新型功能化整体柱的制备、应用和分离识别机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体柱(monolithic column)又称为连续床(continuous bed),是由单体、交联剂、致孔剂以及引发剂的混合溶液在色谱柱内通过原位热引发或光引发聚合得到的整体、连续的柱体。相对于常规填充柱,具有制备简单、易于改性、渗透性好、柱压低、传质速度快和分离效率高等优点。本论文合成了聚甲基丙烯酸缩水甘油酯poly(GMA-co-EGDMA)和聚甲基丙烯酸异氰基乙酯poly(IEM-co-MMA-co-EGDMA)整体柱聚合物骨架材料,通过键合碳链(C8-C18)疏水配基、聚乙烯亚胺(PEI)阴离子交换配基和p-环糊精(p-CD)配基,对骨架材料进行功能化修饰。实现了对天然产物葛根黄酮粗提物、解脂假丝酵母脂肪酶和布洛芬手性药物的分离纯化。研究了整体柱的分离识别机理,并利用计算机模拟和核磁共振技术探讨了p-环糊精的超分子识别机理。
     鉴于分子印迹技术(Molecular imprinting technology, MIT)的专一识别性能和固相萃取技术(Solid phase extraction, SPE)的高效预富集能力,本论文还利用分子印迹固相萃取(Molecular imprinting solid phase extraction, MISPE)技术实现了对茶叶中残留的痕量有机磷农药乐果的快速富集与分离。优化了分子印迹聚合物(Molecularly imprinted polymers, MIPs)的合成条件,建立了等温吸附模型,研究了MISPE对目标分子的萃取效率,并利用计算机模拟构建模型,探讨了MIPs的特异选择识别性能。论文的主要工作如下:
     1、合成C8疏水配基键合聚甲基丙烯酸缩水甘油酯poly(GMA-co-EGDMA)整体柱,通过一步色谱,分离纯化葛根黄酮中的葛根素,研究葛根素、大豆甙和大豆苷元的分离识别机理。采用甲基丙烯酸缩水甘油酯(GMA)为功能单体,二甲基丙烯酸乙二醇酉(?)(EGDMA)为交联剂,GMA:EGDMA=8:2 (v/v),偶氮二异丁腈(AIBN)为引发剂,环己醇:十二醇=87:13(v/v)为致孔剂,直接以不锈钢柱管为模具,55℃自由基热聚合制备poly(GMA-co-EGDMA)整体柱聚合物骨架介质。在55℃下,利用50%(v/v)的正辛胺乙醇溶液修饰整体柱,合成C8疏水配基键合poly(GMA-co-EGDMA)整体柱。介质的孔隙率为60.8%,比表面积为17.8 m2·g-1,平均孔径为0.76μm。对葛根素的动态饱和吸附容量为15 mg·g-1,C8配基密度为2.3 mmol·g-1。从葛根黄酮粗提物中一步分离纯化得到葛根素的最佳流动相为1%(v%)的醋酸水溶液,等梯度洗脱。组分的定性由红外光谱分析(FTIR). LC-MS和NMR完成。样品在最大负载量11.6 mg每克干树脂下,一步色谱纯化得到的葛根素的收率和纯度分别为95%和69%(m%)。整体柱介质在多次使用后,利用100%的甲醇以0.5 mL·min-1的流速连续冲洗1 h,介质可以再生。
     结合混合溶剂下的色谱分析和计算机模拟研究葛根素、大豆甙和大豆苷元在C8疏水配基整体柱上的分离识别机理。通过改变色谱流动相中添加剂的浓度,证明了氢键作用和疏水作用的存在。底物在C8疏水配基整体柱上的保留符合氢键和疏水共存的混合作用模式。计算模拟结果表明,聚合物骨架和仲胺功能基团均与底物形成很强的氢键,氢键的受体为羰基和羧基,氢键的给体为羟基和仲胺基团。而C8配基与底物的芳香环有很强的疏水作用。通过分子动力学模拟计算底物和聚合物的结合能,可以成功地预测底物在整体柱上的保留行为。
     2、合成聚乙烯亚胺(PEI)高聚物阴离子交换配基键合poly(GMA-co-EGDMA)整体柱,通过一步色谱,分离纯化解脂假丝酵母脂肪酶(YlLip2)。确定整体柱的最佳合成条件,PEI的分子量30kDa, PEI的修饰浓度为10%(wt%),修饰温度为55℃,修饰时间为12 h。介质的孔隙率为65.6%,比表面积为5.8 m2.g-1,平均孔径为1.8μm。对BSA的动态吸附容量为45.2 mg·g-1,PEI配基密度(按N元素计算)为316.8μmol-g-。一步色谱分离纯化,从脂肪酶粗酶液中分离得到四种同工酶。非变性电泳分析显示,四种同工酶成分均一,分子量相当,约为38 kDa。层析的酶活力总收率为52.2%。四种同工酶的最大纯化倍数为4.5,酶活比活力最大值达到3860U·mg-1。圆二色(CD)光谱分析各组分的二级结构,酶结构显示了α/β水解酶折叠的特点,各组分间的二级特征结构的比例差异较小,无规则卷曲都约为30%。MALDI-TOF-MS表征同工酶A,B,C和D的分子量分别为36 648±36、37 839±33、38 236±31和38 795±96Da。
     3、合成p-环糊精配基键合poly(GMA-co-EGDMA)整体柱,手性拆分布洛芬对映体,研究p-CD与布洛芬超分子手性识别的包络机理。整体柱的最佳合成条件确定为:0.2 M Na2CO3(pH=12)为修饰反应溶剂,EDA-β-CD的修饰浓度为20%(wt%),修饰反应温度为60℃。介质的孔隙率为65.6%,比表面积为5.1 m2·g-1,平均孔径为1.1μm。β-CD配基的键合量为680μmol·g-1。确定手性拆分布洛芬的最佳流动相为甲醇/0.5%TEAA=30/70 (v/v) (pH=4),等梯度洗脱,对布洛芬对映体的分离度为2.0,选择性因子为6.1。分析级实验中,步分离纯化从葛根黄酮中得到葛根素,纯度为86%(m%),收率为79%(m%),分离效率略逊于C8疏水配基整体柱。
     布洛芬与β-CD超分子手性识别的包络机理是P-N作用机理,即形成包合物后,布洛芬的苯环完全被包络在β-CD的疏水内腔中,而布洛芬的羧基极性端位于β-CD的小口端。结合能、氢键相互作用和对映体分子的竞争性吸附结果表明,S-布洛芬与β-CD形成的包合物相对更稳定,色谱洗脱过程中S-布洛芬后洗脱出来,与色谱手性拆分的结果一致。相对于游离态的β-CD,键合后的β-CD对布洛芬对映体的选择性增加,手性拆分效率提高。
     4、合成新型的、具有高反应活性和通用性的聚甲基丙烯酸异氰基乙酯poly(IEM-co-MMA-co-EGDMA)整体柱骨架材料,键合碳链(C8-C18)疏水配基和β-环糊精配基,通过一步色谱,分离纯化葛根黄酮中的葛根素。甲基丙烯酸异氰基乙酯(IEM)为功能单体,甲基丙烯酸甲酯(MMA)为共聚单体,二甲基丙烯酸乙二醇酯(EGDMA)为交联剂,IEM:MMA:EGDMA=12:1:1(摩尔比),偶氮二异丁腈(AIBN)为引发剂,甲苯/正庚烷=0.5/1(v/v)为致孔剂。介质的孔隙率为57.6%,比表面积为11.5 m2·g-1,平均孔径为1.6μm。整体柱配基有效键合的定性分析由FTIR、固体核磁共振光谱和X光电子能谱(XPS)完成。由整体柱修饰反应的动力学曲线计算配基的饱和键合密度,C8配基键合密度高达2.33 mmo1·mL-1,异氰酸酯(N=C=O)基团的转化率为96.9%。
     5、色谱分析、计算机模拟和核磁共振技术结合研究葛根素、大豆甙和大豆苷元在p-环糊精配基整体柱上的分离识别机理。分子模拟结果显示,葛根素与p-CD的结合能最小,大豆苷元与p-CD的结合能最大。相对应在色谱分析中,葛根素在p-环糊精配基整体柱上的保留因子最小,大豆苷元的保留因子最大。p-CD与客体分子的结合能越大,表明p-CD与客体小分子的结合作用越大,形成的包合物相对越稳定,则在色谱分离中客体分子在固定相上的保留因子越大,在洗脱顺序中表现为后洗脱出来。通过模拟计算p-CD与客体分子的结合能的大小,可以成功地预测客体小分子在p-环糊精配基整体柱上的保留行为和洗脱顺序。空白整体柱骨架聚合物对三种底物没有选择性,配基p-CD起到主要作用。通过改变色谱流动相添加剂的浓度,证明了葛根素、大豆甙和大豆苷元在p-CD配基整体柱上的保留符合氢键和疏水作用共存的混合作用模式。由1H NMR和2D ROESYNMR证明,络合机理是葛根素的B环、C环和A环从p-CD的大口端进入环糊精的疏水内腔中,与p-CD形成1:1的络合物。NMR分析结果与分子模拟结果一致。
     6、分子印迹固相萃取技术快速富集分离茶叶中残留的痕量有机磷农药乐果。计算机模拟和色谱分析结合筛选分子印迹体系,最佳条件确定为:甲基丙烯酸丁酯(BMA)为功能单体,乙二醇二甲基丙烯酸酉(?)(EGDMA)为交联剂,四氢呋喃(THF)为致孔剂,模板分子、功能单体和交联剂的摩尔比为1:4:20,聚合温度为60℃,聚合时间为24 h,引发剂AIBN的用量为1%(相对于单体体积质量比)。MIPs对其模板分子乐果表现出很高的专一识别性能,其吸附等温线符合Langmuir模型。分子印迹固相萃取茶叶中的乐果的回收率可以达到99%,富集倍数为100倍,而空白聚合物对乐果的回收率仅有26%。分子动力学模拟构建模型,通过定义IFindicator和CFindicator两个参数,反映MIPs对乐果及其结构类似物的特异选择性能。TFindicator越大,MIPs对其选择性越好;CFindicator越大,结构类似物与乐果的结构差异越大,则MIPs对其选择性越差。吸附溶剂对聚合物和底物的作用力越小,溶剂之间的作用力越大,则有利于聚合物与底物的靠拢,聚合物与底物间的作用力越大。
Monolithic column, which can be described as the integrated continuous porous separation media without the interparticle voids, is directly cast in tubes by free radical polymerization. Monoliths can be prepared in-situ by the copolymerization of functional monomers, cross-linkers and initiators in the presence of porogens. Compared with traditional packed columns, the major merits of monoliths are their easy preparation, low backpressure, high permeability, good mass transfer, high separation efficiency, and also that they are amenable to surface functionalization by suitable selection of monomers. In this thesis, poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) and novel poly(isocyanatoethyl methacrylate-co-methyl methacrylate-co-ethylene glycol dimethacrylate) (poly(IEM-co-MMA-co-EGDMA)) monolithic matrix were synthesized. The poly(GMA-co-EGDMA) monolithic matrix can be modified by the ring-opening reaction of epoxy groups originated from GMA. The isocyanate groups on the surface of poly(IEM-co-MMA-co-EGDMA) monolithic matrix are highly reactive and versatile, which are amenable to functionalization by hydroxyl, amine and thiol groups with high efficiency. By chemical modification with a variety of modifiers, C8-C18 functionalized hydrophobic monoliths, polyethyleneimine (PEI) functionalized anion-exchange monoliths, andβ-cyclodextrin functionalized monoliths were prepared. Radix puerariae (R.P.) crude extract, ibuprofen optical isomer and YlLIP2 crude lipase were separated and purified. The preparative conditions for monoliths were first optimized, the separation and purification methods were further, established, and the molecular recognition mechanism was finally investigated. Theβ-cyclodextrin supramolecular recognition mechanism was studied by computational modeling and nuclear magnetic resonance (NMR).
     Thanks to the high specific selective recognition of molecular imprinting technology (MIT) and the highly efficient preconcentration ability of solid phase extraction (SPE), molecular imprinting solid phase extraction (MISPE) was used for the selective recognition and large enrichment of dimethoate from tea leaves. The preparative conditions of molecularly imprinted polymers (MIPs) were first optimized, the thermal adsorption isotherm was further established and the selective recognition properties of MIPs were finally investigated. The systematic studies were listed below:
     1. The C8 group functionalized poly(GMA-co-EGDMA) hydrophobic monolith was prepared for one-step rapid separation and purification of puerarin from Radix puerariae (a crude extract of the root of Pueraria lobata) by isocratic elution. The chromatographic recognition mechanism of puerarin was also investigated. The poly(GMA-co-EGDMA) monolithic matrix was prepared in-situ by free radical co-polymerisation of glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA) with AIBN as initiator and cyclohexanol:dodecanol=87:13 (v/v) as porogen. The monolithic matrix was then functionalized by 50%(v/v) n-octylamine ethanol solution. The monolith shows a specific surface area of 11.5 m2·g-1, average pore size of 1.6μm, and a total porosity of 57.6%. A ligand density of 2.3 mmol·g-1 was obtained for the C8 functionalized monolith, which had the binding capacity of 15 mg·g-1 for puerarin. With a sample load of 11.6 mg crude R.P per gram dry polymer and with 1% acetic acid water solution as the optimum mobile phase, a puerarin purity of around 95%(m%) with a recovery of approximate 69%(m%) was achieved by proper peak cutting. The puerarin fraction was then characterized by FTIR, LC-MS and NMR. The column can be regenerated by cleaning with 100% methanol at the flow-rate of 0.5 mL·min-1 for one hour.
     The puerarin, daidzin and daidzein recognition mechanisms on C8 functionalized monolith were studied by computational modeling and chromatographic evaluation using a variety of solvent systems, and were shown to be based on a mixed-mode of hydrogen bonding and hydrophobic interaction. The hydrogen bonding arises from amino groups, carboxyl groups and hydroxyl groups. The functional alkane groups (C8) produces strong hydrophobic interaction with the phenolic groups of isoflavones. By analyzing the interaction energy between polymer and analytes, the retention factor of analytes on the monolith can be predicted.
     2. The polyethyleneimine (PEI) modified poly(GMA-co-EGDMA) monolith was prepared by functionalization with 10%(wt%) PEI 30 kDa aqueous solution at 55℃for 12 h, and then was applied for one-step purification of YlLIP2 isoforms from Candida sp.99-125. The monolith has a specific surface area of 5.8 m2·g-1, average pore size of 1.8μm, and a total porosity of 65.6%. A ligand density of 316.8μmol·g-1 was obtained for the PEI functionalized monolith, which had the binding capacity of 45.2 mg·g-1 for bovine serum albumin (BSA). Crude lipase was separated to four isoforms with the total enzyme activity recovery of 52.2%, the maximum purification fold of 4.5, and the specific enzyme activity of 3860 U·mg-1. As analyzed on non-denaturing PAGE, the four isoforms are homogenous and have the similar molecular mass of approximate 38 kDa. The isoforms were subjected to CD and their far UV spectra 190-240 nm was obtained. The distribution of secondary structure of isoforms are different from each other, the isoforms show characteristicα/βhydrolase fold with the content of random coils of 30%. The differences of the four isoforms were further confirmed by MALDI-TOF mass analysis, which indicated molecular masses of 36 648±36、37 839±33、38 236±31 and 38 795±96 Da for isoform A, isoform B, isoform C and isoform D, respectively.
     3. Theβ-cyclodextrin (β-CD) functionalized poly(GMA-co-EGDM A) monolith was prepared by thermal grafting of 20%(wt%) EDA-β-CD in 0.2 M Na2CO3 (pH=12) aqueous solution at 60℃for 12 h. The monolithic polymer exhibits a specific surface area of 5.1 m2·g-1, average pore size of 1.1μm, and a total porosity of 65.6%. The modified monolith shows aβ-CD ligand density of 680μmol·g-1. The resultant monolith was used for the chiral separation of ibuprofen optical isomer with methanol//0.5%TEAA=30/70 (v/v) (pH=4) as the mobile phase by isocratic elution. The resolution is 2.0 and the selectivity factor is 6.1.
     Theβ-CD/ibuprofen supramolecular enantioselective recognition mechanism was further investigated by computational modeling. The preferred penetration mode found corresponds to a geometry where the polar group (-COOH) of ibuprofen faces the narrower cavity of the (3-CD (P-N). Studies on the interaction energy, hydrogen bonding and competitive binding between S- and R-ibuprofen demonstrate that S-ibuprofen forms more stable inclusion complex withβ-CD, and consequently has a stronger retardation on the monolith. Compared with free-stateβ-CD, bondedβ-CD has better enantioselectivity for S- and R-ibuprofen.
     4. The copolymer poly(isocyanatoethyl methacrylate-co-methyl methacrylate-co-ethylene glycol dimethacrylate) (poly(IEM-co-MMA-c o-EGDMA)) was developed as a novel, facile, highly reactive and versatile monolithic matrix, which was amenable to surface functionalization with a variety of nucleophilic modifiers based on the reactive isocyanate groups, producing hydrophobic chromatography andβ-CD functionalized monoliths. The molar ratio of IEM, MMA and EGDMA was 12:1:1. A mixture of toluene and heptane with a volume ratio of 0.5 to 1 was used as the porogen. The monolith shows a specific surface area of 11.5 m2·g-1, average pore size of 1.6μm, and a total porosity of 57.6%. The success of the chemical modification of the monolithic matrix was confirmed by FTIR, solid state 13C NMR and XPS elemental analysis, showing the high ligand density of the modified monoliths. A ligand density of up to 2.33 mmol·mL-1 was obtained fo the 1-octanol modified monolith with an isocyanate group conversion of 96.9%, indicating the high efficiency of the modification reaction. The potential applications of the monoliths are demonstrated by the separation of a series of model compounds and Radix puerariae, and show promising results.
     5. Study on the recognition mechanism of puerarin, daidzin and daidzein onβ-CD functionalized monolith by chromatographic evaluation, computational modeling and NMR.β-CD exhibits the smallest interaction energy with puerarin, and the largest interaction energy with daidzein, which corresponds to the chromatographic elution result that the elution order is puerarin, daidzin and daidzein. Larger interaction energy means stronger interaction and more stable inclusion complex, and consequently longer retention time on the monolith. By simulating and analyzing the interaction energy betweenβ-CD and guest molecules, the retention property and elution order of guest molecules on theβ-CD functionalized monolith can be well predicted. Blank monolithic matrix has no selective recognition for puerarin, daidzin and daidzein. As a result, P-CD functionality plays a major role for the separation. The adsorption behaviour of puerarin onβ-CD functionalized monolith, has been investigated using a variety of solvent systems and shown to be based on a mixed-mode of hydrogen bonding and hydrophobic interaction.1H NMR and 2D ROESY NMR study shows that puerarin forms a tight 1:1 inclusion complex withβ-CD by penetrating its B, C and A rings into the hydrophobic cavity from the wider rim ofβ-CD, which is consistent with the simulation result.
     6. Selective recognition and large enrichment of trace dimethoate (organophosphorus pesticides, OPs) from tea leaves by molecular imprinting solid phase extraction (MISPE). The preparative conditions for dimethoate imprinting polymer were optimized by molecular dynamics modeling and chromatographic evaluation. Butyl methacrylate (BMA) was used as functional monomer, ethylene glycol dimethacrylate (EGDMA) was cross-linker, AIBN was initiator, and tetrahydrofuron (THF) was porogen. The molar ratio of template, BMA and EGDMA was 1:4:20. The polymerization was performed at 60℃for 24 h. MIP shows highly selective recognition property for the dimethoate template, and its adsorption isotherm is well presented by Langmuir model. Recoveries of dimethoate from tea samples by MIP and blank polymer are 99% and 26%, respectively, with a large enrichment factor of 100 for MIP. Two parameters, the imprinting factor indicator (IFindicator) and the competitive factor indicator (CFindicator), were defined according to the interaction energy difference to give an insight into the imprinting selectivity of MIPs to dimethoate versus other structurally related organophosphorus pesticides (OPs). A higher value of IFindicator means a better specificity and a higher value of CFindicator indicates a bigger structural difference between dimethoate and its analogues. A higher IFindicator value corresponds to a lower CFindicator value. By considering the two parameters, the selective recognition property of MIPs can be determined. The influences of the rebinding solvents on the adsorption properties of MIPs were also investigated. A good rebinding solvent should have a good solubility for the monomers and template, and less affinity with both template and polymer. A large self-association among solvent molecules could enhance the affinity between template and MIPs.
引文
[1]谭天伟.生物分离技术[M].北京:化学工业出版社,2007
    [2]孙彦.生物分离工程[M].第二版.北京:化学工业出版社,2005
    [3]Cohen S N, Chang A C Y, Boyer H W, et al. Construction of biologically functional bacterial plasmids in-vito[J]. Proc.Natl. Acad. Sci.,1973,70:3240-3244
    [4]Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature,1975,256:495-497
    [5]俞俊棠,唐孝宣.生物工艺学(上册)[M].上海:华东化工学院出版社,1991.242-252
    [6]Mould D L, Synge R L M. Electrokinetic ultrafiltration analysis of polysaccharides. A new approach to the chromatography of large molecules[J]. The Analyst,1952,77:964-970
    [7]Mould D L, Synge R L M. Separations of polysaccharides related to starch by electrokinetic ultrafiltration in collodion membranes[J]. Biochem. J.,1954,58:571-585
    [8]Kubin M, Spacek R, Chromecek R. Gel permeation chromatography on porous poly (Ethylene Glycol Methacrylate)[J]. Collect.Czech. Chem. Commun.,1967,32:3881-3887
    [9]Hjerten S, Liao J L, Zhang R. High-performance liquid chromatography on continuous polymer beds[J]. J. Chromatogr. A,1989,473:273-275
    [10]Svec F, Belenkii, B G. Macroporous polymeric membranes for the separation of polymers and a method of their application[P]. US Patent, US 4923610.1990-5-8
    [11]Tennikova T B, Belenkii B G, Svec F. High-performance membrane chromatography:a novel method of protein separation[J]. J. Liq. Chromatogr.,1990,13:63-70
    [12]Svec F, Frechet J M J. Continuous rods of macroporous polymer as high performance liquid chromatography separation media[J]. Anal. Chem.,1992,64:820-822
    [13]Minakuchi H, Nakanishi K, Soga N, et al. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography [J]. Anal. Chem.,1996,68: 3498-3501
    [14]Fields S M. Silica xerogel as a continuous column support for high-performance liquid chromatography[J]. Anal. Chem.,1996,68:2709-2712
    [15]Iberer G, Hahn R, Jungbauer A, et al. Column watch: monoliths as stationary phases for separating biopolymers-fourth-generation chromatography sorbents[J]. LC-GC Europe, 1999,17:998-1005
    [16]Cabrera K, Wieland G, Lubda D, et al. SilicaRODTM-A new challenge in fast high-performance liquid chromatography separations[J]. Trends Anal. Chem.,1998,17: 50-53
    [17]Nema T, Chan E C Y, Ho P C. Application of silica-based monolith as solid phase extraction cartridge for extracting polar compounds from urine[J]. Talanta,2010,82: 488-494
    [18]Zhang B, Bergstrom E T, Goodall D M. Electrically assisted capillary liquid chromatography using a silica monolithic column[J]. J. Chromatogr. A,2010,1217: 2243-2247
    [19]Buntem R, Intasiri A, Lueangchaichaweng W. Facile synthesis of silica monolith doped with meso-tetra(p-carboxyphenyl)porphyrin as a novel metal ion sensor[J]. J, Colloid Interface Sci.,2010,347:8-14
    [20]Ye F, Wang H, Huang B, et al. Maleopimaric acid anhydride-bonded silica monolith as chiral stationary phase for separations of phenylthiocarbamyl amino acids by CEC[J]. Electrophoresis,2010,31:1488-1492
    [21]Randon J, Guerrin J F, Rocca J L. Synthesis of titania monoliths for chromatographic separations[J]. J. Chromatogr. A,2008,1214:183-186
    [22]Randon J, Huguet S, Demesmay C, et al. Zirconia based monoliths used in hydrophilic-interaction chromatography for original selectivity of xanthines[J]. J. Chromatogr. A,2010,1217:1496-1500
    [23]Ishizuka N, Kobayashi H, Minakuchi H, et al. Monolithic silica columns for high-efficiency separations by high-performance liquid chromatography [J]. J. Chromatogr. A,2002,960:85-96
    [24]Nakanishi K, Soga N. Phase separation in gelling silica-organic polymer solution:systems containing poly[sodium styrencsulfonate] [J]. J. Am. Ceram. Soc.,1991,74:2518-2530
    [25]Nakanishi K, Soga N. Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition[J]. J. Non-Cryst. Solids, 1992,139:1-13
    [26]Nakanishi K, Soga N. Phase separation in silica sol-gel system containing polyacrylic acid Ⅱ. Effects of molecular weight and temperature [J]. J. Non-Cryst. Solids,1992,139:14-24
    [27]Nakanishi K, Soga N. Inorganic porous column[P]. Japan patent,5-200392.1993
    [28]Nakanishi K, Soga N. Production of inorganic porous body[P]. Japan patent,5-208642. 1993
    [29]Nakanishi K, Soga N. Inorganic porous material and process for making same[P]. US Patent, US 5624875.1997-4-29
    [30]Cabrera K, Sattler G, Wieland G. Separator[P]. WIPO/PCT Patent, WO 019687.1994-9-1
    [31]Tanaka N, Kobayashi H, Ishizuka N, et al. Monolithic silica columns for high-efficiency chromatographic separations[J]. J. Chromatogr. A,2002,965:35-49
    [32]Siouffi A M. Silica gel-based monoliths prepared by the sol-gel method: facts and figures[J]. J. Chromatogr. A,2003,1000:801-818
    [33]Minakuchi H, Nakanishi K, Soga N, et al. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography [J]. J. Chromatogr. A,1997,762:135-146
    [34]Ishizuk N, Minakuchi H, Nakanishi K, et al. Designing monolithic double-pore silica for high-speed liquid chromatography [J]. J. Chromatogr. A,1998,797:133-137
    [35]Dulay M T, Kulkarni R P, Zare R N. Preparation and characterization of monolithic porous capillary columns loaded with chromatographic particles[J]. Anal. Chem.,1998,70: 5103-5107
    [36]Ratnayake C K, Oh C S, Henry M P. Particle loaded monolithic sol-gel columns for capillary electrochromatography: a new dimension for high performance liquid chromatography[J]. J. High Resolut. Chromatogr.,2000,23:81-88
    [37]Chirica G, Remcho V T. Silicate entrapped columns -new columns designed for capillary electrochromatography [J]. Electrophoresis,1999,20:50-56
    [38]Asiaie R, Huang X, Farnan D, et al. Sintered octadecylsilica as monolithic column packing in capillary electrochromatography and micro high-performance liquid chromatography [J]. J. Chromatogr. A,1998,806:251-263
    [39]Chamieh J, Zimmermann Y, Boos A, et al. Preparation and characterisation of silica monoliths using a triblock copolymer (F68) as porogen[J]. J. Colloid Interface Sci.,2009, 340:225-229
    [40]Minakuchi H, Nakanishi K, Soga N, et al. Performance of an octadecylsilylated continuous porous silica column in polypeptide separations[J]. J. Chromatogr. A,1998, 828:83-90
    [41]Ikegami T, Hara T, Kimura H, et al. Two-dimensional reversed-phase liquid chromatography using two monolithic silica C18 columns and different mobile phase modifiers in the two dimensions[J]. J. Chromatogr. A,2006,1106:112-117
    [42]Cadapakam J, Venkatramani C J, Zelechonok Y. An automated orthogonal two-dimensional liquid chromatograph [J]. Anal. Chem.,2003,75:3484-3494
    [43]Kimura H, Tanigawa T, Morisaka H, et al. Simple 2D-HPLC using a monolithic silica column for peptide separation [J]. J. Sep. Sci.,2004,27:897-904
    [44]Barroso B, Lubda D, Bishoff R. Applications of monolithic silica capillary columns in proteomics[J]. J. Proteome Res.,2003,2:633-642
    [45]Xiong L, Zhang R, Regnier F E. Potential of silica monolithic columns in peptide separations[J]. J. Chromatogr.,2004,1030:187-194
    [46]Schmidt A H. Fast HPLC for quality control of Harpagophytum procumbens by using a monolithic silica column:method transfer from conventional particle-based silica column[J]. J. Chromatogr. A,2005,1073:377-381
    [47]McFadden K, Gillespie J, Carney B, et al. Development and application of a high-performance liquid chromatography method using monolithic columns for the analysis of ecstasy tablets[J]. J. Chromatogr. A,2006,1120:54-60
    [48]Pack B W, Risley D S. Evaluation of a monolithic silica column operated in the hydrophilic interaction chromatography mode with evaporative light scattering detection for the separation and detection of counter-ions[J]. J. Chromatogr. A,2005,1073:269-275
    [49]Nogueira R, Lubda D, Leitner A, et al. Silica-based monolithic columns with mixed-mode reversed-phase/weak anion-exchange selectivity principle for high-performance liquid chromatography[J]. J. Sep. Sci.,2006,29:966-978
    [50]Xu L, Lee H K. Solvent-bar microextraction-Using a silica monolith as the extractant phase holder[J]. J. Chromatogr. A,2009,1216:5483-5488
    [51]Guiochon G.The limits of the separation power of unidimensional column liquid chromatography[J]. J. Chromatogr. A,2006,1126:6-49
    [52]Ishizuka N, Minakuchi H, Nakanishi K, et al. Chromatographic properties of miniaturized silica rod columns[J]. J. High Resolut. Chromatogr.,1998,21:477-479
    [53]Nakanishi K. Porous gels made by phase separation: recent progress and future directions[J]. J. Sol-Gel Sci. Technol.,2000,19:65-70
    [54]Ishizuka N, Nakanishi K, Hirao K, et al. Preparation and chromatographic application of macroporous silicate in a capillary[J]. J. Sol-Gel Sci. Technol.,2000,19:371-375
    [55]Nakanishi K, Soga N, Minakuchi H. Capillary column including porous silica gel having continuous throughpores and mesopores[P]. US Patent, US 6531060.2003-3-11
    [56]Ishizuka N, Kobayashi H, Minakushi H, et al. Monolithic silica columns for high-efficiency separations by high-performance liquid chromatography [J]. J. Chromatogr. A,2002,960:85-96
    [57]Motokawa M, Kobayashi H, Ishizuka N, et al. Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography [J]. J. Chromatogr. A,2002,961:53-63
    [58]Minakuchi H, Nakanishi K, Soga N, et al. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography[J]. J. Chromatogr. A,1997,762:135-146
    [59]Minakuchi H, Nakanishi K, Soga N, et al. Effect of domain size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography[J]. J. Chromatogr. A,1998,797:121-131
    [60]Ishizuka N, Minakuchi H, Nakanishi K, et al. Designing monolithic double-pore silica for high-speed liquid chromatography[J]. J. Chromatogr. A,1998,797:133-137
    [61]Galarneau A, Iapicella J, Brunel D, et al. Spherical ordered mesoporous silicas and silica monoliths as stationary phases for liquid chromatography[J]. J. Sep. Sci.,2006,29: 844-855
    [62]Planeta J, Moravcova D, Roth M, et al. Silica-based monolithic capillary columns—Effect of preparation temperature on separation efficiency[J]. J. Chromatogr. A,2010,1217: 5737-5740
    [63]Jia L, Tanaka N, Terabe S. Capillary liquid chromatographic determination of cellular flavins[J]. J. Chromatogr. A,2004,1053:71-78
    [64]Motokawa M, Ohira M, Minakuchi H, et al. Performance of octadecylsilylated monolithic silica capillary columns of 530 μm inner diameter in HPLC[J]. J. Sep. Sci.,2006,29: 2471-2477
    [65]Chen Z, Uchiyama K, Hobo T. Chemically modified chiral monolithic silica column prepared by a sol-gel process for enantiomeric separation by micro high-performance liquid chromatography[J]. J. Chromatogr. A,2002,942:83-91
    [66]Chankvetadze B, Yamamoto C, Kamigaito M, et al. High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with amylose tris(3,5-dimethylphenylcarbamate)[J]. J. Chromatogr. A,2006, 1110:46-52
    [67]Wienkoop S, Glinski M, Tanaka N, et al. Linking protein fractionation with multidimensional monolithic reversed-phase peptide chromatography/mass spectrometry enhances protein identification from complex mixtures even in the presence of abundant proteins[J]. Rapid Comm. Mass Spectrom.,2004,18:643-650
    [68]Buchinger S, Follrich B, Lammerhofer M, et al. Chirally functionalized anion-exchange type silica monolith for enantiomer separation of 2-aryloxypropionic acid herbicides by nonaqueous capillary electrochromatography[J]. Electrophoresis,2009,30:3804-3813
    [69]Preinerstorfer B, Lubda D, Mucha A, et al. Stereoselective separations of chiral phosphinic acid pseudodipeptides by CEC using silica monoliths modified with an anion-exchange-type chiral selector[J]. Electrophoresis,2006,27:4312-4320
    [70]Hara T, Kobayashi H, Ikegami T, et al. Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains[J]. Anal. Chem.,2006,78: 7632-7642
    [71]Wu M H, Chen Y Z, Wu R A, et al. The synthesis of chloropropyl-functionalized silica hybrid monolithic column with modification of N,N-dimethyl-N-dodecylamine for capillary electrochromatography separation[J]. J. Chromatogr. A,2010,1217:4389-4394
    [72]Hara T, Makino S, Watanabe Y, et al. The performance of hybrid monolithic silica capillary columns prepared by changing feed ratios of tetramethoxysilane and methyltrimethoxysilane[J]. J. Chromatogr. A,2010,1217:89-98
    [73]Lti Z L, Zhang P F, Jia L. Preparation of chitosan functionalized monolithic silica column for hydrophilic interaction liquid chromatography[J]. J. Chromatogr. A,2010,1217: 4958-4964
    [74]Svec F, Frechet J M J. New designs of macroporous polymers and supports: from separation to biocatalysis[J]. Science,1996,273:205-211
    [75]Svec F, Bleha M, Tennikova T B, et al. Macroporous polymeric membranes for the separation of polymers and a method of their application[P]. US Patent, US 4952349. 1990-4-28
    [76]Tennikova T B, Belenkii B G, Svec F. High-performance membrane chromatography, a novel method of protein separation[J]. J. Liq. Chromatogr.,1990,13:63-70
    [77]Svec F, Frechet J M J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media[J]. Anal. Chem.,1992,64:820-822
    [78]Peters E C, Svec F, Frechet J M J. Rigid macroporous polymer monoliths[J]. Adv. Mater., 1999,11:1169-1181
    [79]Svec F, Frechet J M J. Kinetic control of pore formation in macroporous polymer. Formation of "molded" porous materials with high flow characteristics for separation or catalysis[J]. Chem. Mater.,1995,7:707-715
    [80]Hjerten S, Mohammad J, Nakazato K. Improvement in flow properties and pH stability of compressed, continuous polymer beds for high-performance liquid chromatography[J]. J. Chromatogr. A,1993,646:121-128
    [81]Zeng C M, Liao J L, Nakazato K I, et al. Hydrophobic-interaction chromatography of proteins on continuous beds derivatized with isopropyl groups[J]. J. Chromatogr. A,1996, 753:227-234
    [82]Zhang Y X, Zeng C M, Li Y M, et al. Immobilized liposome chromatography of drugs on capillary continuous beds for model analysis of drug-membrane interactions[J]. J. Chromatogr. A,1996,749:13-18
    [83]Hjerten S, Mohammad J, Liao J L. High-performance chromatofocusing of proteins on compressed continuous beds with improved properties[J]. Biotech. Appl. Biochem.,1992, 15:247-256
    [84]Koide T, Ueno K. Enantiomeric separations of acidic and neutral compounds by capillary electrochromatography with β-cyclodextrin-bonded positively charged polyacrylamide gels[J]. J. High Resolut. Chromatogr.,2000,23:59-66
    [85]Koide T, Ueno K. Enantiomeric separations of cationic and neutral compounds by capillary electrochromatography with monolithic chiral stationary phases of β-cyclodextrin-bonded negatively charged polyacrylamide gels[J]. J. Chromatogr. A, 2000,893:177-187
    [86]Hoegger D, Freitag R. Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography [J]. J. Chromatogr. A,2001,914:211-222
    [87]Freitag R. Comparison of the chromatographic behavior of monolithic capillary columns in capillary electrochromatography and nano-high-performance liquid chromatography[J]. J. Chromatogr. A,2004,1033:267-273
    [88]Fan Y, Zhang M, Feng Y Q. Poly(acrylamide-vinylpyridine-N,N'-methylene bisacrylamide) monolithic capillary for in-tube solid-phase microextraction coupled to high performance liquid chromatography [J]. J. Chromatogr. A,2005,1099:84-91
    [89]Guryca V, Mechref Y, Palm A K, et al. Porous polyacrylamide monoliths in hydrophilic interaction capillary electrochromatography of oligosaccharides[J]. J. Biochem. Biophys. Methods,2007,70:3-13
    [90]Zhang S, Zhang J, Horvath C. Rapid separation of peptides and proteins by isocratic capillary electrochromatography at elevated temperature[J]. J. Chromatogr. A,2001,914: 189-200
    [91]Premstaller A, Oberaeher H, Walcher W, et al. High-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic capillary columns for proteomic studies[J]. Anal. Chem.,2001,73:2390-2396
    [92]Premstaller A, Oberacher H, Hubcr C Q. High-performance liquid chromatography-electrospray ionization mass spectrometry of single- and double-stranded nucleic acids using monolithic capillary columns[J]. Anal. Chem.,2000,72:4386-4393
    [93]Ivanov A R, Zang L, Karger B L. Low-attomole electrospray ionization MS and MS/MS analysis of protein tryptic digests using 20-μm-i.d. polystyrene-divinylbenzene monolithic capillary columns[J]. Anal. Chem.,2003,75:5306-5316
    [94]Huang X, Zhang S, Schultz G A, et al. Surface-alkylated polystyrene monolithic columns for peptide analysis in capillary liquid chromatography-electrospray ionization mass spectrometry[J]. Anal Chem.,2002,74:2336-2344
    [95]Zhang Y P, Ye X W, Tian M K, et al. Novel method to prepare polystyrene-based monolithic columns for chromatographic and electrophoretic separations by microwave irradiation[J]. J. Chromatogr. A,2008,1188:43-49
    [96]Trojer L, Bisjak C P, Wieder W, et al. High capacity organic monoliths for the simultaneous application to biopolymer chromatography and the separation of small molecules[J]. J. Chromatogr. A,2009,1216:6303-6309
    [97]Causon T J, Nordborg A, Shellie R A, et al. High temperature liquid chromatography of intact proteins using organic polymer monoliths and alternative solvent systems[J]. J. Chromatogr. A,2010,1217:3519-3524
    [98]Causon T J, Shellie R A, Hilder E F. Kinetic performance appraisal of poly(styrene-co-divinylbenzene) monolithic high-performance liquid chromatography columns for biomolecule analysis[J]. J. Chromatogr. A,2010,1217:3765-3769
    [99]Detobel F, Broeckhoven K, Wellens J, et al. Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns[J]. J. Chromatogr. A,2010, 1217:3085-3090
    [100]Gu C, Lin L, Chen X, et al. Fabrication of a poly(styrene-octadecene-divinylbenzene) monolithic column and its comparison with a poly(styrene-divinylbenzene) monolithic column for the separation of proteins[J]. J. Sep. Sci.,2007,30:1005-1012
    [101]Huang H Y, Cheng Y J, Lin C L. Analyses of synthetic antioxidants by capillary electrochromatography using poly(styrene-divinylbenzene-lauryl methacrylate) monolith[J]. Talanta,2010,82:1426-1433
    [102]Walsh Z, Levkin P A, Jain V, et al. Visible light initiated polymerization of styrenic monolithic stationary phases using 470 nm light emitting diode arrays[J]. J. Sep. Sci., 2010,33:61-66
    [103]Eeltink S, Dolman S, Detobel F, et al. High-efficiency liquid chromatography-mass spectrometry separations with 50mm,250mm, and lm long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests[J]. J. Chromatogr. A,2010,1217:6610-6615
    [104]Coufal P, Cihak M, Suchankova J, et al. Methacrylate monolithic columns of 320μm I.D. for capillary liquid chromatography[J].J. Chromatogr. A,2002,946:99-106
    [105]Holdsvendova P, Coufal P, Suchankova J, et al. Methacrylate monolithic columns for capillary liquid chromatography polymerized using ammonium peroxodisulfate as initiator[J]. J. Sep. Sci.,2003,26:1623-1628
    [106]Cant6-Mirapeix A, Herrero-Martinez JM, Baeza-Baeza JJ, Simo-Alfonso EF. Study of peak shape and efficiency in butyl acrylate-based monolithic columns for capillary electrochromatography[J]. J. Chromatogr. A,2009,1216:6831-6837
    [107]Yan W, Gao R, Zhang Z, et al. Cinnamic acid polymer-based monolithic column for capillary electrochromatography[J]. Chromatographia,2003,35:819-823
    [108]Ohyama K, Fukahori Y, Nakashima K, et al. Adamantyl-functionalized polymer monolith for capillary electrochromatography[J]. J. Chromatogr. A,2010,1217:1501-1505
    [109]Li Y, Gu B, Tolley H D, et al. Preparation of polymeric monoliths by copolymerization of acrylate monomers with amine functionalities for anion-exchange capillary liquid chromatography of proteins[J]. J. Chromatogr. A,2009,1216:5525-5532
    [110]Svec F, Frechet J M J. Modified poly (glycidyl methacrylate -co- ethylene dimethacrylate) continuous rod column for preparative-scale ion-exchange chromatography of proteins[J]. J. Chromatogr. A,1995,702:89-95
    [111]Zhang M, Sun Y. Poly (glycidyl methacrylate-divinylbenzene-triallylisocyanurate) continuous-bed protein chromatography[J]. J. Chromatogr. A,2001,912:31-38
    [112]Svec F, Frechet J M J. "Molded" rod of macroporous polymer for preparative separations of biological products[J]. Biotech. Bioeng.,1995,48:476-480
    [113]Liao J L, Chen N, Ericson C, et al. Preparation of continuous bed derivatized with one-step alkyl and sulfonate groups for capillary electrochromatography[J]. Anal. Chem., 1996,68:3468-3472
    [114]Huang X, Zhang S, Schultz G A, et al. Surface-alkylated polystyrene monolithic columns for peptide analysis in capillary liquid chromatography-electrospray ionization mass spectrometry[J]. Anal. Chem.,2002,74:2336-2344
    [115]Luo Q, Zou H, Xiao X, et al. Chromatographic separation of proteins on metal immobilized iminodiacetic acid-bound molded monolithic rods of macroporous poly (glycidyl metharcrylate-co- ethylene dimethacrylat)[J]. J. Chromatogr. A,2001,926: 255-264
    [116]Wei Y, Huang X, Chen A, et al. Preparation and chromatographic behavior of a bifuctional continuous rod for weak cation exchange and immobilized metal affinity chromatography [J]. J. Liq. Chromatogr. Related. Technol.2001,24:2983-2998.
    [117]潘再法,莫卫民,吴仁安,等.蛋白A连续床亲和毛细管色谱柱的制备及性能考察[J].高等学校化学学报,2002,23(11):2070-2072
    [118]Matsui J, Kato T, Takeuchi T, et al. Molecular recognition in continuous polymer rod prepared by a molecular imprinting technique[J]. Anal. Chem.,1993,65:2223-2224
    [119]黄晓冬,邹汉法,毛希琴,等.分子印迹手性整体柱的制备及对非对映异构体的分离[J].色谱,2002,20(5):436-438
    [120]周杰,王善伟,郭洪声,等.原位分子印迹法制备连续棒型模板聚合物的手性识别[J].分析化学,2000,28(3):296-299
    [121]Haginaka J, Futagami A. Addition of N-carbobenzyloxy-1-tryptophan as a co-template molecule to molecularly imprinted polymer monoliths for (+)-nilvadipine[J]. J. Chromatogr. A,2008,1185:258-262
    [122]Li M, Lin X, Xie Z. Investigation of enantiomer recognition of molecularly imprinted polymeric monoliths in pressurized capillary electrochromatography screening the amino acids and their derivatives[J]. J. Chromatogr. A,2009,1216:5320-5326
    [123]Zhang M, Xie J, Zhou Q, et al. On-line solid-phase extraction of ceramides from yeast with ceramide III imprinted monolith[J]. J. Chromatogr. A,2003,984:173-183
    [124]Courtois J, Fischer G, Sellergren B, et al. Molecularly imprinted polymers grafted to flow through poly(trimethylolpropane trimethacrylate)monoliths for capillary-based solid phase extraction[J]. J. Chromatogr. A,2006,1109:92-99
    [125]Oxelbark J, Legido-Quigley C, Aureliano C S A, et al. Chromatographic comparison of bupivacaine imprinted polymers prepared in crushed monolith, microsphere, silica-based composite and capillary monolith formats[J]. J. Chromatogr. A,2007,1160:215-226
    [126]Mullett W M, Martin P, Pawliszyn J. In-tube molecularly imprinted polymer solid-phase microextraction for the selective determination of propranolol[J]. Anal. Chem.,2001,73: 2383-2389
    [127]Koster E H M, Crescenzi C, Hoedt W, et al. Fibers coated with molecularly imprinted polymers for solid-phase microextraction[J]. Anal. Chem.,2001,73:3140-3145
    [128]Djozan D, Baheri T. Preparation and evaluation of solid phase microextraction fibers based on monolithic molecularly imprinted polymers for selective extraction of diacetylmorphine and analogous compounds[J]. J. Chromatogr. A,2007,1166:16-23
    [129]Turiel E, Tadeo J L, Martin-eateban A. Molecularly imprinted polymeric fibers for solid-phase microextraction[J]. Anal. Chem.,2007,79:3099-3104
    [130]Cacho C, Schweitz L, Turiel E, et al. Molecularly imprinted capillary electrochromatography for selective determination of thiabendazole in citrus samples[J]. J. Chromatogr. A,2008,1179:216-223
    [131]杨淑玲,郑红,程子毓,等.甲基对硫磷分子印迹整体柱的制备及其在固相萃取中的应用[J].青海师范大学学报(自然科学版),2009,4(4):47-50
    [132]Zheng M M, Gong R, Zhao X, et al. Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples[J]. J.Chromatogr. A,2010,1217:2075-2081
    [133]Zhang S W, Zou C J, Luo N, et al. Determination of urinary 8-hydroxy-20-deoxyguanosine by capillary electrophoresis with molecularly imprinted monolith in-tube solid phase microextraction[J]. Chin. Chem. Lett.,2010,21:85-88
    [134]Lin Z, Yang F, He X, et al. Preparation and evaluation of a macroporous molecularly imprinted hybrid silica monolithic column for recognition of proteins by high performance liquid chromatography[J]. J. Chromatogr. A,2009,1216:8612-8622
    [135]Pauling L. A theory of the structure and process of formation of antibodies[J], J. Am. Chem. Soc,1940,62:2643-2657
    [136]Wulff G, Sarhan A, Zabrocki K. Enzyme-analogue built polymers and their use for the resolution of racemates[J]. Tetrahedron Lett.,1973,14:4329-4332
    [137]Norrlon O, Glad M, Mosbach K. Acrylic polymer preparation containing recognition sites on obtained by imprinting with substrates[J]. J. Chromatogr. A,1984,299:29-41
    [138]Mosbach K. Preparation of synthetic enzymes and synthetic antibodies and use of the thus prepared enzymes and antibodies[P]. US Patent, US 5110833.1992-5-5
    [139]Kempe M, Mosbach K. Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases[J].J. Chromatogr. A,1995,691:317-323
    [140]Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies[J]. Angew. Chem. Int. Ed. Engl.,1995,34: 1812-1832
    [141]Wulff G. Molecular recognition in polymers prepared by imprinting with templates Polymeric reagents and catalytics[J]. ACS Symp. Ser.,1986,308:186-189
    [142]Dickey F. H. Specific adsorption[J]. J. Phys. Chem.,1955,59:695-707
    [143]Wulff G, Vesper W, Grobe-Einsler G, et al. Enzyme-analogue built polymers,4+. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates[J]. Die Makromolekulare Chemie,1977,178:2799-2816
    [144]Wulff G, Schanhaff S. Racemic resolution of free sugars with macro- poporous polymers prepard by molecular imprinting: selectivity dependence on the arrangement of functional groups ersus spatial requirements[J]. J. Org. Chem.,1991,56:395-399
    [145]Wulff G, Vitemeier J. Enzyme-analogue built polymers,25+. Synthesis of macroporous copolymers from amino acid based vinyl compounds[J]. Die Makromolekulare Chemie, 1989,190:1717-1726
    [146]Shea K J, Sasaki D Y. On the control of microenvironment shape of funictionalized network polumers prepared by template polymerisition[J]. J. Am. Chem. Soc.,1989,111: 3442-3444
    [147]Andersson L, Sellergren B, Mosbach K. Imprinting of amino acid derivatives in macroporous polymers[J]. Tetrahedron Lett.,1984,25:5211-5214
    [148]Arshady R, Mosbach K. Synthesis of substrate-selective polymers by host-guest polymerization. [J]. Die Makromolekulare Chemie,1981,182:687-692
    [149]Dicket F L, Besenbook H, Tortschanoff G. Molecular imprinting through vander waals interactions: fluorescence detection of PAHS in water[J]. Adv. Mater.,1998,10:149-153
    [150]Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction of recognition site functionality into polymer by molecular imprinting: synthesis and characterization of polymeric receptor for cholesterol[J]. J. Am. Chem. Soc.,1995,117: 7105-7111
    [151]Dhal P K, Vidyasankar S, Arnold F H. Surface grafting of function polymers to macroporous poly-(trimethylopropane trimethacrylate)[J]. Chem. Mater.,1995,7:154-162
    [152]Haupt K, Dzgoev A, Mosbach K. Assay system for the herbicide 2,4-di-chlorophenoxyacetic acid using a molecularly imprinted polymer as artificial recognition element[J]. Anal. Chem.,1998,70:628-631
    [153]谭天伟.分子印迹技术及应用[M].北京:化学工业出版社,2010
    [154]Matsui J, Fujiwara K, Ugata S, et al. Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent[J]. J. Chromatogr. A,2000,889:25-31
    [155]Kochkodan V, Weigel W, Ulbricht M. Molecularly imprinted composite membranes for selective binding of desmetryn from aqueous solutions[J]. Desalination,2002,149: 323-328
    [156]Mena M L, Martinez-Ruiz P, Reviejo A J, et al. Molecularly imprinted polymers for on-line preconcentration by solid phase extraction of pirimicarb in water samples[J]. Anal. Chim. Acta,2002,451:297-304
    [157]Caro E, Masque N, Marce R M, et al. Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples[J]. J. Chromatogr. A,2002,963:169-178
    [158]Caro E, Marce R M, Cormack P A G, et al. On-line solid-phase extraction with molecularly imprinted polymers to selectively extract substituted 4-chlorophenols and 4-nitrophenol from water[J]. J. Chromatogr. A,2003,995:233-238
    [159]Navarro-Villoslada F, Vicente B S, Moreno-Bondi M C. Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A[J]. Anal. Chim. Acta,2004,504:149-162
    [160]Kawaguchi M, Hayatsu Y, Nakata H, et al. Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography-mass spectrometry for trace analysis of bisphenol A in water sample[J]. Anal. Chim. Acta,2005, 539:83-89
    [161]魏双,李大伟,杨红,等.吲哚美辛纳米胶体金分子印迹聚合物的制备及其在固相萃取中的应用[J].化学研究与应用,2010,22(3):293-296
    [162]Feng Z, Zhao L, Yan W, et al. Molecularly imprinted solid-phase extraction combined with high performance liquid chromatography for analysis of phenolic compounds from environmental water samples[J]. J. Hazard. Mater.,2009,167:282-288
    [163]Qi P, Wang J, Jin J, et al.2,4-Dimethylphenol imprinted polymers as a solid-phase extraction sorbent for class-selective extraction of phenolic compounds from environmental water[J]. Talanta,2010,81:1630-1635
    [164]Ersoz A, Say R, Denizli A. Ni (Ⅱ) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns. [J]. Anal. Chim. Acta, 2004,502:91-97
    [165]Lin C, Wang H, Wang Y, et al. Selective solid-phase extraction of trace thorium(Ⅳ) using surface-grafted Th(Ⅳ)-imprinted polymers with pyrazole derivative[J]. Talanta,2010,81: 30-36
    [166]Ge S, Yan M, Cheng X, et al. On-line molecular imprinted solid-phase extraction flow-injection fluorescence sensor for determination of florfenicol in animal tissues[J]. J. Pharm. Biomed. Anal.,2010,52:615-619
    [167]Javanbakht M, Attaran A M, Namjumanesh M H, et al. Solid-phase extraction of tramadol from plasma and urine samples using a novel water-compatible molecularly imprinted polymer[J]. J. Chromatogr. B,2010,878:1700-1706
    [168]Prasad B B, Tiwari M P, Madhuri R, et al. Enatioselective quantitative separation of d- and 1-thyroxine by molecularly imprinted micro-solid phase extraction silver fiber coupled with complementary molecularly imprinted polymer-sensor[J]. J. Chromatogr. A,2010, 1217:4255-4266
    [169]Scorrano S, Longo L, Vasapollo G. Molecularly imprinted polymers for solid-phase extraction of 1-methyladenosine from human urine[J]. Anal. Chim. Acta,2010,659: 167-171
    [170]Qiao F, Sun H. Simultaneous extraction of enrofloxacin and ciprofloxacin from chicken tissue by molecularly imprinted matrix solid-phase dispersion[J]. J. Pharm. Biomed. Anal., 2010,53:795-798
    [171]Gholivand M B, Khodadadian M, Ahmadi F. Computer aided-molecular design and synthesis of a high selective molecularly imprinted polymer for solid-phase extraction of furosemide from human plasma[J]. Anal. Chim. Acta,2010,658:225-232
    [172]Chapuis F, Pichon V, Lanza F, et al. Retention mechanism of analytes in the solid-phase extraction process using molecularly imprinted polymers:Application to the extraction of triazines from complex matrices[J]. J. Chromatogr. B,2004,804:93-101
    [173]Tamayo F G, Martin-Esteban A. Selective high performance liquid chromatography imprinted-stationary phases for the screening of phenylurea herbicides in vegetable sample[J]. J. Chromatogr. A,2005,1098:116-122
    [174]Christina S, Meisel H. Synthesis of a molecularly imprinted polymer for the selective solid-phase extraction of chloramphenicol from honey[J]. J. Chromatogr. A,2006,1132: 325-328
    [175]Guzman-Vazquez de Prada A, Reviejo A J, Pingarron J M. A method for the quantification of low concentration sulfamethazine residues in milk based on molecularly imprinted clean-up and surface preconcentration at a Nafion-modified glassy carbon electrode[J]. J. Pharm. Biomed. Anal.,2006,40:281-286
    [176]Baggiani C, Baravalle P, Giraudi G, et al. Molecularly imprinted solid-phase extraction method for the high performance liquid chromatographic analysis of fungicide pyrimethanil in wine[J]. J. Chromatogr. A,2007,1141:158-164
    [177]张朝晖,刘丽,周慧圆,等.核-壳型苏丹红Ⅰ印迹聚合物微球制备及应用研究[J].分析测试学报,201O,29(2):136-141
    [178]He J, Lv R, Zhu J, et al. Selective solid-phase extraction of dibutyl phthalate from soybean milk using molecular imprinted polymers[J]. Anal. Chim. Acta,2010,661:215-221
    [179]Lai E P C, Wu S G. Molecularly imprinted solid phase extraction for rapid screening of cephalexin in human plasma and serum[J]. Anal. Chim. Acta,2003,481:165-174
    [180]Mullett W M, Lai E P C. Molecularly imprinted solid phase extraction micro-column with differential pulsed elution for theophylline determination[J]. Microchem. J.,1999,61: 143-155
    [181]Mullett W M, Lai E P C. Rapid determination of theophylline in serum by selective extraction using a heated molecularly imprinted polymer micro-column with differential pulsed elution[J]. J. Pharm. Biomed. Anal.,1999,21:835-843
    [182]Meng Z, Liu Q. Determination of degradation products of nerve agents in human serum by solid phase extraction using molecularly imprinted polymer[J]. Anal. Chim. Acta, 2001,435:121-127
    [183]Martin P D, Jones G R, Stringer F, et al. Comparison of extraction of a-blocker from plasma onto a molecularly imprinted polymer with liquid-liquid extraction and solid phase extraction methods[J]. J. Pharm. Biomed. Anal.,2004,35:1231-1239
    [184]Hu S, Li L, He X. Solid-phase extraction of esculetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymers[J]. J. Chromatogr. A,2005, 1062:31-37
    [185]Hart B R, Shea K J. Molecular imprinting for the recognition of N-terminal histidine peptides in aqueous solution[J]. Macromolecules,2002,35:6192-6201
    [186]李礼,胡树国,何锡文,等.应用分子印迹-固相萃取法提取中药活性成分非瑟酮[J].高等学校化学学报,2006,27(4):608-611
    [187]颜流水,井晶,黄智敏,等.槲皮素分子印迹聚合物的制备及固相萃取性能研究[J]. 分析试验室,2006,25(5):97-100
    [188]Chen L, Jia X, Lu Q, et al. Highly efficient and selective enrichment of puerarin from Radix Puerariae by molecularly imprinted solid-phase extraction[J]. Sep. Purif. Technol., 2010,71:324-330
    [189]Lucci P, Derrien D, Alix F, et al. Molecularly imprinted polymer solid-phase extraction for detection of zearalenone in cereal sample extracts[J]. Anal. Chim. Acta,2010,672:15-19
    [190]Zhu R, Zhao W, Zhai M, et al. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples[J]. Anal. Chim. Acta,2010,658:209-216
    [191]李丽丽,周文辉,李永,等.软骨藻酸分子印迹聚合物的制备及其固相萃取应用[J].应用化学,2010,27(2):132-136
    [192]Xiong Y, Zhou H, Zhang Z, et al. Molecularly imprinted on-line solid-phase extraction combined with flow-injection chemiluminescence for the determination of tetracycline[J]. The Analyst,2006,131:829-834
    [193]杨春艳,熊艳,何超,等.分子印迹固相萃取-化学发光测定盐酸金霉素[J].应用化学,2007,24(3):273-277
    [194]时作龙,章竹君,孙永华.在线分子印迹-化学发光法对食品中苏丹红Ⅰ的测定[J].分析测试学报,2008,27(10):1071-1074
    [195]Feng Q, Zhao L, Yan W, et al. Molecularly imprinted solid phase extraction and flow injection chemiluminescence for trace analysis of 2,4-dichlorophenol in water sample[J]. Anal. Bioanal. Chem.,2008,391:1073-1079
    [196]Tucherman M E, Martyna G J. Understanding modern molecular dynamics:techniques and applications[J]. J. Phys. Chem. B,2000,104:159-178
    [197]Stancanelli R, Mazzaglia A, Tommasini S, et al. The enhancement of isoflavones water solubility by complexation with modified cyclodextrins:A spectroscopic investigation with implications in the pharmaceutical analysis[J]. J. Pharm. Biomed. Anal.,2007,44: 980-984
    [198]Crupi V, Ficarra R, Guardo M, et al. UV-vis and FTIR-ATR spectroscopic techniques to study the inclusion complexes of genistein with β-cyclodextrins[J]. J. Pharm. Biomed. Anal.,2007,44:110-117
    [199]CannavaC, Crupi V, Ficarra P, et al. Physico-chemical characterization of an amphiphilic cyclodextrin/genistein complex[J]. J. Pharm. Biomed. Anal.,2010,51:1064-1068
    [200]Zhang M, Li J, Zhang L, et al. Preparation and spectral investigation of inclusion complex of caffeic acid with hydroxypropyl-(3-cyclodextrin[J]. Spectrochim. Acta, Part A,2009,71: 1891-1895
    [201]Anton Smith A, Manavalan R, Kannan K, et al. Spectral characteristics of tramadol in different solvents and β-cyclodextrin[J]. Spectrochim. Acta, Part A,2009,74:469-477
    [202]Wang Y, Qiao X, Li W, et al. Study on the complexation of isoquercitrin with β-cyclodextrin and its derivatives by spectroscopy[J]. Anal. Chim. Acta,2009,650: 124-130
    [203]Zhao M, Wang H, Yang B, et al. Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity[J]. Food Chem.,2010,120:1138-1142
    [204]Salustio P J, Feio G, Figueirinhas J L, et al. The influence of the preparation methods on the inclusion of model drugs in a P-cyclodextrin cavity[J]. Eur. J. Pharm. Biopharm., 2009,71:377-386
    [205]Kwon S, Lee W, Shin H, et al. Characterization of cyclodextrin complexes of camostat mesylate by ESI mass spectrometry and NMR spectroscopy[J]. J. Mol. Struct.,2009,938: 192-197
    [206]Sfihi H, Legrand A P, Doussot J, et al. Solid-state 13C NMR study of β-cyclodextrin/substituted aromatic ketone complexes:evidence for two kinds of complexation of the guest molecules[J]. Colloids Surf., A,1996,115:115-126
    [207]Bernini A, Spiga O, Ciutti A, et al. NMR studies of the inclusion complex between β-cyclodextrin and paroxetine[J]. Eur. J. Pharm. Sci.,2004,22:445-450
    [208]Sagiraju S, Jursic B S. NMR spectroscopic study of cyclodextrin inclusion complexes with A-007 prodrugs[J]. Carbohydr. Res.,2008,343:1180-1190
    [209]Linde G A, Junior A L, Vaz de Faria E, et al. The use of 2D NMR to study P-cyclodextrin complexation and debittering of amino acids and peptides[J]. Food Res. Int.,2010,43: 187-192
    [210]Mulinacci N, Melani F, Vincieri F F, et al.'H-NMR NOE and molecular modelling to characterize thymol and carvacrol β-cyclodextrin complexes[J]. Int. J. Pharm.,1996,128: 81-88
    [211]Anguiano-Igea S, Otero-Espinar F J, Vila-Jato J L, et al. Interaction of clofibrate with cyclodextrin in solution: phase solubility,1H NMR and molecular modelling studies[J]. Eur. J. Pharm. Sci.,1997,5:215-221
    [212]Faucci M T, Melani F, Mura P.'H-NMR and molecular modelling techniques for the investigation of the inclusion complex of econazole with a-cyclodextrin in the presence of malic acid[J]. J. Pharm. Biomed. Anal.,2000,23:25-31
    [213]Jullian C, Miranda S, Zapata-Torres G, et al. Studies of inclusion complexes of natural and modified cyclodextrin with (+)catechin by NMR and molecular modeling[J]. Bioorg. Med. Chem.,2007,15:3217-3224
    [214]Tafazzoli M, Ghiasi M. Structure and conformation of α-, β-and γ-cyclodextrin in solution:Theoretical approaches and experimental validation[J]. Carbohydr. Polym.,2009, 78:10-15
    [215]Holt J S. Structural characterization of the Brooker's merocyanine/β-cyclodextrin complex using NMR spectroscopy and molecular modeling[J]. J. Mol. Struct.,2010,965:31-38
    [216]Rekharsky M V, Goldberg R N, Schwarz F P, et al. Thermodynamic and nuclear magnetic resonance study of the interactions of α- and β-cyclodextrin with model substances: phenethylamine, ephedrines, and related substances[J]. J. Am. Chem. Soc.,1995,117: 8830-8840
    [217]Puliti R, Mattia C A, Paduano L. Crystal structure of a new a-cyclodextrin hydrate form. Molecular geometry and packing features: disordered solvent contribution[J]. Carbohydr. Res.,1998,310:1-8
    [218]Tabushi I, Mizutani T. Nature of force field operating in molecular recognition by cyclodextrins.Contribution of nonpolar and polar interactions[J]. Tetrahedron,1987,43: 1439-1447
    [219]Kim H, Jeon S. A kinetic study of C60/γ-cyclodextrin inclusion complexation by molecular mechanics[J]. Chem. Commun.,1996:817-818
    [220]Armstrong D W, Ward T J, Armstrong R D, et al. Separation of drug stereoisomers by the formation of (3-cyclodextrin inclusion complexes[J]. Science,1986,232:1132-1135
    [221]Lipkowitz K B, Raghothama S, Yang J A. Enantioselective binding of tryptophan by a-cyclodextrin [J]. J. Am. Chem. Soc.,1992,114:1554-1562
    [222]Lipkowitz K B, Stoehr C M. Detailed experimental and theoretical analysis of chiral discrimination:Enantioselective binding of PUS methyl mandelate by β-cyclodextrin[J]. Chirality,1996,8:341-350
    [223]Manunza B, Deiana S, Pintore M, et al. A molecular modeling study on the interaction between β-cyclodextrin and synthetic pyretroids [J]. Carbohydr. Res.,1997,300:89-93
    [224]Kohler J E H, Hohla M, Richters M, et al. Cyclodextrin Derivatives as Chiral Selectors-Investigation of the Interaction with (R,S)-Methyl-2- chloropropionate by Enantioselective Gas Chromatography, NMR Spectroscopy, and Molecular Dynamics Simulation [J]. Angew. Chem. Int. Ed. Engl.,1992,31:319-320
    [225]Mulinacci N, Melani F, Vincieri F F, et al.'H-NMR NOE and molecular modelling to characterize thymol and carvacrol fl-cyclodextrin complexes[J]. Int. J. Pharm.1996,128: 81-88
    [226]Copper C L, Davis J B, Cole R O, et al. Separations of derivatized amino-acid enantiomers by cyclodextrin-modified capillary electrophoresis mechanistic and molecular modeling studies[J]. Electrophoresis,1994,15:785-792
    [227]Anguiano-Igea S, Otero-Espinar F J, Vila-Jato J L, et al. Interaction of clofibrate with cyclodextrin in solution: phase solubility,'H NMR and molecular modelling studies[J]. Eur. J. Pharm. Sci.,1997,5:215-221
    [228]Sohajda T, Beni S, Varga E, et al. Characterization of aspartame-cyclodextrin complexation[J]. J. Pharm. Biomed. Anal.,2009,50:737-745
    [229]Zhang H Y, Feng W, Li C, et al. Investigation of the inclusions of puerarin and daidzin with β-cyclodextrin by molecular dynamics simulation[J]. J. Phys. Chem. B,2010,114: 4876-4883
    [230]刘英,王芳,谭天伟.分子模拟在分子印迹技术中的应用[J].化工学报,2006,57(10):2257-2262
    [231]Sergeyeva T A, Piletsky S A, Brovko A A, et al. Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection[J]. Anal. Chim. Acta,1999,392:105-111
    [232]Piletsky S A, Karim K, Piletska E V, et al. Recognition of ephedrine enantiomers by molecularly imprinted polymers[J]. The Analyst,2001,126:1826-1830
    [233]Subrahmanyam S, Piletsky S A, Piletska E V, et al. "Bite-and-Switch" approach using computationally designed molecularly imprinted polymers for sensing of creatinine[J]. Biosens. Bioelectron.,2001,16:631-637
    [234]Chianella I, Lotierzo M, Piletsky S A, et al. Rational design of a polymer specific for microcystin-LR using a computational approach[J]. Anal. Chem.,2002,74:1288-1293
    [235]Piletska E, Piletsky S, Karim K, et al. Biotin-specific synthetic receptors prepared using molecular imprinting[J]. Anal. Chim. Acta,2004,504:179-183
    [236]Turner N W, Piletska E V, Karim K, et al. Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A[J]. Biosens. Bioelectron.,2004, 20:1060-1067
    [237]Piletsky S, Piletska E, Karim K, et al. Custom synthesis of molecular imprinted polymers for biotechnological application:Preparation of a polymer selective for tylosin[J]. Anal. Chim. Acta,2004,504:123-130
    [238]Chianella I, Karim K, Piletska E V, et al. Computational design and synthesis of molecularly imprinted polymers with high binding capacity for pharmaceutical applications-model case:Adsorbent for abacavir[J]. Anal. Chim. Acta,2006,559:73-78
    [239]Breton F, Rouillon R, Piletska E V, et al. Virtual imprinting as a tool to design efficient MIPs for photosynthesis-inhibiting herbicides[J]. Biosens. Bioelectron.,2007,22: 1948-1954
    [240]Sergeyeva T A, Piletska O V, Piletsky S A, et al. Data on the structure and recognition properties of the template-selective binding sites in semi-IPN-based molecularly imprinted polymer membranes[J]. Mater. Sci. Eng., C,2008,28:1472-1479
    [241]Yanez F, Chianella I, Piletsky S A, et al. Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts[J]. Anal. Chim. Acta,2010,659:178-185
    [242]Liu Y, Wang F, Tan T, et al. Study of the properties of molecularly imprinted polymers by computational and conformational analysis[J]. Anal. Chim. Acta,2007,581:137-146
    [243]Liu R, Li X, Li Y, et al. Effective removal of rhodamine B from contaminated water using non-covalent imprinted microspheres designed by computational approach[J]. Biosens. Bioelectron.2009,25:629-634
    [244]Li Y, Li X, Li Y, et al. Selective recognition of veterinary drugs residues by artificial antibodies designed using a computational approach[J]. Biomaterials,2009,30:3205-3211
    [245]Bhaskarapillai A, Chandra S, Sevilimedu N V, et al. Theoretical investigations of the experimentally observed selectivity of a cobalt imprinted polymer[J]. Biosens. Bioelectron.,2009,25:558-562
    [246]Dong C, Li X, Guo Z, et al. Development of a model for the rational design of molecular imprinted polymer: Computational approach for combined molecular dynamics/quantum mechanics calculations[J]. Anal. Chim. Acta,2009,647:117-124
    [247]Tappura K, Vikholm-Lundin I, Albers W M. Lipoate-based imprinted self-assembled molecular thin films for biosensor applications[J]. Biosens. Bioelectron.,2007,22: 912-919
    [248]Dong W, Yan M, Liu Z, et al. Effects of solvents on the adsorption selectivity of molecularly imprinted polymers: Molecular simulation and experimental validation[J]. Sep. Purif. Technol.,2007,53:183-188
    [249]Herdes C, Sarkisov L. Computer simulation of volatile organic compound adsorption in atomistic models of molecularly imprinted polymers[J]. Langmuir,2009,25:5352-5359
    [250]Liang S, Wan J, Zhu J, et al. Effects of porogens on the morphology and enantioselectivity of core-shell molecularly imprinted polymers with ursodeoxycholic acid[J]. Sep. Purif. Technol.,2010,72:208-216
    [251]Levi L, Srebnik S. Simulation of protein-imprinted polymers.1. Imprinted pore properties[J]. J. Phys. Chem. B,2010,114:107-114
    [252]Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies[J]. Angew. Chem. Int. Ed. Engl.,1995,34: 1812-1832
    [253]Takeuchi T, Dobashi A, Kimura K. Molecular imprinting of biotin derivatives and its application to competitive binding assay using nonisotopic labeled ligands[J]. Anal. Chem.,2000,72:2418-2422
    [254]Li P, Rong F, Zhu X L, et al. Studies on the preparation of L-2-chloromandelic acid-imprinted polymer and its selective binding characteristics[J]. Acta Polym. Sin., 2003,5:724-727
    [255]Pavel D, Lagowski J. Computationally designed monomers and polymers for molecular imprinting of theophylline and its derivatives. Part I[J]. Polymer,2005,46:7528-7542
    [256]Pavel D, Lagowski J. Computationally designed monomers and polymers for molecular imprinting of theophylline—part Ⅱ[J]. Polymer,2005,46:7543-7556
    [257]Pavel D, Lagowski J, Lepage C J. Computationally designed monomers for molecular imprinting of chemical warfare agents-Part Ⅴ[J]. Polymer,2006,47:8389-839
    [258]Syu M, Nian Y. An allosteric model for the binding of bilirubin to the bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate)[J]. Anal. Chim. Acta,2005, 539:97-106
    [259]Molinelli A, O'Mahony J, Nolan K, et al. Analyzing the mechanisms of selectivity in biomimetic self-Assemblies via IR and NMR spectroscopy of prepolymerization solutions and molecular dynamics simulations[J]. Anal. Chem.,2005,77:5196-5204
    [260]Sun H, Qiao F. Recognition mechanism of water-compatible molecularly imprinted solid-phase extraction and determination of nine quinolones in urine by high performance liquid chromatography[J]. J. Chromatogr. A,2008,1212:1-9
    [261]Che A, Wan L, Ling J, et al. Recognition mechanism of theophylline-imprinted polymers: two-dimensional infrared analysis and density functional theory study[J]. J. Phys. Chem. B,2009,113:7053-7058
    [1]Minakuchi H, Nakanishi K, Soga N, et al. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography[J]. Anal. Chem.,1996,68: 3498-3501
    [2]Hara T, Kobayashi H, Ikegami T, et al. Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains[J]. Anal. Chem.,2006,78: 7632-7642
    [3]Miyamoto K, Hara T, Kobayashi H, et al. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns[J]. Anal. Chem.,2008,80: 8741-8750
    [4]Iwasaki M, Miwa S, Ikegami T, et al. One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the escherichia coli proteome on a microarray scale[J]. Anal. Chem.,2010,82:2616-2620
    [5]Hayes J D, Malik A. Sol-gel chemistry-based Ucon-coated columns for capillary electrophoresis[J]. J. Chromatogr. B,1997,695:3-13
    [6]Hayes J D, Malik A. Sol-gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography[J]. Anal. Chem.,2000,72:4090-4099
    [7]Wu Q R, Bienvenue J M, Hassan B J, et al. Microchip-based macroporous silica sol-gel monolith for efficient isolation of DNA from clinical samples[J]. Anal. Chem.,2006,78: 5704-5710
    [8]Konishi J, Fujita K, Nakanishi K, et al. Sol-gel synthesis of macro-mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds[J]. J. Chromatogr. A,2009,1216:7375-7383
    [9]Zheng M M, Ruan G D, Feng Y Q. Hybrid organic-inorganic silica monolith with hydrophobic/strong cation-exchange functional groups as a sorbent for micro-solid phase extraction[J]. J. Chromatogr. A.,2009,1216:7739-7746
    [10]Chen M L, Zheng M M, Feng Y Q. Preparation of organic-inorganic hybrid silica monolith with octyl and sulfonic acid groups for capillary electrochromatograhpy and application in determination of theophylline and caffeine in beverage[J]. J. Chromatogr. B, 2010,1217:3547-3556
    [11]Svec F, Frechet J M J. Continuous rods of macroporous polymer as high performance liquid chromatography separation media[J]. Anal. Chem.,1992,64:820-822
    [12]Du K F, Yang D, Sun Y. Fabrication of high-permeability and high-capacity monolith for protein chromatography [J]. J. Chromatogr. A,2007,1163:212-218
    [13]Lv Y Q, Tan T W, Wang M Y, et al. One-step rapid determination and purification of puerarin from Radix puerariae by n-octylamine-modified poly(methacrylate-co-ethylene dimethacrylate) monolith[J]. J. Chromatogr. B,2008,871:1-6
    [14]贺湘凌.环糊精键合凝胶介质分离纯化黄酮类天然产物[D].北京:北京化工大学,2004
    [15]潘见,袁传勋,戴郁青.配位色谱法从葛根素浸膏中分离纯化葛根素[J].色谱,2006,24(5):482-485
    [16]Cao X L, Tian Y, Zhang T Y, et al. Separation and purification of isoflavones from Pueraria lobata by high-speed counter-current chromatography[J]. J. Chromatogr. A,1999, 855:709-713
    [17]He X L, Tan T W, Janson J C. Purification of the isoflavonoid puerarin by adsorption chromatography on cross-linked 12% agarose[J]. J. Chromatogr. A,2004,1057:95-100
    [18]He X L, Tan T W, Xu B Z, et al. Separation and purification of puerarin using β-cyclodextrin-coupled agarose gel media[J]. J. Chromatogr. A,2004,1022:77-82
    [19]van der Spoel D, Lindahl E, Hess B, et al. Gromacs user manual version 3.2[EB/OL]. http://www.gromacs.org/,2003
    [20]van Gunsteren W F, Billeter S R, Eising A A, et al. Biomolecular simulation: The GROMOS96 manual and user guide[M]. Hochschulverlag AG an der ETH Zurich, Zurich, Switzerland,1996
    [21]Vanbuuren A R, Marrink S J, Berendsen H J C. A molecular-dynamics study of the decane water interface[J]. J. Phys. Chem.,1993,97:9206-9212
    [22]Berendsen H J C, Postma J P M, Van Gunsteren W F, et al. Molecular-dynamics with coupling to an external bath[J]. J. Chem. Phys.,1984,81:3684-3690
    [23]郭贤权,孙越,徐家毅,等.大孔交联甲基丙烯酸缩水甘油酯共聚物的合成及其结构性能研究(Ⅰ)[J].离子交换与吸附,1998,14(2):110-116
    [24]Pursch M, Sander L C. Stationary phases for capillary electrochromatography[J]. J. Chromatogr. A,2000,887:313-326
    [25]Zou H, Huang X, Ye M, et al. Monolithic stationary phases for liquid chromatography and capillary electrochromatography[J]. J. Chromatogr. A,2002,954:5-32
    [26]Tian H Z, Wang H, Guan Y F. Separation and identification of isoflavonoids in Pueraria lobata extracts and its preparations by reversed—phase capillary liquid chromatography coupled with electrospray ionization quadrupole time of flight mass spectrometry[J]. Chin. J. Chromatogr.,2005,23:477-481
    [27]Yang L, Tan T W. Enhancement of the isolation selectivity of isoflavonoid puerarin using oligo--cyclodextrin coupled polystyrene-based media[J]. Biochem. Engin. J.,2008,40: 189-198
    [28]Maity N, Payne, G F. Adsorptive separations based on the differences in solute-sorbent hydrogen-bonding strengths [J]. Langmuir,1991,7:1247-1254
    [29]Payne G F, Maity N. Solute adsorption from water onto a "modified" sorbent in which the hydrogen binding site is protected from water. Thermodynamics and separations[J]. Ind. Eng. Chem. Res.,1992,31:2024-2033
    [30]Allender C J, Heard C M, Brain K R. Mobile phase effects on enantiomer resolution using molecularly imprinted polymers[J]. Chirality,1997,9:238-242
    [31]Xu J, Tan T W, Janson J C. Mixed-mode retention mechanism for (-)-epigallocatechin gallate on a 12% cross-linked agarose gel media[J]. J. Chromatogr. A,2006,1137:49-55
    [32]Cringus D, Yeremenko S, Pshenichnikov S, et al. Hydrogen bonding and vibrational energy relaxation in water-acetonitrile mixtures[J]. J. Phys. Chem. B,2004, 108:10376-10387
    [33]Bertie J E, Lan Z. Liquid water-acetonitrile mixtures at 25℃: the hydrogenbonded structure studied through infrared absolute integrated absorption intensities[J]. J. Phys. Chem.B,1997,101:4111-4119
    [1]Tan T W, Zhang M, Wang B W, et al. Screening of high lipase producing Candida sp. and production of lipase by fermentation[J]. Process Biochem.,2003,39:459-465
    [2]He X L, Chen B Q, Tan T W. Enzymatic synthesis of 2-ethylhexyl esters of fatty acids by immobilized lipase from Candida sp.99-125[J]. J. Mol. Catal. B:Enzym.,2002,18: 333-339
    [3]Wen S, Tan T W, Yu M R. Immobilized lipase Y/Lip2-catalyzed resolution of (±)α-phenylethyl amine in a medium with organic cosolvent[J]. Process Biochem.,2008, 43:1259-1264
    [4]Lu J K, Nie K L, Wang F, et al. Immobilized lipase Candida sp.99-125 catalyzed methanolysis of glycerol trioleate: Solvent effect[J]. Bioresour. Technol.,2008,99: 6070-6074
    [5]Lu J K, Chen Y W, Wang F, Tan T W. Effect of water on methanolysis of glycerol trioleate catalyzed by immobilized lipase Candida sp.99-125 in organic solvent system[J]. J. Mol. Catal. B:Enzym.,2009,56:122-125
    [6]Lu J K, Nie K L, Xie F, et al. Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp.99-125[J]. Process Biochem.,2007,42:1367-1370
    [7]Lu J K, Deng L, Zhao R, et al. Pretreatment of immobilized Candida sp.99-125 lipase to improve its methanol tolerance for biodiesel production [J]. J. Mol. Catal. B:Enzym., 2010,62:15-18
    [8]Liu Y, Wang F, Tan T W. Effects of alcohol and solvent on the performance of lipase from Candida sp. in enantioselective esterification of racemic ibuprofen[J]. J. Mol. Catal. B: Enzym.,2009,56:126-130
    [9]Yu M R, Qin S W, Tan T W. Purification and characterization of the extracellular lipase Lip2 from Yarrowia lipolytica[J]. Process Biochem.,2007,42:384-391
    [10]Fu D Y, Yu M R, Tan T W, et al. Separation, characterization and catalytic properties of Lip2 isoforms from Candida sp.99-125[J]. J. Mol. Catal. B:Enzym.,2009,56:115-121
    [11]Svec F, Frechet J M J. Modified poly (glycidyl methacrylate-co-ethylene dimethacrylate) continuous rod column for preparative-scale ion-exchange chromatography of proteins[J]. J. Chromatogr. A,1995,702:89-95
    [12]Sytrancar A, Barut M, Podgornik A, et al. Application of compact porous tubes for preparative isolation of clotting factor Ⅷ from human plasma[J]. J. Chromatogr. A, 1997,760:117-123
    [13]Brne P, Podgornik A, Bencina K, et al. Fast and efficient separation of immunoglobulin M from immunoglobulin G using short monolithic columns[J]. J. Chromatogr. A,2007,1144: 120-125
    [14]Frankovic V, Podgornik A, Krajnc N L, et al. Characterisation of grafted weak anion-exchange methacrylate monoliths[J]. J. Chromatogr. A,2008,1207:84-93
    [15]Li Y, Lee M L. Biocompatible polymeric monoliths for protein and peptide separations[J]. J. Sep. Sci.,2009,32:3369-3378
    [16]Sun X L, Liu R, He X W, et al. Preparation of phenylboronic acid functionalized cation-exchange monolithic columns for protein separation and refolding[J]. Talanta, 2010,81:856-864
    [17]Kramberger P, Honour R C, Herman R E, et al. Purification of the Staphylococcus aureus bacteriophages VDX-10 on methacrylate monoliths[J]. J. Virol. Methods,2010,166: 60-64
    [18]Miiller W. New ion exchangers for the chromatography of biopolymers[J]. J. Chromatogr. A,1990,510:133-140
    [19]Muller E. Comparison between mass transfer properties of weak-anion exchange resins with graft-functionalized polymer layers and traditional ungrafted resins[J]. J. Chromatogr. A,2003,1006:229-240
    [20]Wang M Y, Xu J, Zhou X, et al. Preparation and characterization of polyethyleneimine modified ion-exchanger based on poly(methacrylate-co-ethylene dimethacrylate) monolith[J]. J. Chromatogr. A,2007,1147:24-29
    [21]Svec F, Frechet J M J. New designs of macroporous polymers and supports: from separation to biocatalysis[J]. Science,1996,273:205-211
    [22]Wang M Y, Xu J, Zhou X, et al. Modification with DEAE-dextran, an alternative way to prepare anion-exchange monolithic column with lower pressure drop[J]. Biochem. Eng. J., 2007,34:76-81
    [23]付大雁.解脂假丝酵母脂肪酶(YlLip2)的分离纯化、变性机理及结晶的研究[D].北京:北京化工大学,2007
    [24]沈星灿,梁宏,何锡文,等.圆二色光谱分析蛋白质构象的方法及研究进展[J].分析化学评述与进展,2004,32(3):388-394
    [25]黄汉昌,姜招峰,朱宏吉.紫外圆二色光谱预测蛋白质结构的研究方法[J].化学通报,2007,7:501-506
    [26]Nardini M, Dijkstra B W.α/β Hydrolase fold enzymes:the family keeps growing [J]. Curr. Opin. Struct. Biol.,1999,9:732-737
    [27]Aloulou A, Rodriguez J A, Puccinelli D, et al. Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica[J]. Biochim. Biophys. Acta, 2007,1771:228-237
    [1]Caldwell J. Chiral pharmacology and the regulation of new drugs[J]. Chem. Ind.,1995,5: 176-179
    [2]Herraez-Hernandez R, Campins-Falco P. Chromatographic separation of chlorthalidone enantiomers using beta-cyclodextrins as chiral additives[J], J. Chromatogr. B,2000,740: 169-177
    [3]Abol fazl S M, Robert T F. Pharmacokinetics of metoprolol enantiomers folling single and multiple administration of racemate in rat[J]. Int. J. Pharm.,2000,22:97-102
    [4]Alex D. Chiralily-A cause for panic[J]. Chem. Brit.,1988,24:847-848
    [5]黄量,戴立信.手性药物的化学与生物学[M].北京:化学工业出版社,2002
    [6]Christian A, Christine O A. Thalidomide-induced teratogenesis in the newt (Pleurodeles waltl)[J]. Biol.Cell,1995,84:114-120
    [7]Matthews S J, Christopher M C. Thalidomide:A review of approved and investigational uses[J]. Clin. Ther.,2003,25:342-395
    [8]Stephens T D, Bunde C J W, Fillmore B J. Mechanism of action in thalidomide teratogenesis[J]. Biochem. Pharmacol.,2000,59:1489-1499
    [9]FDA's policy statement for the development of new stereoisomeric drugs[J]. Chirality, 1992,4:338-340
    [10]栾燕,陈笑艳.麻黄碱对映异构体的柱前于性衍生化—反相高效液相色谱法拆分[J].分析测试学报,2001,20(5):12-14
    [11]Dalgliesh C E. The optical resolution of aromatic amino-acids on paper chromatograms[J]. J. Chem. Soc,1952,137:3940-3942
    [12]Sun P, Krishnan A, Yadav A, et al. Enantiomeric separations of ruthenium(II) polypyridyl complexes using high-performance liquid chromatography (HPLC) with cyclodextrin chiral stationary phases (CSPs)[J]. Inorg. Chem.,2007,46:10312-10320
    [13]Grewe C, Menge S, Griehl C. Enantioselective separation of all-E-astaxanthin and its determination in microbial sources[J]. J. Chromatogr. A,2007,1166:97-100
    [14]Bhushan R, Gupta D. HPLC resolution of thioridazine enantiomers from pharmaceutical dosage form using cyclodextrin-based chiral stationary phase[J]. J. Chromatogr. B,2006, 837:133-137
    [15]Kim I W, Choi H M, Yoon H J, et al. β-Cyclodextrin-hexamethylene diisocyanate copolymer-coated zirconia for separation of racemic 2,4-dinitrophenyl amino acids in reversed-phase liquid chromatography [J]. Anal. Chim. Acta,2006,569:151-156
    [16]Han X X, Yao T L, Liu Y, et al. Separation of chiral furan derivatives by liquid chromatography using cyclodextrin-based chiral stationary phases[J]. J. Chromatogr. A, 2005,1063:111-120
    [17]Svec F, Frechet J M J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media[J]. Anal. Chem.,1992,64:820-822
    [18]Svec F, Frechet J M J. Kinetic control of pore formation in macroporous polymers. formation of "molded" porous materials with high flow characteristics for separations or catalysis[J]. Chem. Mater,1995,7:707-715
    [19]Svec F, Frechet J M J. New designs of macroporous polymers and supports: from separation to biocatalysis[J]. Science,1996,273:205-211
    [20]Petter R C, Salek J S, Sikorski C T, et al. Cooperative binding by aggregated mono-6-(alkylamino)-.beta.-cyclodextrins[J]. J. Am. Chem. Soc.,1990,112:3860-3868
    [21]Vizitiu D, Walkinshaw C S, Gorin B I, et al. Synthesis of monofacially functionalized cyclodextrins bearing amino pendent groups[J]. J. Org. Chem.,1997,62:8760-8766
    [22]Bonomo R P, Cucinotta V, Allessandro F D, et al. Coordination properties of 6-deoxy-6-[1-(2-amino) ethylamino]-P-cyclodextrin and the ability of its copper(II) complex to recognize and separate amino acid enantiomeric pairs[J] J. Inclusion Phenom. Mol. Recognit. Chem.,1993,15:167-180
    [23]Schuttelkopf A W, van Aalten D M F. PRODRG:a tool for highthroughput crystallography of protein-ligand complexes[J]. Acta Crystallogr., Sect. D,2004,60:1355-1363
    [24]van der Spoel D, Lindahl E, Hess B, et al. Gromacs user manual version 3.2[EB/OL]. http://www.gromacs.org/,2003
    [25]van Gunsteren W F, Billeter S R, Eising A A, et al. Biomolecular simulation:the GROMOS96 manual and user guide[M]. Hochschulverlag AG an der ETH Zurich, Zurich, Switzerland,1996
    [26]Vanhuuren A R, Mauink S J, Berendsen H J C. A molecular-dynamics study of the decane water interface[J]. J. Phys. Chem.,1993,97:9206-9212
    [27]Berendsen H J C, Postma J P M, Van Gunsteren W F, et al. Molecular-dynamics with coupling to an external bath[J]. J. Chem. Phys.,1984,81:3684-3690
    [28]Hess B, Bekker H, Berendsen H J C, et al. LINCS: A linear constraint solver for molecular simulations[J]. J. Comput. Chem.,1997,18:1463-1472
    [29]Carturn G, Gottardi V, Grasiani M. Physical and chemical evolutions occurring in glass formation from alkoxides of silicon, aluminum and sodium[J]. J. Non-Cryst. Solids,1978, 29:41-48
    [30]Wren S A C, Rowe R C. Theoretical aspects of chiral separation in capillary electrophoresis: Ⅱ. The role of organic solvent[J]. J. Chromatogr. A,1992,609:363-367
    [31]O'Keeffe F, Shamsi S A, Darcy R, et al. A persubstituted cationic β-cyclodextrin for chiral separations[J]. Anal. Chem.1997,69:4773-4782
    [32]Bonato P S, Del Lama M P F M, de Carvalho R. Enantioselective determination of ibuprofen in plasma by high-performance liquid chromatography-electrospray mass spectrometry[J]. J. Chromatogr. B,2003,796:413-420
    [33]Jabor V A P, Lanchote V L, Bonato P S. Enantioselective analysis of ibuprofen in human plasma by anionic cyclodextrin-modified electrokinetic chromatography[J]. Electrophoresis,2002,23:3041-3047
    [34]Reijenga J C, Ingelse B A, Everaerts F M. Thermodynamics of chiral selectivity in capillary electrophoresis: separation of ibuprofen enantiomers with β-cyclodextrin[J]. J. Chromatogr. A,1997,792:371-378
    [35]Manzoori J L, Amjadi M. Spectrofluorimetric study of host-guest complexation of ibuprofen with β-cyclodextrin and its analytical application[J]. Spectrochim. Acta, Part A, 2003,59:909-916
    [36]Busch K W, Swamidoss I M, Fakayode S O, et al. Determination of the enantiomeric composition of some molecules of pharmaceutical interest by chemometric analysis of the UV spectra of cyclodextrin guest-host complexes[J]. Anal. Chim. Acta,2004,525:53-62
    [37]Oh J, Lee M Y, Lee Y B, et al. Spectroscopic characterization of ibuprofen/2-hydroxypropyl-β-cyclodextrin inclusion complex[J]. Int. J. Pharm.,1998, 175:215-223
    [38]Hergert L A, Escandar G M. Spectrofluorimetric study of the β-cyclodextrin/ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum[J]. Talanta,2003,60:235-246
    [39]Nunez-Aguero C J, Escobar-Llanos C M, Diaz D, et al. Chiral discrimination of ibuprofen isomers in β-cyclodextrin inclusion complexes: experimental (NMR) and theoretical (MD, MM/GBSA) studies[J]. Tetrahedron,2006,62:4162-4172
    [40]Braga S S, Goncalves I S, Herdtweck E, et al. Solid state inclusion compound of S-ibuprofen in b-cyclodextrin:structure and characterization[J]. New J. Chem.,2003,27: 597-601
    [41]Khan G M, Zhu J B. lbuprofen-β-cyclodextrin inclusion complex:preparation, characterization, physico-chemical properties and in vitro Dissolution Behavior[J]. J. Chin. Pharm. Sci.,1998,7:72-79
    [42]Morris G M, Goodsell D S, Halliday R S, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function[J]. J. Comput. Chem., 1998,19:1639-1662
    [43]Moiteiro C, Fonseca N, Curto M J M, et al. Development of novel brush-type chiral stationary phases based on terpenoid selectors:HPLC evaluation and theoretical investigation of enantioselective binding interactions[J]. Tetrahedron: Asymmetry,2006, 17:3248-3264
    [44]王恩举,陈光英,彭明生.NMR研究β-环糊精对布洛芬的手性识别[J].波谱学杂志,2009,26(2):216-222
    [1]Wang Q C, Svec F, Frechet J M J. Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography[J]. Anal. Chem.,1993, 65:2243-2248
    [2]Moore R E, Licklider L, Schumann D, et al. Microscale electrospray interface incorporating a monolithic, poly(styrene-divinylbenzene) support for on-line liquid chromatography/tandem mass spectrometry analysis of peptides and proteins[J]. Anal. Chem.,1998,70:4879-4884
    [3]Sykora D, Svec F, Frechet J M J. Separation of oligonucleotides on novel monolithic columns with ion-exchange functional surfaces[J], J. Chromatogr. A.,1999,852:297-304
    [4]Badyal J P, Cameron A M, Cameron N R, et al. Comparison of the effect of pore architecture and bead size on the extent of plasmachemical amine functionalisation of poly(styrene-co-divinylbenzene) permanently porous resins[J]. Polymer,2004,45: 2185-2192
    [5]Urban J, Svec F, Frechet J M J. Efficient separation of small molecules using a large surface area hypercrosslinked monolithic polymer capillary column[J]. Anal. Chem., 2010,82:1621-1623
    [6]Zhang X Q, Do M D. Plasticization and crosslinking effects of acetone-formaldehyde and tannin resins on wheat protein-based natural polymers[J]. Carbohydr. Res.,2009,344: 1180-1189
    [7]Carturn G, Gottardi V, Grasiani M. Physical and chemical evolutions occurring in glass formation from alkoxides of silicon, aluminum and sodium[J]. J. Non-Cryst. Solids,1978, 29:41-48
    [8]Zhang M, Sun Y. Poly(glycidyl methacrylate-divinylbenzene-triallylisocyanurate) continuous-bed protein chromatography[J]. J. Chromatogr. A,2001,912:31-38
    [9]Viklund C, Svec F, Frechet J M J. Fast ion-exchange HPLC of proteins using porous poly(glycidyl methacrylate-co-ethylene dimethacrylate) monoliths grafted with poly(2-acrylamido-2-methyl-1-propanesulfonic acid)[J]. Biotechnol. Progr.,1997,13: 597-600
    [10]Svec F, Frechet J M J. New designs of macroporous polymers and supports:from separation to biocatalysis[J]. Science,1996,273:205-211
    [1]Schneider H J, Hacket F, Rudiger V, et al. NMR studies of cyclodextrins and cyclodextrin complexes[J]. Chem. Rev.1998,98:1755-1786
    [2]Chankvetadze B. Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins[J]. Chem. Soc. Rev.,2004,33:337-347
    [3]Liu L, Guo Q X. The driving forces in the inclusion complexation of cyclodextrins[J]. J. Incl. Phenom. Macrocycl. Chem.,2002,42:1-14
    [4]Yang L, Tan T W. Enhancement of the isolation selectivity of isoflavonoid puerarin using oligo-β-cyclodextrin coupled polystyrene-based media[J]. Biochem. Eng. J.,2008,40: 189-198
    [5]Yang L, Zhu Y, Tan T W, et al. Coupling oligo-β-cyclodextrin on polyacrylate beads media for separation of puerarin[J]. Process Biochem.,2007,42:1075-1083
    [6]He X L, Tan T W, Xu B Z, et al. Separation and purification of puerarin using β-cyclodextrin-coupled agarose gel media[J]. J. Chromatogr. A,2004,1022:77-82
    [7]Stancanelli R, Mazzaglia A, Tommasini S, et al. The enhancement of isoflavones water solubility by complexation with modified cyclodextrins: A spectroscopic investigation with implications in the pharmaceutical analysis[J]. J. Pharm. Biomed. Anal.,2007,44: 980-984
    [8]Crupi V, Ficarra R, Guardo M, et al. UV-vis and FTIR-ATR spectroscopic techniques to study the inclusion complexes of genistein with β-cyclodextrins[J]. J. Pharm. Biomed. Anal.2007,44:110-117
    [9]Cannava C, Crupi V, Ficarra P, et al. Physico-chemical characterization of an amphiphilic cyclodextrin/genistein complex[J]. J. Pharm. Biomed. Anal.,2010,51:1064-1068
    [10]Zhang M, Li J X, Zhang L W, et al. Preparation and spectral investigation of inclusion complex of caffeic acid with hydroxypropyl-β-cyclodextrin[J]. Spectrochim. Acta, Part A, 2009,71:1891-1895
    [11]Anton-Smith A, Manavalan R, Kannan K, et al. Spectral characteristics of tramadol in different solvents and β-cyclodextrin[J]. Spectrochim. Acta, Part A,2009,74:469-477
    [12]Wang Y L, Qiao X N, Li W C, et al. Study on the complexation of isoquercitrin with β-cyclodextrin and its derivatives by spectroscopy [J]. Anal. Chim. Acta,2009,650: 124-130
    [13]Zhao M M, Wang H Y, Yang B, et al. Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity[J]. Food Chem.,2010,120:1138-1142
    [14]Salustio P J, Feio G, Figueirinhas J L, et al. The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity[J]. Eur. J. Pharm. Biopharm., 2009,71:377-386
    [15]Kwon S, Lee W, Shin H, et al. Characterization of cyclodextrin complexes of camostat mesylate by ESI mass spectrometry and NMR spectroscopy [J]. J. Mol. Struct.,2009,938: 192-197
    [16]Sfihi H, Legrand A P, Doussot J, et al. Solid-state 13C NMR study of β-cyclodextrin/substituted aromatic ketone complexes: evidence for two kinds of complexation of the guest molecules[J]. Colloids Surf., A,1996,115:115-126
    [17]Bernini A, Spiga O, Ciutti A, et al. NMR studies of the inclusion complex between β-cyclodextrin and paroxetine[J]. Eur. J. Pharm. Sci.2004,22:445-450
    [18]Sagiraju S, Jursic B S. NMR spectroscopic study of cyclodextrin inclusion complexes with A-007 prodrugs[J]. Carbohydr. Res.,2008,343:1180-1190
    [19]Linde G A, Junior A L, Vaz de Faria E, et al. The use of 2D NMR to study β-cyclodextrin complexation and debittering of amino acids and peptides[J]. Food Res. Int.,2010,43: 187-192
    [20]Mulinacci N, Melani F, Vincieri F F, et al.1H-NMR NOE and molecular modelling to characterize thymol and carvacrol β-cyclodextrin complexes[J]. Int. J. Pharm.,1996,128: 81-88
    [21]Anguiano-Igea S, Otero-Espinar F J, Vila-Jato J L, et al. Interaction of clofibrate with cyclodextrin in solution:phase solubility,1H NMR and molecular modelling studies[J]. Eur. J. Pharm. Sci.,1997,5:215-221
    [22]Faucci M T, Melani F, Mura P.1H-NMR and molecular modelling techniques for the investigation of the inclusion complex of econazole with α-cyclodextrin in the presence of malic acid[J]. J. Pharm. Biomed. Anal.,2000,23:25-31
    [23]Jullian C, Miranda S, Zapata-Torres G, et al. Studies of inclusion complexes of natural and modified cyclodextrin with (+)catechin by NMR and molecular modeling[J]. Bioorg. Med. Chem.,2007,15:3217-3224
    [24]Tafazzoli M, Ghiasi M. Structure and conformation of α-, β-and γ-cyclodextrin in solution:Theoretical approaches and experimental validation[J]. Carbohydr. Polym.,2009, 78:10-15
    [25]Holt J S. Structural characterization of the Brooker's merocyanine/β-cyclodextrin complex using NMR spectroscopy and molecular modeling[J]. J. Mol. Struct.,2010,965:31-38
    [26]Zhang H Y, Feng W, Li C, et al. Investigation of the inclusions of puerarin and daidzin with β-cyclodextrin by molecular dynamics simulation[J]. J. Phys. Chem. B,2010,114: 4876-4883
    [27]Qin X R, Abe H, Nakanishi H. NMR and CD studies on the interaction of Alzheimer β-amyloid peptide(12-28) with β-cyclodextrin[J]. Biochem. Biophys. Res. Commun., 2002,297:1011-1015
    [28]Trapani G, Latrofa A, Franco M, et al. Inclusion complexation of propofol with 2-hydroxypropyl-β-cyclodextrin, physicochemical, nuclear magnetic resonance spectroscopic studies, and anesthetic properties in rat[J]. J. Pharm. Sci.,1998,87:514-518
    [29]Lipkowitz K B. Applications of computational chemistry to the study of cyclodextrins[J]. Chem. Rev.,1998,98:1829-1873
    [30]Cringus D, Yeremenko S, Pshenichnikov M S, et al. Hydrogen bonding and vibrational energy relaxation in water-acetonitrile mixtures[J]. J. Phys. Chem. B,2004,108: 10376-10387
    [31]Bertie J E, Lan Z. Liquid water-acetonitrile mixtures at 25℃: the hydrogen bonded structure studied through infrared absolute integrated absorption intensities[J]. J. Phys. Chem. B,1997,101:4111-4119
    [32]Schuettelkopf A W, van Aalten D M F. PRODRG:a tool for highthroughput crystallography of protein-ligand complexes[J]. Acta Crystallogr., Sect D: Biol. Crystallogr.,2004,60:1355-1363
    [33]van der Spoel D, Lindahl E, Hess B, et al. Gromacs user manual version 3.2[EB/OL]. http://www.gromacs.org/,2003
    [34]Morris G M, Goodsell D S, Halliday R S. Docking using a Lamarckian genetic algorithm and an empirical binding free energy function[J]. J. Compu. Chem.,1998,19:1639-1662
    [35]Goodsell D S, Olson A J. Automated docking of substrates to proteins by simulated annealing[J]. Proteins:Struct. Funct. Bioinf.,1990,8:195-202
    [36]Morris G M, Goodsell D S, Huey, R. Distributed automated docking of flexible ligands to proteins: parallel applications of autodock 2.4[J]. J. Comput. Aided Mol. Des.,1996,10: 293-304
    [37]van Gunsteren W F, Billeter S R, Eising A A, et al. Biomolecular simulation:the GROMOS96 manual and user guide[M]. Hochschulverlag AG an der ETH Zurich, Zurich, Switzerland,1996
    [38]Vanbuuren A R, Marrink S J, Berendsen H J C. A molecular-dynamics study of the decane water interface[J]. J. Phys. Chem.,1993,97:9206-9212
    [39]Berendsen H J C, Postma J P, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath [J]. J. Chem. Phys.,1984,81:3684-3690
    [40]Geng X, Regnier F E. Stoichiometric displacement of solvent by non-polar solutes in reversed-phase liquid chromatography[J]. J. Chromatogr.,1985,332:147-168
    [41]Kaibara A, Hohda C, Hirata N, et al. Evaluation of solute hydrophobicity by reversed-phase high performance liquid chromatography using aqueous binary mobile phases[J]. Chromatographia,1990,29:275-288
    [42]缪振春.核磁共振技术在药物与环糊精包含物的结构分析中的应用[J].药物分析杂志,1985,5(5):316-319
    [43]Rekharsky M V, Goldberg R N, Schwarz F P, et al. Thermodynamic and nuclear magnetic resonance study of the interactions of alpha- and beta-cyclodextrin with model substances: phenethylamine, ephedrines, and related substances[J]. J. Am. Chem. Soc.,1995,117: 8830-8840
    [44]Schneider H J, Hacket F, Riidiger V, et al. NMR studies of cyclodextrins and cyclodextrin complexes[J]. Chem. Rev.1998,98:1755-1786
    [45]Chankvetadze B. Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins[J]. Chem. Soc. Rev.,2004,33:337-347
    [46]Job P. Formation and stability of inorganic complexes in solution[J]. Ann. Chim. (Cachan, Fr.),1928,9:113-203
    [1]高杨菲,江南平,汪海峰.有机磷农药残留的检测方法研究进展[J].粮油仓储科技通讯,201O,26(1):44-46
    [2]Hunter R E, Jr., Riederer A M. Method for the determination of organophosphorus and pyrethroid pesticides in food via gas chromatography with electron-capture detection[J]. J. Agric. Food Chem.,2010,58:1396-1402
    [3]Campillo N, Penalver R, Hernandez-Cordoba M. Pesticide analysis in herbal infusions by solid-phase microextraction and gas chromatography with atomic emission detection[J]. Talanta,2007,71:1417-1423
    [4]Moinfara S, Hosseini M M. Development of dispersive liquid-liquid microextraction method for the analysis of organophosphorus pesticides in tea[J]. J. Hazard. Mater.,2009, 169:907-911
    [5]Bicchi C, Cordero C, Iori C, et al. SBSE-GC-ECD/FPD in the analysis of pesticide residues in passiflora alata dryander herbal teas[J]. J. Agric. Food. Chem.,2003,51:27-33
    [6]Carabias-Martinez R, Rodriguez-Gonzalo E, Herrero-Hernandez E. Determination of triazines and dealkylated and hydroxylated metabolites in river water using a propazine-imprinted polymer[J]. J. Chromatogr. A,2005,1085:199-206
    [7]Nilsson K G I, Sakaguchi K, Gemeiner P, et al. Molecular imprinting of acetylated carbohydrate derivatives into methacrylic polymers[J]. J. Chromatogr. A,1995,707: 199-203
    [8]Kempe M, Mosbach K. Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases[J]. J. Chromatogr. A,1995,691:317-323
    [9]O'Mahony J, Molinelli A, Nolan K, et al. Towards the rational development of molecularly imprinted polymers: 1H NMR studies on hydrophobicity and ion-pair interactions as driving forces for selectivity[J]. Biosens. Bioelectron.,2005,20: 1884-1893
    [10]Schuttelkopf A W, van Aalten D M F. PRODRG:a tool for highthroughput crystallography of protein-ligand complexes[J]. Acta Crystallogr., Sect. D: Biol. Crystallogr.,2004,60: 1355-1363
    [11]van der Spoel D, Lindahl E, Hess B, et al. Gromacs user manual version 3.2[EB/OL]. http://www.gromacs.org/,2003
    [12]van Gunsteren W F, Billeter S R, Eising A A, et al. Biomolecular simulation:the GROMOS96 manual and user guide[M]. Hochschulverlag AG an der ETH Zurich, Zurich, Switzerland,1996
    [13]Vanhuuren A R, Mauink S J, Berendsen H J C. A molecular-dynamics study of the decane water interface[J]. J. Phys. Chem.,1993,97:9206-9212
    [14]Berendsen H J C, Postma J P M, Vangunsteren W F, et al. Molecular-dynamics with coupling to an external bath[J]. J. Chem. Phys.,1984,81:3684-3690
    [15]Hess B, Bekker H, Berendsen H J C, et al. LINCS:A linear constraint solver for molecular simulations[J]. J. Comput. Chem.,1997,18:1463-1472
    [16]Vallano P T, Remcho V T. Highly selective separations by capillary electrochromatography:molecular imprint polymer sorbents[J]. J. Chromatogr. A,2000, 887:125-135
    [17]Mena M L, Martinez-Ruiz P, Reviejo A J, et al. Molecularly imprinted polymers for on-line preconcentration by solid phase extraction of pirimicarb in water samples[J]. Anal. Chim. Acta,2002,451:297-304
    [18]Vailaya A, Horvath C. Retention thermodynamics in hydrophobic interaction chromatography[J]. Ind. Eng. Chem. Res.,1996,35:2964-2981
    [19]Sellergren B, Andersson L I. Application of imprinted synthetic polymers in binding assay development[J]. Methods,2000,22:92-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700