短毛蓼超富集锰的机理及对锰污染土壤的修复效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广西素有“有色金属之乡”的美誉,其中锰矿的开采规模与强度居全国之首。多年来的锰矿开采使矿区生态遭到严重的破坏,并带来大面积的土壤污染。在锰矿区,锰、镉等重金属含量高已成为限制植物生长的重要因素,阻碍了矿区废弃地生态恢复的快速健康发展,降低废弃地土壤中的重金属含量成为亟待解决的重要问题。近年来,植物修复技术以其潜在的高效、廉价及其环境友好性越来越受到各国政府、科技界和企业界的强烈关注,因其可以通过植物对重金属的吸收、富集作用达到降低土壤重金属浓度的目标,利用生长快、适应性强的超富集植物实施植物修复而更具优势。
     通过对广西全州锰矿的野外调查,发现短毛蓼具有锰超富集植物的特征,进而结合营养液培养试验对它的锰耐性和超富集能力进行了验证。此外,从短毛蓼对锰的生理响应、锰在短毛蓼体内的化学形态和分布特征等方面对短毛蓼的锰富集机理进行了探讨,并考察了短毛蓼对锰污染土壤的修复效应,还初步探索了利用短毛蓼与经济作物间作体系对锰矿区废弃地土壤进行修复。通过研究取得了以下主要结果:
     短毛蓼对生长介质中的锰有很强的耐性和富集能力,是一种锰超富集植物,短毛蓼各部分锰含量特征为:叶>茎>根。在锰含量高达2.5×105mg/kg的锰矿废弃地上短毛蓼生长良好,叶锰含量高达1.66×104mg/kg。营养液培养条件下,随着生长介质中Mn浓度的升高,短毛蓼根、茎、叶的锰含量逐渐增加,锰供应水平为1000μmol/L时,叶锰含量就超过了10000mg/kg;当锰供应水平为8000μmol/L时,茎锰含量亦超过了10000mg/kg。动态吸收实验结果表明,短毛蓼具有很强的锰吸收能力,根部从生长介质中吸收锰后能够将其转移并贮存在地上部分,但锰从植物根部往上输送的过程需要一定的时间,起初(0-4h)根部的锰含量最大,在32h左右,短毛蓼体内锰含量呈现出叶>茎>根的特征。
     生理生化实验结果表明,锰处理浓度不超过5000μmol/L时,短毛蓼叶片叶绿素含量与对照相比差异不显著,细胞质膜透性和丙二醛含量与对照相比差异也不显著,表明细胞膜没有明显地受到锰的毒害;当锰处理浓度高达8000μmol/L时,叶绿素含量显著降低,细胞膜透性和丙二醛含量也显著增大。在抗氧化胁迫作用方面,随着锰处理浓度的增加,短毛蓼叶片POD和SOD酶活性提高,起到清除活性氧自由基的作用;CAT酶活性变化则不显著,表明CAT可能不是锰胁迫下清除H202的关键酶。
     在锰赋存形态上,短毛蓼茎部以水提取态和氯化钠提取态为主,根部和叶部以水提取态、氯化钠提取态和盐酸提取态为主;随着锰处理浓度增加,根中锰由水提取态向盐酸酸提取态和氯化钠提取态转化,叶中水提取态锰和盐酸提取态Mn占总锰的比例逐渐上升。在亚细胞水平分布上,短毛蓼根、茎、叶中的90%以上的锰分布在细胞壁和可溶性部分(包括细胞质和液泡)。叶是短毛蓼体内锰富集量最高的部位,不同锰处理浓度下,细胞质可溶性物质(包括液泡)中锰的分配率均最高,达55.92%-63.09%,其次是细胞壁部分,其比例为31.01~35.50%。可见,细胞壁和液泡是锰在短毛蓼叶片细胞内中的主要贮存点位,TEM实验结果也证实了这一点。
     土培试验再次证明了短毛蓼对锰的强耐性和富集能力。短毛蓼种植于三种不同土壤中的试验结果表明,短毛蓼的生长适应性很强,在三种土壤环境中都长势良好,生物量没有显著差异;而且,三种情况下短毛蓼的锰转移系数均大于1,表现出较好的锰迁移性。向生物园土中人为添加锰的梯度试验结果表明,在各种锰处理水平下,短毛蓼的锰生物富集系数和转运系数均大于1;随着土壤中锰浓度的增加,短毛蓼体内(地上部分和地下部分)的锰含量呈上升趋势,当土壤中锰添加浓度为1000mg·kg-1时,地上部锰含量超过10000mg·kg-1,达到了锰超富集植物的标准。向土壤中添加抗坏血酸可以提高短毛蓼的耐锰性,在锰添加量为5000mg/kg时短毛蓼仍能存活;而且,较低浓度抗坏血酸的添加可以显著增加短毛蓼体内的锰累积量。
     对经济作物和短毛蓼间作体系的研究结果表明,不同经济作物对间种体系植物间互作效应的影响较大,短毛蓼与玉米间种体系用于修复锰污染土壤比较理想。短毛蓼与大豆间种对短毛蓼的锰吸收能力有所抑制,虽然促使短毛蓼生长更快,生物量显著增加,但锰累积量却没有显著变化;而将玉米与短毛蓼间种不仅能显著增大短毛蓼的生物量,而且能够促进它对土壤中锰的吸收,体内锰累积量增大了208.4%。
Guangxi is known as the Town of Nonferrous Metals, and it ranks first because of the size and intensity of manganese mining. The original ecological environment of manganese mines has been destroyed heavily, and a large area of soil has been contaminated through many years exploring. In mining area, plant growth has been limited for high concentraion of manganese,cadmium and other heavy metals, which hindered healthy developmeng of its ecological restoration. So, it has become an imortant issue to be solved that the contents of heavy metals in the soil of wasteland should be reduced. In recent years, phytoremediation technology has attracted more and more concern of governments, scientific community and business community for its potential efficiency, low cost and environmentally friendly characteristics. For this technology, fast-growing an adaptable hyperaccumulators are used to remove heavy metals from soil by extraction of the heavy metals to their aerial parts.
     It was found that Polygonum Pubescens Blume had the characteristics of manganese hyperaccumulator through field investigation of the manganese mine in Quanzhou, and its manganese tolerance and hyperaccumulation was verified by nutrient solution culture experiment. Besides, Mn enrichment mechanisms of Polygonum Pubescens Blume was discussed by means of studying its physiological response to stress of manganese and chemical speciation and distributioncharacteristics of manganese in it. Moreover, the plant was planted in Mn-contaminated soil to investigate its accumulation of Mn. Also, Polygonum Pubescens Blume was interplanted with economic crops in soil collected from wasteland of manganese mine to investigate their remediation effect to the soil. The following results were obtained from these studies.
     Polygonum Pubescens Blume has high tolerance to manganese, and it can hyperaccumulating Mn from its grow medium, which show that it is a Mn hyperaccumulator. Mn contents in its organs are leaf> stem> root. With the maximum Mn concentration in leaf reaching1.66×104mg/kg, the plant grew well on Mn mine wasteland of Guangxi with Mn concentration being as high as2.5×105mg/kg. Under hydroponic conditions, with the Mn concentration in the media increasing, the manganese concentration in the organs of Polygonum Pubescens Blume increased. When the Mn concentration in the solution was1000μmol/L, the Mn concentration in leaf reached more than10000mg/kg. When the Mn concentration in the solution was8000μmol/L, the Mn concentration in stem reached more than10000mg/kg. The results of dynamic absorption experiment showed that Polygonum Pubescens Blume has strong absorption of Mn. After Mn was absorbed to its roots, it could be transferred to and stored in the aerial parts, but this process needed a certain amount of time. At first (0-4h), Mn contents in roots was bigger that those in stems and leaves. At about32h, Mn content in the plants showed the characteristics:leaf>stem>root.
     The results of physiological and biochemical experiments showed that chlorophyll content, contents of cell membrane permeability and MDA in Polygonum Pubescens Blume leaves had no significant difference compared with the control when Mn treatment concentration was not more than5000μmol/L, which suggested that cell membrane was not significantly poisoned. When manganese concentrations was as high as8000μmol/L, contents of chlorophyll content decreased, cell membrane permeability and MDA increased significantly. Considering resistance to oxidative stress effects, the resluts of our experiments showed that POD and SOD enzyme activity increased along with increasing concentration of Mn, which suggested that the two enzymes had the effect of scavenging active oxygen radical. CAT activity did not changed significantly, indicating that CAT was not the key enzyme of removing H2O2under the stress of Mn.
     The results of extraction experiments by using different extractants showed that water-extractable Mn and NaCl-extractable Mn predominated in stems of Polygonum Pubescens Blume, and water-extractable Mn, NaCl-extractable Mn and HCl-extractable Mn predominated in its roots and leaves. With the Mn supply increasing, the percentage of Water-extractable Mn decreased and the percentage of HCl-extractable and NaCl-extractable Mn increased in the roots, and Water-extractable and HCl-extractable Mn increased in the leaves. Considering the subcellular level distribution of Mn, the results of our experiments showed more than90%of total Mn was bound to cell wall and soluble fraction in the plant. Leaf was the key organ of Polygonum Pubescens Blume in which the Mn content was the highest. Under the stress of different Mn treatment concentration, Mn content in cytoplasmic soluble substances (including vacuoles) were the highest with the distribution proportion of55.92%-63.09%, which followed by that in cell wall with the distribution proportion of31.01%-35.50%. So, the vacuole and cell wall was the main position where the majority of Mn stored. The results of experiments also confirmed that.
     The results of soil culture experiments proved again that Polygonum Pubescens Blume has strong tolerance and accumulation ability of Mn. The plants grew well in three kinds of soil. Their biomass had no significant differences, and all of their translation coefficients of Mn were greater than1. The results of Mn gradient experiments with the soil collected from the biological garden of Guangxi normal university showed that Mn contents in Polygonum Pubescens Blume increased with the increaseing concentration of Mn in soil, and all of the biological enrichment coefficients and the translation coefficients were greater than1. The Mn content in aerial parts of the plants were more than10000mg/kg when the Mn concentration in soil was1000mg/kg, which achieved the standard of Mn hyperaccumulator. Adding Ascorbic Acid could improve the tolerance of Polygonum Pubescens Blume that it was still alive in the soil with Mn concentration being5000mg·kg-1. Adding Ascorbic Acid of lower concentrations could increase the Mn translocation amount of the plant from the Mn-contaminated soil, but higher concentration showed restrictive effect.
     Polygonum Pubescens Blume and economic crops were interplanted in the soil which was collected from the wasteland of a Mn mine of Quanzhou. The results showed that Mn absorption capacity of Polygonum Pubescens Blume was inhibited when it was interplanted with soybean. The biomass of Polygonum Pubescens Blume increased,but its Mn accumulation did not significantly change. Both biomass and Mn accumulation of Polygonum Pubescens Blume increased when it was interplanted with corn, with its Mn uptake increased by208.4%. From above results, it was visible that interplanting Polygonum Pubescens Blume with corn was ideal for remediating Mn-contaminated soil.
引文
Agegnehu G, Ghizaw A, Sinebo W. Yield performance and land use efficiency of barley and faba bean mixed cropping in Ethiopian highlands [J]. European. Journal of Agronomy,2006,25:202-207.
    Allen DL, Jarrell WM. Proton and copper adsorption to maize and soybean root cell walls [J]. Plant Physiology,1989,89(3):823-832.
    Aydinalp C, Marinova S. Distribution and forms of heavy metals in some agricultural soils [J]. Polish Journal of Environmental Studies,2003,12(5):629-633.
    Baker A J M. Metal tolerance [J]. The New Phytologist,1987,106(1):93-1111.
    Baker A J M., Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry [J]. Biorecovery,1989,1(2):81-126.
    Baker A J M, McGrath S P, Sidoli C M D, et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulation plants [J]. Resources, Conservation and Recycling, 1994,11:41-49.
    Baker A J M, McGrath S P, Reeves R D, et al. Metal hyperaccumulator plants:a review of the ecology and physiology of biological resource for phytoremediation of metal-polluted soils. In:Terry N and Banelos G (Eds), Phytoremediation of Contaminated Soil and water. CRC Press LLC, Boca Raton Florida,1999, PP.85-107.
    Bhatia N P, Walsh K B, Baker A J M. Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. Journal of Experimental Botany,2005,56(415):1343-1349.
    Bidwell S D, Batinnoff G N, Woodrow I E, et al. Hyperacccumulation of manganese in the rainforest tree Austramyrtus bidwillii (Myrtaceae) from Queensland, Australia [J]. Functional Plant Biology,2002, 29(7):899-905.
    Blaylock M J, Salt D E, Dushenkov S, et al. Enhanced accumulation of Pb in India Mustard by soil-applied chelating agents [J]. Environmental Science and Technology,1997,31(3):860-865.
    Blarney F P C, Joyce D C, Edwards D G, et al. Role of trichomes in sunflower tolerance to manganese toxicity [J]. Plant and Soil,1986,91(2):171-180.
    Boominathan R, Doran PM. Ni-induced oxidative stress in roots of the Ni hyperaccumulator Alyssum bertolonii [J]. New Phytologist,2002,156(2):205-215.
    Bradshaw A D, Chadwick M J. The restoration of land:the ecology and reclamation of derelict and degraded land [M]. Oxford:Blackwell Science Publications,1980.
    Broadhurst C L, Chaney R L, Angle J S, et al. Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale [J]. Plant and Soil,2004,265(1-2):225-242.
    Brooks R R. Plants that hyperaccumulate heavy metals [M]. Wallingford:CAB International,1998.
    Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants [J]. Journal of Geochemical Exploration,1977,7:49-57.
    Brown S L, Chaney R L, Angle J S, et al. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution [J]. Soil Science Society of America Journal,1995,59(1): 125-133.
    Cakmak I, Horst W J. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activites in root tip of soybean [J]. Physiol Plantarum,1991,83:463-468.
    Cao X, Ma L Q, Tu C. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.) [J]. Environmental Pollution,2004,128:317-325.
    De la Rosa-Perez D A, Teutli-Leon M M M, Ramirez-Islas M E. Electrorremediacion de suelos contaminados, una revision tecnica para su aplicacion en campo [J]. Revista Internacional De Contamination Ambiental Mexico,2007,23(3):129-138.
    Daellenbach G G, Kerridge P C, Wolfe M S, et al. Plant productivity in cassava based mixed cropping systems in Colombian hillside farms [J]. Agriculture, Ecosystems and Environment,2005,105(4): 595-614.
    De Vos H R, Schat H, De Waal M A M, et al. Increased risistance to copper-induced damage of the root cell plasmolemma in copper tolerant Silene cucubalus [J]. Physiologia Plantarum,1991,82(4):523-528.
    Dermont G, Bergeron M, Mercier G, et al. Soil washing for metal removal:A review of physical/chemical technologies and field applications [J]. Journal of Hazardous Materials,2008,152(1):1-31.
    Dhindsa R S, Dhindsa P P, Reid D M. Leaf senescence and lipid peroxidation:effects of some phytohormones and scavengers of free racdicals and singlet oxygen [J]. Physiologia Plantarum,1982, 56(4):456-457.
    Ebbs S, Lau I, Ahner B, et al. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescen [J]. Planta,2002,214(4):635-640.
    Erikson KM, Aschner M. Manganese neurotoxicity and glutamate_GABA interaction [J]. Neurochemistry International 2003;43:475-80.
    Evangelou M W H, Ebel M, Schaeffer A. Chelate assisted phytoextraction of heavy metals from soil: Effect, mechanism, toxicity, and fate of chelating agents [J]. Chemosphere,2007,68(6):989-1003.
    Fecht- Christoffers M M, Maier P, Horst W. Apoplastic peroxidases and ascorbate are involved in manganies toxicity and tolerance of Vigna unguiculata [J]. Physiologia Plantarum,2003,117:237-244.
    Fu J, Huang B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress [J]. Environmental and Experimental Botany,2001,45(2):105-114.
    Gabbrielli R, Mattioni C, Vergnano O. Accumulation mechanisms and heavy metal tolerance of a nickel hyperaccumulator [J]. Journal of Plalnt Nutrition,1991,14(10):1067-1080.
    Gonzalez A, Steffen K L, Lynch J P. Light and excess manganese [J]. Plant Physiol,1998,118(2):493-504.
    Griffiths R A. Soil-washing technology and practice [J]. Journal of Hazardous Materials,1995,40(2): 175-189.
    Huang J W, Chen J, Berti W R. Phytoremediationof lead-contaminated soils:role of synthetic chenlates in lead phytoextraction [J]. Environmental Science and Technology,1997,31(3):800-805.
    Hyaens R J. Ion exchange Properties of roots and ionic interactions within the root apoplasm:Their role in ion accumulation by Plants [J]. The Botanical Review,1980,46(1):75-99.
    Kelly P C, Brooks R R, Dilly S, et al. Preliminary observtation on the ecology and plant chemistry of some Nickel- accumulating plants from New Caledonia [J]. Proceedings of the Royal Society of London,1975,189,69-80.
    Kramer U, Grime G W, Smith J A C, et al. Micro-PIXE as a technique for studying nickel localizaiton in leaves of the hyperaccumulator plant Alyssum lesbiacum [J]. Nuclear Instruments and Methods in Physics Research B,1997,130(1-4):346-350.
    Kramer U, Pickering IJ, Prince RC, et al. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species [J]. Plant Physiologists,2000,122(4): 1343-1353.
    Lasat M M. Phytoextractionof toxic metals:A review of biological mechanisms [J]. Journal of Environmental Quality,2002,31(1):109-120.
    Lena Q M. A fern that hyperaccumulates arsenic [J]. Nature,2001,409(3):579.
    Levy B S, Nassetta W J. Neurologic effects of manganese in humans:A review [J]. International Journal of Occupational and Environmental Health,2003,9(2):153-163.
    Li M S, Luo Y P, Su Z Y. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, south China [J]. Environmental Pollution 2007,147:168-175.
    Lolkema P C, Donker M H, Schouten A J, et al. The possible role of metallothioneins in copper tolerance of Silence cucubalus [J]. Planta,1984,162:174-179.
    Ma G, Garbers-Craig A M. A review on the characteristics, fromation mechanisms and treatment processes of Cr (VI) containing pyrometallurgical wastes [J]. Journal of South African Institute of Mining and Metallurgy,2006,106(11):753-763.
    Maenpaa K A, Kukkonen J V K, Lydy M J. Remediation of heavy metal- contaminated soils using phosphorus:evaluation of bioavailability using an earthworm bioassay [J]. Archives of Environmental Contamination and Toxicology,2002,43(4):389-398.
    Maitani T. The composition of metals bound to class III metallothionein (phytochelation and itsdesglycyl peptide) induced by various metals in root cultures of Rubia tinctorum [J]. Plant Physiology,1996, 110(4):1145-1150.
    Marschner H. Mineral nutrition of higher plants [m]. Academic Press,1995. San Diego. CA. USA.
    Meharg A A. The role of the plasmalemma in metal tolerance in angiosperms [J]. Physiologia Plantarum, 1993,88(1):191-198.
    Memon A R, Chino M, Takeoka Y, et al. Distribution of manganese in leaf tissues of manganese accumulator:Acanthopanax sciadophylloides as revealed by electron probe X-ray microanalyzer [J]. Journal of Plant Nutrition,1980,2(4):457-476.
    Memon A R adn Yatazawa M. Chemical nature of manganese in the leaves of manganese accumulator plants [J].Soil Science and Plant Nutrition,1982,28(3):401-412.
    Memon A R, Yatazawa M. Nature of manganese complexes in Manganese accumulator plant-Acanthopanax sciadophylloides [J]. Journal of Plant Nutrition,1984,7(6):961-974
    Mishra S, Srivastava S, Tripathi R D, et al. Phytochelation synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L [J]. Plant Physiology and Biochemistry,2006,44(1):25-37.
    Mitchell L G, Grant C A, Racz G J. Effect of nitrogen application on concentration of cadmium and nutrientions in soil solution and in durum wheat [J]. Canadian Journal of Soil Science,2000, 80(1):107-115.
    Modaihsh A S, Al-Sewailem M S, Mahjoub M O. Heavy metals content of commercial inorganic fertilizers used in the kingdom of Saudi Arabia. Agricultural and Marine Sciences,2004,9(1):21-25.
    Molone C, Koeppe D E, Miller R J. Localization of lead accumulation by corn plants [J]. Plant Physiol, 1973,3:388-394.
    Murphy A, Taiz L. A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis (Ecotypic variation and copper-sensitive mutants) [J]. Plant Physiology,1995,108(1):29-38.
    Murray B, Mcbride M B. Cadmium uptake by crops estimated from soil total Cd and pH [J]. Soil Science, 2002,167(1):62-67.
    Nnishizono H, Ichikawa S, Suzike S, et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense [J]. Plant Soil,1987,101:15-20.
    Ni T H and Wei Y Z. Subcellular distribution of cadmium in mining ecotype Sedum alfredii [J]. Acta Bot Sin,2003,45(8):925-9281.
    Oomen R J and Wu J. Functional characterization of Nramp3 and Nramp4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytologist,2009,181(3):637-650.
    Qiu R L, Zhao X, Tang Y T, et al. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. [J]. Chemosphere,2008,74(1):6-12.
    Ramos I, Esteban E, Lucena J J, et al. Cadmium uptake and subcellular distribution in plants of Lactuca sp.Cd-Mn interaction [J]. Plan Sci,2002,162(5):761-767(7).
    Rauser W E. Structure and function of metal chelators produced by plants [J]. Cell Biochem and Biophys, 1999,31:19-48
    Reeves R D., Baker A J M. Metal-accumulating plants [C]. In:Raskin, I., Ensley, B D (Eds.), Phytoremediation of Toxic Metals:Using Plants to Clean up the Environment. John Wiley & Sons, Inc., New York, pp.,2000,193-229.
    Reeves R D., Brooks R R. European species of Thlaspi L. (Cruciferae) as indicators of Ni and Zn [J]. Journal of Geochemical Explortion,1983,18:275-283.
    Richard E S, Krishna R R. Electrokinetically enhanced remediation of hydrophobic organic compounds in soils:a review [J]. Critical Reviews in Environmental Science and Technology,2005,35:115-192.
    Rigola D, Fiers M, Vurro E, et al. The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis [J]. New Phytologist,2006,170:753-766.
    Salido A L, Hasty K L, Lim J M, et al. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea)[J]. International Journal of Phytoremediation,2003,5(2):89-103.
    Salt D E, Blaylock M, Nanda Kummar P B A, et al. Phytoremediation:a noval strategy for the removal of toxic metals from the environment using plants [J]. Blotechnology,1995,13(5):468-474.
    Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard [J]. Plant Physiology,1995,109:1472-1433.
    Shi Q H, Zhu Z J, Xu M, et al. Effects of excess manganese on the antioxidant system in Cucumis sativus L. under two light intensities [J]. Environmental and Experimental Botany,2006,58(1-3):197-205.
    Singh O V, Labana S, Pandcy G, et al. Phytoremediation:an overview of metallic ion decontamination from soil [J]. Applied Microbiology and Biotechnology,2003,61(5-6):405-412.
    Tang S R, Wilke B M, Huang C Y. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People's Republic of China [J]. Plant and Soil,1999,209(2): 225-232.
    Takser L, Mergler D, Hellier G, et al. Manganese, monoamine metabolite levels at birth, and child psychomotor development [J]. Neurotoxicology,2003,24(4):667-674.
    Van Assche F, Clijsters H. Effects of metal on enzyme activity in plant [J]. Plant Cell Environment,1990, 13(3):195-206.
    Vartanian JP, Sata M, Henry M, et al. Manganese cations increase the mutation rate of human immune deficiency virus type 1 ex vivo [J]. Journal of General Virology 1999,80:1983-86.
    Vazquez M D, Poschenrieder C, Barcelo J, et al. Compartment of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens. J & C Presl. Bot Acta,1994,107:243-250.
    Virkutyte J, Sillanpaa M, Latostenmaa P. Electrokinetic soil remediation -critical overview [J]. The Science of Total Environment,2002,289(1-3):97-121.
    Weber M, Harada E, Vess C, et al. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors [J]. The Plant Journal,2004,37:269-281.
    Wei S H, Zhou Q X, Mathews S. A newly found cadmium accumulator- Taraxacum mongolicum [J]. Journal of Hazardous Materials,2008,159(2):544-547.
    Wei S H, Zhou Q X, Saha U K, et al. Identification of a Cd accumulator Conyza Canadensis [J]. Journal of Hazardous Materials,2009,163(1):32-35.
    Wei W and Cai T Y. The Thlaspi caerulescens homologue TcNramp3 is capable of divalent cation transport [J]. Molecular Biotechnology,2009,41(1):15-21.
    Whiting S N, de-Souza M P, Terry N. Phizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens [J]. Environmental Science & Technology,2001,35:3144-3150.
    Willekens H, Channongool S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plant [J].The EMBO Joural,1997,16(16):4806-4816.
    Wong M H. Ecological restoration of mine degraded soils, with emphasis on metal contaminted soils [J]. Chemosphere,2003,50:775-780.
    Wu Q T, Hei H, Wong J W C. Co-cropping for phytoseparation of zinc and potassium from sewage sludge [J]. Chemosphere,2007,68(10):1954-1960.
    Xu X H, Shi J Y, Chen Y X, et al. Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae) [J]. Plant and Soil,2006,285(1-2):323-331.
    Xue S G, Chen Y X, Baker A J M, et al. Manganese uptake and accumulation by tow populations of Phytolacca acinosa [J]. Water Air & Soil Pollution,2005,160(1):3-14.
    Yang S X, Deng H, Li M S. Manganes uptake and accumulation in a woody hyperaccumulator, Schima superba [J]. Plant Soil and Environment,2008,54(10):441-446.
    Yang X E, Long X X, Ni W Z, et al. Wedum alfredii H:A new Zn hyperaccumulating plant first found in China [J]. Chinese Science Bulletin,2002,47(19):1634-1637.
    Yang X E, Long X X, Ni W Z, et al.. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid and compost [J]. International Journal of Phytoremediation, 2005,7(1):69-83.
    Zhou Q X, Wei S H, Zhang Q R. Ecological Remediation [C]. China Environmental Science Press, Beijing, China,2006.
    蔡固平,葛晓霞,曾光明.黄兴镇硫酸锰企业污染调查与评价[J].中国环境监测,2003,19(4):56-59.
    陈世宝和华珞.有机质在土壤重金属污染治理中的应用[J].农业环境和发展,1997,14(3):26-29.
    陈同斌,阎秀兰,廖晓勇等.蜈蚣草中砷的亚细胞分布于区隔化作用[J].科学通报,2005,50(24):2739-2744.
    崔妍,丁永生,公维民,等.土壤中重金属化学形态与植物吸收的关系[J].大连海事大学学报:自然科学版,2005,31(2):59-63.
    付善民,周永章,赵宇,等.广东大宝山铁多金属矿废水对河流沿岸土壤的重金属污染[J].环境科学,2007,28(4):805-812.
    黑亮,吴启堂,龙新宪,等.东南景天和玉米套种对Zn污染污泥的处理效应[J].环境科学,2007,28(4):852-858.
    黄长干,付凌,梁英,等.紫鸭跖草细胞中铜的分配和化学形态特征研究[J].安徽农业科学,2008,36(33):14499-14502.
    黄启飞,高定,丁德蓉,等.垃圾堆肥对铬污染土壤的修复机理研究[J].土壤与环境,2001,1(3):176-180.
    侯福林.植物生理学实验教程[M].北京:科学出版社,2004.
    胡宏韬,程金平.土壤锌污染修复实验研究[J].环境科学与技术,2009,23(10):53-56,102.
    蒋成爱,吴启堂,吴顺辉,等.东南景天与不同植物混作对土壤重金属吸收的影响[J].中国环境科学,2009,29(9):985-990.
    李法云,胡伟滨.辽宁省典型的土壤污染问题及其防治对策[J].环境保护与循环经济.2008,6:43-44,51.
    李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制[J].应用生态学报,2003,14(4):627-631.
    廖晓勇,陈同斌,阎秀兰,等.提高植物修复效率的技术途径与强化措施[J].环境科学学报,2007, 27(6):881-893.
    聂发辉.关于超富集植物的新理解[J].生态环境,2005,14(1):136-138.
    刘开坤,韩立岩.我国污水灌溉的发展现状及对策[J].现代农业科技,2007,22:213-215.
    刘磊,肖艳波.土壤重金属治理与修复方法研究进展[J].长春工程学院学报,2009,10(1):73-78.
    刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)——一种新的超富集植物[J].科学通报,2003,48(19):2046-2048.
    刘鑫,雷宏军,朱端卫.变动氧化还原状况下酸性土壤中活性锰的变化[J].土壤学报,2008,45(4):734-739.
    龙安华,刘建军,倪才英,等.贵溪冶炼厂周边农田土壤重金属污染特性及评价[J].土壤通报,2006,37(6):1212-1217.
    陆小成,黄星发,程炯佳,等.模拟土壤组分高岭土和蒙脱石中Cu(Ⅱ)污染的电动修复研究[J].中国科技论文在线2007,2(8):577-581.
    罗春玲,沈振国.植物对重金属的吸收和分布[J].植物学通报,2003,20(1):59-66.
    骆永明.污染土壤修复技术研究现状与趋势[J].化学进展,2009,21(2/3):558-565.
    麦维军,王颖,梁承邺,等.谷胱甘肽在植物抗逆中的作用[J].广西植物,2005,25(6):570-575.
    孙琴,倪吾钟,杨肖娥.超积累植物体内的小分子螯合物质及其生理作用[J].广东微量元素科学,2001,8(5):1-8.
    汤叶涛,仇荣亮,曾晓雯,等.一种新的多金属超富集植物——圆锥南芥[J].钟山大学学报(自然科学版).2005,44(4):135-136.
    铁柏清,袁敏,唐关珍.美洲商陆(Phytolacca Americana L.)——一种新的Mn积累植物[J].农业环境科学学报,2005,24(2):340-343.
    王宝山,邹琦.质膜转运蛋白及其与植物耐盐性关系研究进展[J].植物学通报,2000,17(1):17-26.
    王华,唐树海,廖香俊等.锰超积累植物——水蓼[J].生态环境,2007,16(3):830-834.
    王激清,茹淑华,苏德纯.印度芥菜和油菜互作对各自吸收土壤中难溶态镉的影响[J].环境科学学报,2004,24(5):890-894.
    王堪甲,周振立.西安市污灌区农业生态环境问题及解决途径[J].农业环境保护,1995,14(2):89-91.
    王陆军,朱恩平.秦岭铅锌矿冶炼厂区周边土壤重金属分布特征研究[J].宝鸡文理学院学报(自然科学版),2008,28(2):150-152.
    王新,吴燕玉.各种改性剂对重金属迁移、积累影响的研究[J].应用生态学报,1994,5(1):89-94.
    王艳红,龙新宪,刘洪彦,等.两种生态型东南景天套种对其生长和吸收土壤中Zn的影响[J].华南农业大学学报,2007,28(3):6-10.
    魏树和,周启星,王新.一种新发现的镉超富集植物龙葵(Solanum nigrum L.) [J].科学通报,2004,49(24):2568-2573.
    卫泽斌,吴启堂,龙新宪.利用套种和混合添加剂修复重金属污染土壤[J].农业环境科学学 报,2005,24(6):1262-1263.
    韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
    席先国,徐争启,滕彦国,等.攀枝花钒钛磁铁矿区土壤重金属地球化学特征及污染评价[J].矿物岩石地球化学通报,2007,26(2):127-131.
    谢飞,王宏镔,王海娟,等.砷胁迫对不同砷富集能力植物叶片抗氧化酶活性的影响[J].农业环境科学学报,2009,28(7):1379-1385.
    许超,夏北成,何石媚,等.大宝山矿山下游地区稻田土壤重金属含量特征[J].中山大学学报,2008,47(3):122-127.
    徐晟徽,郭书海,胡筱敏,等.沈阳张士灌区重金属污染再评价及镉的形态分析[J].应用生态学报,2007,18(9):2144-2148.
    徐向华,施积炎,陈新才,等.锰在商陆叶片的细胞分布及化学形态分析[J].农业环境科学学报,2008,27(2):515-520.
    薛生国,陈英旭,骆永明,等.商陆(Phytolacca acinosa Roxb.)的锰耐性和超积累[J].土壤学报,2004,41(6):889-895.
    薛生国,叶异,周菲,等.锰超富集植物垂陆商陆(Phytolacca Americana L.)的认定[J].生态学报,2008,28(12):6344-6347.
    闫研,李建平,张学洪.超富集植物李氏禾对铬诱导的氧化胁迫响应[J].生态环境,2008,17(4):1476-1482.
    严重玲,付舜珍,方重华,等.Hg、Cd及其共同作用对烟草叶绿素含量及抗氧化酶系统的影响[J].生态学报,1997,17(5):488-491.
    杨明杰.海州香薷对铜的超积累研究[D].浙江大学,博士学位论文.2001.
    杨胜香,李明顺,李艺,等.广西平乐锰矿区土壤、植物重金属污染状况与生态恢复研究[J].矿业安全与环保,2006,33(1):21-23.
    杨天周,EDTA对污染土壤中金属解吸的影响[J].污染防治技术,2008,21(3):18-21,107.
    杨心乐,王桂兰,张忠诚.锰与人体健康[J].医学综述,2006,12(18):1134-1136.
    杨学习,戴文涛,陈晖,等.抗氧化系统在蜈蚣草细胞砷解毒机制中的作用[J].应用与环境生物学报,2010,16(4):453-456.
    用植物“吃”掉土壤中重金属不再是假设[J].北京农业,2010,1月中旬刊:53.
    于方明,汤叶涛,周小勇,等.镉在圆锥南芥(Arabis paniculate Franch)中的亚细胞分布及化学形态[J].中山大学学报(自然科学版),2007,46(6):88-92.
    翟丽梅,陈同斌,廖晓勇,等.广西环江铅锌矿尾砂坝坍塌对农田土壤的污染及其特征[J].环境科学学报,2008,28(6):1206-1211.
    张宝贵.蚯蚓与微生物的相互作用[J].生态学报,1997,17(5):556-560.
    张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):212-218.
    赵晶,范必威,武仕忠.攀枝花市攀钢工业区土壤重金属污染特征及评价[J].四川环境,2007,26(3):67-70.
    赵中秋,崔玉静,朱永官.菌根和根分泌物在植物抗重金属中的作用[J].生态学杂志,2003,22(6):81-84.
    中国农业科学院上海植物生理研究所.现在植物生理实验指导[M].上海:上海科学技术出版社.
    中国科学院中国植物志编辑委员会.中国植物志,第二十五卷,第一分册[M].科学出版社,1998.
    周建民,党志,司徒粤,等.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报,2004,23(6):1172-1176.
    周建民,党志,陶雪琴,等.NTA对玉米体内Cu、Zn的积累及亚细胞分布的影响[J].环境科学,2005,26(6):126-130.
    周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    朱长才,朱国兴.锰对接触男工性激素的影响[J].中国公共卫生,1999,15(1):63-64.
    朱丽霞.生物学中的电子显微镜技术[M].北京:北京大学出版社,1983.
    朱荫湄,周启星.土壤污染与我国农业环境保护的现状、理论和展望[J].土壤通报,1999,30(3):132-135.
    朱志敏,熊述清,陈家斌等.拉拉铜矿区土壤重金属含量及其污染特征[J].地球与环境,2007,35(3):261-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700