10
    [189] 罗红霞,方清茂,潘晓鸥.姜黄素的提取及其含量测定研究进展.中国药业,2004,13(6):74~75
    [190] 项斌,高建荣.天然色素.北京:化学工业出版社,2004,117
    [191] 《中国商品大辞典》编辑委员会.中国商品大辞典(化学试剂分册).北京:中国商业出版社,1994,397
    [192] Roughley P J, Whiting D A, Experiments in the biosynthesis of curcumin, J. Chem. Soc. 1973, vol.20: 2379~2388
    [193] Xu W, Feng Y Q, Da S, et al. Preparation and Characterization of p-tert-ButylCalix(6)Arene-Bonded Silica Gel Stationary Phase for High Performance Liquid Chromatography. Chromatographia., 1998, vol.48(3/4): 245~250
    [194] Unger K K, Trudinger U, Brown P R, et al(Eds.). High Performance Liquid Chromatography. New York: Wiley, 1989, p145
    [195] Majors R E. New chromatography columns and accessories at the 2002 pittsburgh conference. Part Ⅰ. LC-GC N. Am., 2002, vol.20(3): 248~266
    [196] Diack M, Compton R N, Guiochon G, et al. Evaluation of stationary phases for the separation of buckminsterfullerenes by high-performance liquid chromatography. J. Chromatogr. A, 1993, vol.639: 129~140
    [197] Pirkle W H, Sikkenga D L. Resolution of optical isomers by liquid chromatography. J. Chromatogr. A, 1976, vol.123: 400~404
    [198] Kimata K., Hirose T., Moriuchi K. High-capacity stationary phases containing heavy atoms for HPLC separation of fullerenes. Anal. Chem., 1995, vol.67(15): 2556~2561
    [199] Kimata K., Hosoya K., Kurokl H. Selectivity of electron-donor-and electron-acceptorbonded silica packing materials for hydrophobic environmental contaminants in polar and non-polar eluents. J. Chromatogr. A, 1997, vol.786: 237~248
    [200] Buszewski B. Jezierska M. Survey and trends in the preparation of chemically bonded silica phases for liquid chromatographic analysis. J. High Resol. Chromatogr., 1998, vol.21(5): 267~281
    [201] Kimata K, Iwaguchi K, Onishi S, et al. Chromatographic characterization of silica C18 packing materials. Correlation between a preparation method and retention behavior of stationary phase. J. Chromatogr. Sci., 1989, vol.27(12): 721~728
    [202] Kimata K., Hosoya K, Araki T. Electron-acceptor and electron-donor chromatographic stationary phases for the reversed-phase liquid chromatographic separation and isomer identification of polychlorinated dibenzo-p-dioxins. Anal. Chem., 1993, vol.65(18): 2502~2507
    [203] Friebe S, Gebauer S, Krauss G J, et al. HPLC on calixarene bonded silica gels. Ⅰ. Characterization and applications of the p-tert-butyl-calix[4]arene bonded material. J. Chromatogr. Sci. 1995, vol.33(6): 281~284
    [204] Gebauer S, Friebe S, Gubitz G, et al. High performance liquid chromatography on calixarene-bonded silica ges. Ⅱ. Separations of regio-and etereoisomers on p-tert-butyicalix[n]-arene phases. J. Chromatogr. Sci, 1998, vol.36: 383~387
    [205] Dorsey J G, Cooper W T, Siles B A, et al. Liquid Chromatography: Theory and Methodology. Anal. Chem., 1998, vol.70(12): 591~644
    [206] 王俊德,商振华,郁蕴璐等,编.高效液相色谱法.北京:中国石化出版社,1992,107~138
    [207] Wojtowicz E J. TLC and GLC-determination of aromatic amine impurities in bulk paraaminobenzoic acid and in its potassium and sodium-salts. J. Pharm. Sci-us., 1982, vol. 71(2): 268~269
    [208] 寇登民,祁静.直接进样气相色谱法分析有机芳香酸.1999,vol.27(11):1300~1302
    [209] Sarkar A B, Kochak G M. HPLC analysis of alipbatic and aromatic dicarboxylic acid crosslinkers hydrolyzed from carbohydrate polyesters for estimation of the molar degree of substitution. Carbohyd. Polym., 2005, vol.59(3): 305~312
    [210] Soong Y Y, Barlow P J. Quantification of gallic acid and ellagic acid from longan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chem., 2006, vol.97(3): 524~530
    [211] Kawamura K, Okuwaki A, Verheyen T, et al. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids. Sep. Sci. Technol., 2006, vol.41(2): 379~390
    [212] Simmons T L, McCloud T G. Analysis of stibonic acids by ion exchange chromatography with ESI-MS/photodiode array detection. J. Liq. Chromatogr., 2003, vol.26(13): 2041~2051
    [213] Donati E, Polcaro C M. A study of the interaction between humic acids and acidic metabolites of phenanthrene by capillary electrophoresis. J. Sep. Sci., 2006, vol.29(18): 2853~2857
    [214] Waksmundzka-Hajnos M. Chromatographic separations of aromatic carboxylic acids. J. Chromatogr. B, 1998, vol.717(1/2): 93~118
    [215] Lin C H, Chen C Y, Chang S W, et al. Use of β-cyclodextrin bonded phase with s-triazine moiety in the spacer for separation of aromatic carboxylic acid isomers by high performance liquid chromatography. Anal. Chimo Acta, 2006, vol. 576: 84~90
    [216] Sane R T, Doshi V J, Joshi S K. Simple colorimetric method for determination of pyridoxine hydrochioride(vitamin B_6) in pharmaceuticals. J. Assoc. Off. Anal. Chem., 1983, vol. 66(1): 158~160
    [217] Wang E, Hou W. Determination of water-soluble vitamins using high-performance liquid chromatography and electrochemical or absorbance detection. J. Chromatogr., 1988, vol. 447(1): 256~262
    [218] Singh J, Upadhyay A K, Prasad K, et al. Variability of carotenes vitamin C, E and phenolics in Brassica vegetables. Journal of Food Composition and Analysis, 2007, vol.20(2): 106~112
    [219] Weissinger E M, Nguyen-Khoa T, Fumeron C, et al. Effects of oral vitamin C supplementation in hemodialysis patients: A proteomic assessment. Proteomics, 2006, vol.6(3): 993~1000
    [220] 吴梧桐,余蓉,陈枢青,张景海,陈蓓蓓,姚文兵.生物化学.第5版.北京:人民卫生出版社.2003,82~83.
    [221] Horvath C G, Preiss B A, Lipsky S R. Fast liquid chromatography. Investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers. Anal. Chem., 1967, 39(12): 1422~1428
    [222] Szuwart M, Starzynska E, Pietrowska-Borek M, et al. Calcium-stimulated guanosine-inosine nucleosidase from yellow lupin(Lupinus luteus). Phytochemistry, 2006, 67(14): 1476~1485
    [223] Lazzarino G, Amorini AM, Fazzina G, et al. Single-sample preparation for simultaneous cellular redox and energy state determination. Anal. Biochem., 2003, 322(1): 51~59
    [224] Lipka-Belloli E, Glacon V, Mackenzie G, et al. Chiral separation of nucleoside analogues of d4T and acyclovir, by liquid chromatography, on amylose stationary phases and determination ofenantiomeric purity. Chromatographia. 2002, vol.56(9/10): 567~572
    [225] Breithaupt D E. Determination of folic acid by ion-pair RP-HPLC in vitamin-fortified fruit juices after solid-phase extraction. Food Chem., 2001, 74(4): 521~525
    [226] Sharpless K E, Margolis S, Thomas J B. Determination of vitamins in food-matrix Standard Reference Materials. J. Chromatogr. A, 2000, vol.881(1/2): 171~181
    [227] Chavez-Servin Jorge.L, Castellote Ana I, Lopez-Sabater M. Carmen. Simultaneous analysis of Vitamins A and E in infant milk-based formulae by normal-phase high-performance liquid chromatography-diode array detection using a short narrow-bore column. J. Chromatogr. A, 2006, vol.1122(1/2): 138~143
    [228] 李来生,杨汉荣,陈雄泉等.银离子液质联用柱后衍生法分析大蒜粉中的二烯丙基含硫化物成分.分析化学,2006,34(8):1183~1186
    [229] 刘春丽,刘满仓,朱彭龄.高效液相色谱分析中药及植物药的进展.分析化学,2000,28(5):631~643
    [230] Huang X D, Kong L, Li X, et al. Strategy for analysis and screening of bioactive compounds in traditional Chinese medicines. J. Chromatogr. B, Analyt. Technol. Biomed Life Sci., 2004, vol. 812(1/2): 71~84
    [231] 李晓光,高勤,翁文等.五味子有效部位及其药理作用研究进展.中药材,2005,28(2):156~159
    [232] 袁军,付平,王野.南五味子种子中木酯素类成分的高效液相色谱-电喷雾电离-质谱分析.药物分析杂志,2005,25(5):565~569
    [233] 王慕邹,陈毓享,相乐 和彦等.常用中草药高效液相色谱分析.科学出版社,北京,1999:57~58,98~100
    [234] 李家实.中药鉴定.上海:上海科学技术出版社,1996:202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700