单级R5法ClO_2制备工艺及应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用氯酸钠与盐酸反应制备ClO2的单级R5法ClO2发生器由于设备简单、易于操控、安全性好和性价比高等特点而使其成为国内自来水行业替代氯的主要消毒设备之一。
     针对国内单级R5法ClO2发生器效率低的现状和ClO2在消毒应用过程存在的急待解决的一些问题,本文对单级R5法ClO2制备工艺的优化与反应动力学、ClO2发生液的组成与毒性、ClO2投加过程的影响因素、ClO2在水中的衰变规律以及PAC和AsA去除ClO2-的特性等方面进行了研究,以期为单级R5法ClO2发生器的工艺改进、ClO2投加和消毒工艺可靠性与安全性的提高以及消毒副产物ClO2-的有效去除等工作提供参考依据和或理论指导。主要内容如下:
     (1)单级R5法ClO2制备工艺优化研究
     本着对单级R5法ClO2制备工艺整体优化的思路,根据ClO3-/Cl-反应体系各物质相互作用的机理和条件,通过间歇式ClO2制备实验,研究了NaClO3/HCl的配比、反应温度、反应时间和催化剂等因素对NaClO3转化率、ClO2得率及纯度的影响规律,得到的最佳反应条件是:NaClO3与HCl的摩尔比为0.25、温度为50℃、时间为50min及催化剂MnCl2的用量为0.01mol·L-1。进而,利用间歇式ClO2制备实验获得的最佳反应条件,实验分析连续式制备装置的效率,发现连续反应器其效率低的主要原因是:物料混合不均、升温滞后和返混。采用预热预混的原料预处理方式和基于推流式反应器原理设计较大轴径比的反应器,改善了物料在反应器中混合与受热的均匀性,减小了物料的返混作用。结果表明:NaCl3转化率、ClO2得率及其纯度分别可达95%、82%和61%以上比目前文献报道的同类总体最好指标,分别可提高14、11和10个百分点以上。
     (2)单级R5法ClO2制备反应动力学研究
     根据ClO3-/Cl-体系的一般反应机理和NaClO3/HCl体系高酸度反应的特点,用ClO3-和Cl2变化的等量关系对Hong-Lenzi的理论速率方程进行了简化,对动力学参数进行了测定,得到了单级R5法ClO2制备反应的经验速率方程。该速率方程对ClO3-浓度近似为一级和二级的组合;该方程参数较少且易于测定,故便于工程应用。
     (3)ClO2发生液的组成、毒性及其对饮用水消毒的安全性研究
     对ClO2发生液的组成、毒性及其浓度的衰变趋势进行了考察,对ClO2发生液用于饮用水消毒时ClO3-、ClO2-残留量的安全性进行了评价。结果显示:在常规ClO投加量(0.5~2mg·L-1)下,ClO2发生液引入饮用水后的ClO3-和ClO2-的剂量是安全的,但会降低水的pH值;ClO2发生液对小鼠骨髓嗜多染红细胞无致微核作用,对小鼠的急性经口毒性为低毒级;将ClO2发生液稀释1倍以上时,其对小鼠急性经口毒性降为实际无毒级。该研究结果对ClO2发生液投加过程的安全投加量、安全稀释倍数及安全防护等级的设计具有一定指导作用。
     (4)ClO2投加过程影响投加量及消毒效果的因素研究
     通过单级R5法ClO2发生器在常规自来水厂的制水工艺消毒工段的现场实验,研究并得到了进料流量、反应温度和反应停留时间等发生器额定运行参数波动对消毒效果及出厂水水质的影响规律,获得了其运行参数的安全波动范围。通过发生器在模拟管道供水条件下的加药实验,研究了管道水压力对ClO2投加量的影响规律,进而,通过对该规律在实际供水管道中验证实验,考察了ClO2在管道中分散特性及消毒效果,获得了ClO2发生器用于管道带压加药可供参考的工艺参数。
     (5)水中ClO2自身衰变动力学研究
     通过对ClO2在纯水中自身衰变机理的分析和实际产物的测定,建立了ClO2在纯水中自身衰变的速率方程模型,通过研究水温和pH对ClO2衰变速率的影响规律,初步确定了以常温和中性水为基础的速率方程的参数。结果显示,ClO2在纯水中衰变的主要产物是Cl2(或HClO)和ClO3-等,而ClO2-的量较少,不同于在碱性强化条件下的水解产物;ClO2的衰变对ClO2为1级,对H+为-0.155级。可见,ClO在常温、中性或偏酸性的水中比在高温或碱性水中更稳定。
     (6)PAC和AsA对水中ClO2-去除特性研究
     在常规水处理的pH及温度下,通过烧杯搅拌实验对ClO2-在粉末活性炭(PAC)上的等温吸附特性及吸附机理进行研究。用Langmuir和Freundlich模型对等温吸附实验结果进行拟合,考察了吸附的性质及热力学行为;用伪一级、伪二级动力学模型以及颗粒内扩散、液膜扩散模型对吸附动力学实验数据进行分析,探讨了吸附过程的机理及速率控制机制。结果显示:在常规水处理条件下,PAC对ClO2-的吸附是自发、吸热的化学吸附过程,适于吸附的最佳pH为6;吸附等温线更符合Freundlich等温吸附规律,吸附动力学更符合伪二级动力学规律。可见,化学吸附反应是PAC吸附ClO2-速率的主要控制机制。另一方面,在常规水处理条件下,考察了抗坏血酸(AsA)对ClO2-的去除作用以及pH.AsA投加量、反应温度和作用时间等工艺因素对ClO2-去除率的影响规律,得到了AsA去除水中ClO2-的最佳工艺条件为:pH为5.0、温度为30℃.AsA与ClO2-的质量比为5.5和作用时间为25min在此条件下,AsA对水中含量为2~10mg·L-1ClO2-的去除率大于98%,处理后水中ClO2-的含量低于0.02mg-L-1,符合GB5749-2006标准的要求。可见,在上述最佳条件下,AsA对水中的Cl02-具有很好的还原去除效果。
The ClO2generator, using the single-stage-R5-technology based on the reaction of sodium chlorate and hydrochloric acid, has become one of the primary substitutes for chlorine disinfection equipments of drinking water, as being easy to control and with simple structure, high security, and high performance-to-price ratio.
     In view of the low efficiency actualities of domestic ClO2generators based on single-stage-R5-technology and some problems existing in tapwater-disinfection process for ClO2, the following aspects were researched in this paper:optimization of ClO2preparation technics based on single-stage-R5-technology; reaction kinetics of ClO2preparation; composition and toxicity of ClO2solution produced; influences of various factors on dosage, disinfection effect and water quality in ClO2dosing process; self decay law of ClO2in water; and chlorite removal by powdered activated carbon (PAC) and ascorbic acid (AsA) from water. These studies can provide reference methods or theoretical guidance for the works such as:the process modification of ClO2generator based on the single-stage-R5-technology, the perfection of the ClO2dosing and disinfecting technics, and the effective removal of ClO2-from water, and so on.
     The researches of the dissertation are mainly focused on:
     (1) The optimization of ClO2preparation technics based on single-stage-R5-technology
     According to a design of systemic optimization of the ClO2preparation process using single-stage-R5-technology, and based on the mechanism and the interaction conditions of various substances in ClO3-/Cl-reaction system, the batch preparation experiments of ClO2were conduced to explore the effects of such parameters as mole ratio of NaC103to HCl, temperature, reaction time, and catalysts on the NaClO3conversion rate, ClO2yield, and ClO2purity. The optimum conditions obtained are that:the mole ratio of NaClO3to HCl is0.25, the temperature is50℃, the reaction time is50min, and catalyst amount of MnCl2is0.01mol·L-1. Then the continuous preparation experiments of ClO2were performed under the optimum reaction conditions. Based on the analysis of experimental results and flow conditions of the continuous reactor, it was discovered that the low efficiency of continuous reactor mainly resulted from the uneven-mixing of raw materials, the hysteresis of heating up and the back-mixing of raw materials. Finally, by means of the preheating-and-premixing treatment of raw materials and using the larger-axis-diameter-ratio reactor designed according to principle of plug flow reactor, the mixing degree of raw materials and the temperature uniformity in reactor were improved, and the back-mixing of materials was reduced as well. The results show that NaClO3conversion and ClO2yield increase significantly, and NaClO3conversion rate, C102yield and ClO2purity can be up to95%,82%and61%and above, respectively. The values increase14,11and10percentage points respectively than the best results of present literatures.
     (2) Reaction kinetics of the ClO2preparation based on single-stage-R5-technology
     Based on the general reaction mechanism of ClO3-/Cl-system and the characteristics of high acidity reaction system of NaClO3/HCl, the theoretical reaction rate equation derived by Hong-Lenzi was simplified utilizing equivalent substitution of ClO3-for Cl2, then the rate constants were determined by means of kinetic experiments, and the empirical rate equation of this reaction was finally deduced as the formula with mixed-order (combination of the first order and the second order with respect to ClO3-). This formula is convenient for engineering use as the parameters are fewer and easy to measure.
     (3) The composition, toxicity and security for tapwater disinfection of ClO2solution produced
     The composition, toxicity, and concentration decay trends of the produced ClO2solution were determined. The security of the residual amounts of ClO3-and ClO2-contained in this ClO2solution used for drinking water disinfection was evaluated subsequently. The results show that the quantitiies of ClO3-and ClO2-introduced in drinking water accompanying with the disinfection process of produced ClO2solution are safe within the conventional ClO2dosages range of0.5to2mg·L-1, but the pH of treated water would decrease. The produced ClO2solution has no inducing effect on the mice bone marrow polychromatic erythrocytes micronucleus, its acute oral toxicity to mice is low-toxic class, but it is non-toxic class to mice when diluted more than one times. These results have certain instruction significance for the designs of the safe ClO2dosage, safe dilution ratio of ClO2solution produced, and the secure protection class of dosing process.
     (4) Influences of various factors on dosage, disinfection effect and water quality in ClO2dosing process
     By means of the disinfection experiments of the ClO2generator using single-stage-R5-techology in conventional water plant, the effects of such operating parameters of generator as feed flow, reaction temperature and reaction time on sterilizing efficacy and finished water quality were investigated. The corresponding safty-operating parameters with certain range for drinking water disinfection were also obtained. Meanwhile, the influence of pipeline water pressure on ClO2dosage, its distribution characteristics in pipeline water, and disinfection effect of it were investigated as well through an experiment in imitating pipeline, and then these regulations were further verified in practical pipeline water. The referential tephnics-parameters were obtained finally available for ClO2generator dosing with pressure in pipeline water
     (5) Kinetic study of ClO2self-decay in water
     The decay rate equation of ClO2in pure water was established by measuring decay products and analyzing decay mechanism. The rate equation parameters were determined by testing the effects of temperature and pH on the decay rate. The results show that the products of ClO2decay in pure water are mainly as: Cl2(HC10), ClO3-, and few ClO2-, somewhat different from that of ClO2decay in alkaline water. The reaction order of ClO2decay in pure water is1with respect to ClO2, and-0.155with respect to H+. Obviously, ClO2is more stable in acidic or lower temperature water than in neutral, alkalescent, or higher temperature water.
     (6) Chlorite removal performance by powdered activated carbon (PAC) and ascorbic acid (AsA) from water
     Firstly, the isotherms and mechanism of the sorption of ClO2-on PAC from water were studied by using the beaker-stirring experiments under the pH and temperature of conventional water treatment. The sorption Characteristics and thermodynamics were investigated by using Langmuir and Freundlich models to fit and discuss the isotherms. The sorption kinetics data were analyzed by using the models of pseudo first order, pseudo second order, intraparticle diffusion, and film diffusion to recognize the mechanism and rate control steps of the sorption. The results show that the sorption process of chlorite on PAC from water is spontaneous and endothermic with the mechanism of chemisorption. The sorption of chlorite on PAC is most favorable at pH=6. The sorption isotherms are well described by Freundlich model, and the sorption kinetics fits well the pseudo-second-order model. Therefore, the experimental results prove that the chemisorption reaction is the main rate-control mechanism of chlorite sorption by PAC.
     Secondly, the chlorite removal performance by AsA from water and its influencing factors were studied under the conditions of conventional water treatment. The effects of pH, temperature, AsA dosage, and action time on chlorite removal were investigated. The optimal conditions of treatment were obtained as that:pH=5.0, temperature was30℃, reaction time was25min, and mass ratio of AsA to chlorite was5.5. Under the optimal conditions and within the chlorite concentrations of2-10mg·L-1in water, the chlorite removal rates were more than98%. Therefore, the contents of residual ClO2-in treated water can be limited below0.02mg·L-1, in line with the requirement of GB5749-2006.
引文
[1]吴一蘩,高乃云,乐林生.饮用水消毒技术[M].北京:化学工业出版社,2007.
    [2]刘珂,秦晓,韩柏平.美国自来水行业消毒现状和展望[J].江苏环境科技,2007,20(1):65-68.
    [3]黄君礼,吴明松.饮用水二氧化氯消毒技术的现状[J].净水技术,2010,29(4):16-18.
    [4]Rook J J. Formation of haloforms during chlorination of natural waters[J]. Wat. Treat. Exam.,1974, (23):234-242.
    [5]张岚,何涛.二氧化氯饮水消毒技术相关控制标准[J].环境卫生学杂志,2011,1(4):38-40.
    [6]邓瑛,魏建荣,鄂学礼,等.中国六城市饮用水中氯化消毒副产物分布的研究[J].卫生研究,2008,(2):207-209.
    [7]马莹莹,沈幸,龚慧娟,等.饮用水氯化消毒新副产物的研究[J].南京大学学报(自然科学版),2007,04:38-44.
    [8]潘艳秋,姜明基,林英姿.饮用水中氯化消毒副产物的研究现状[J].中国资源综合利用,2010,28(2):31-34.
    [9]Hua G H, David R. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size [J]. Environ. Sci. Technol.,2007,41(9):3309-3315.
    [10]Liang L, Singer P C. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water [J]. Environ. Sci. Technol.,2003, 37(13):2920-2928.
    [11]Richardson S D. Disinfection by-products and other emerging contaminants in drinking water [J]. Trends Anal. Chem.,2003,22(10):666-684.
    [12]Hua G H, Reckhow D A, Kim J. Effect of bromide and iodide ions on the formation and speciation of disinfection byproducts during chlorination [J]. Environ. Sci. Technol.,2006, 40(9):3050-3056.
    [13]Sorlini S, Collivignarelli C. Trihalomethane formation during chemical oxidation with chlorine, chlorine dioxide and ozone of ten Italian natural water [J]. Desalination,2005,176: 103-111.
    [14]Reckhow D A, Singer P C, Malcolm R L. Chlorination of humic materials:By-product formation and chemical interpretations [J]. Environ. Sci. Technol.,1990,24(11):1655-1664.
    [15]Hwang B, Mangus P, Jaakkola J J. Risk of specific birth defects in rola-tion to chlorination and the amount of natural organic matter in the water supply [J]. Am. J. Epidemiol.,2002,156(4):374-382.
    [16]Paskinson A, Barry M J, Roddick F A. et al. Preliminary toxicity assessment of water after treatment with UV-irradiation and UVC/H2O2 [J]. Water Res.,2001,35(15):3656-3664.
    [17]张金松,尤作亮,孙晰,等.饮用水二氧化氯净化技术[M].北京:化学工业出版社,2003.
    [18]梁好,盛选军,刘传胜.饮用水安全保障技术[M].北京:化学工业出版社,2007.
    [19]USEPA. Alternative Disinfectants and Oxidants Guidance Manual:3. OZONE [M/OL]. EPA 815-R-99-014. Washington, D C:EPA's Office of Water,1999[2009-09-26]. http:// www.epa. gov/afewater/mdbp/pdf/alter/chapt_3.pdf.
    [20]张征.饮用水臭氧消毒效果的影响因素[J].中国消毒学杂志,2008,25(5):429-430.
    [21]吴清平,孟凡亚,张菊梅,郭伟鹏.臭氧消毒中溴酸盐的形成、检测与控制[J].中国给水排水,2006,(16):17-20.
    [22]张书芬,王全林,沈坚,等.饮用水中臭氧消毒副产物溴酸盐含量的控制技术探讨水处理技术[J],2011,37(1):34-38.
    [23]曲久辉.饮用水安全保障技术原理[M].北京:化学工业出版社,2007.
    [24]USEPA. Chloramines Q & A's [EB/OL]. EPA 815-B-09-001. Washington, D C:EPA's Office of Water,2009[2009-9-26]. http://www.epa.gov/safewater/disinfection/hloramine/pdfs /all29_q.pdf.
    [25]黄君礼.新型水处理剂—二氧化氯技术及其应用[M].第二版.北京:化学工业出版社,2010.
    [26]刘义安.饮用水二氧化氯消毒技术[J].铁道建筑技术,2006,(增):175-176.
    [27]田春荣.二氧化氯作为饮用水消毒剂的必然趋势[J].化工标准.计量.质量,2001,(6):23-25.
    [28]刘永杰.饮用水二氧化氯消毒测控探究[J].黄河水利职业技术学院学报,2006,18(1):32.
    [29]刘波,黄志明,邵则淮.二氧化氯消毒处理含溴离子水防止溴酸盐产生的研究[J].净水技术,2010,29(3):22-25.
    [30]USEPA. Alternative Disinfectants and Oxidants Guidance Manual:4.Clorine Dioxide [M/OL]. EPA 815-R-99-014. Washington, D C:EPA's Office of Water,1999:4-1 ~ 4-34[2009-09-26]. http://www.epa.gov/safewater/mdbp/word/alter.
    [31]WHO. Guidelines for drinking water quality, Vol.1,3rd edition incorporating 1st and 2nd addenda [S]. Geneva, Switzerland:WHO,2008.
    [32]FAO. Codex General Standard for Food Additives [S/OL]. Rome, Italy:FAO,2009 [2009-12-10]. http://www.codexalimentarius.net/download/standards/4/CXS_192e.pdf.
    [33]王福翔,包训祥,刘锦文,等.注入式二氧化氯发生器:中国,97243232.9[P].1999-11-13.
    [34]包训祥,王福翔,贺启环,等.吸入式二氧化氯发生器:中国,97243233.7[P].1999-11-13.
    [35]叶必雄,王五一,杨林生,等.二氧化氯与氯联合消毒对饮用水中消毒副产物的影响[J].环境化学,2011,30(7):18-22.
    [36]严以强.试谈我国二氧化氯发生技术现状和发展趋势[C]//二氧化氯研究及应用—2010二氧化氯与水处理技术研讨会论文集.香港:香港大元出版社,2010:284-290.
    [37]张国义,袁峰.化学法制备ClO2的几种化学法比较[J].二氧化氯技术资料2009,(1):12-16.
    [38]石海信.二氧化氯合成及消毒过程的绿色化学工艺[J].二氧化氯技术资料,2008,(2):1-2.
    [39]吴明松,黄君礼,鲍立峰,等.复合二氧化氯发生器对饮用水消毒的适用性研究[J].中国给水排水,2009,20(17):106-108.
    [40]贺启环.化学复合二氧化氯发生器的评估和改进[J].中国石油和化学标准与质量.2008,(1):19-24.
    [41]孟岩,宋安坤,徐林林,等.大型水厂二氧化氯应用中的问题及对策[J].哈尔滨商业大学学报(自然科学版),2007,23(2):168-174.
    [42]罗华元,姜渝.复合二氧化氯在饮用水处理应用中的水质安全[J].给水排水,2011,37(2):32-37.
    [43]卢云,乔成忠,陈天朗,等.二氧化氯制备方法及相关产品在我国的研究进展[J].二氧化氯技术资料,2009,(2):13-22.
    [44]Ranieri E, Swietlik J. DBPs control in European drinking water treatment plants using chlorine dioxide:two case studies [J]. Journal of Environmental Engineering and Landscape Management,2010,18(2):85-91.
    [45]Greenwood N N, Earnshaw A. Chemistry of the Elements [M].2nd ed., Oxford: Butterworth-Heinemann,1997:844-849.
    [46]方贤达.氯的含氧化物生产与应用[M].北京:化学工业出版社,2004:124-125.
    [47]Rittmann D D. Impact of Chlorine Dioxide and Chlorite Byproduct on Iron and Manganese Reduction [EB/OL]. Marietta GA, US:Akzo Nobel Eka Chemicals Inc.,2004 [2009-12-10].http://www.mixeddisinfectants.com/Product%20Bulletin%20-%20Fe%20Mn% 20Reduction.pdf.
    [48]Bull R J. Health Effects of Alternate Disinfectants and Their Reaction Products [J]. J. AWWA,1980,72(5):299.
    [49]Aieta E M, Berg J D. A Review of Chlorine Dioxide in Drinking Water Treatment [J]. J. AWWA,1986,78(6):65.
    [50]Deshwal B R, Jin D S, Lee S H. Removal of NO from flue gas by aqueous chlorine dioxide scrubbing solution in a lab-scale bubbling reactor [J]. Journal of Hazardous Materials, 2008,150(3):649-655.
    [51]Ganiev I M, Suvorkina E S, Kabal'nova N N. Oxidation of phenols with chlorine dioxide [J]. Russian Chemical Bulletin, International Edition,2003,52(5):1123-1128.
    [52]Napolitano M J, Green B J, Margerum D W. Chlorine Dioxide Oxidations of Tyrosine, N-Acetyltyrosine, and Dopa [J]. Chem. Res. Toxicol,2005,18(3):501-508.
    [53]LIU Jinquan, HUANG Junli, SU Liqiang, et al. Degradation of anthracene, pyrene and benzo[a]-anthracene in aqueous solution by chlorine dioxide [J]. Science in China Series B: Chemistry,2006,49(6):565-572.
    [54]薛广波.现代消毒学[M].北京:人民军医出版社,2002:382-383.
    [55]Noss C I, Dennis W H, Olivieri V P. Reactivity of Chlorine Dioxide with Nucleic Acids and Proteins[M]//Jolley R L, et al. Water Chlorination:Environmental Impact and Health Effects. Vol.4. Ann Arbor, MI:Ann Arbor Sci. Publ.,1983:1077-1086.
    [56]Olivieri V P, Hauchman F S, Noss C I, et al. Mode of Action of Chlorine Dioxide on Selected Viruses [M]//Jolley R L, et al. Water Chlorination:Environmental Impact and Health Effects. Vol.5. Ann Arbor, MI:Ann Arbor Sci. Publ.,1985:619-634.
    [57]Alvarez M E, O'Brien R T. Mechanism of Inactivation of Poliovirus by Chlorine Dioxide and Iodine [J]. Appl. Envir. Microbiol,1982,44:1064.
    [58]Roller S D, Olivieri V P, Kawata K, et al. Mode of Bacterial Inactivation by Chlorine Dioxide [J]. Water Res.,1980,14(6):635-641.
    [59]Aieta E, Berg J D. A Review of Chlorine Dioxide in Drinking Water Treatment [J]. J. AWWA,1986,78(6):62-72.
    [60]Ridenour G M, Ingols R S. Bactericidal properties of chlorine dioxide [J]. J. AWWA, 1947,39:561-567.
    [61]Scarpino P V, Brigano F A, Cronier S, et al. Effect of particulates on disinfection of enteroviruses by chlorine dioxide [R]. EPA-600/2-79-054. Washington D C:USEPA,1979:56.
    [62]Chen Y S R, Sproul O J, Rubin A J. Inactivation of Naegleria gruberi Cysts by Chlorine Dioxide [J]. Water Res.,1985,19(6):783.
    [63]Liyanage L R J, Finch G R, Belosevic M. Effects of Aqueous Chlorine and Oxychlorine Compounds on Cryptosporidium Parvum Oocysts [J]. Environ. Sci. & Tech.,1997,31(7):1992-1994.
    [64]LeChevallier M W, Arora H, Battigelli D, et al. Chlorine Dioxide for Control of Cryptosporidium and Disinfection Byproducts[C]//Proceedings of 1996 AWWA Water Quality Technology Conference Part II, Boston, Massachusetts, November 17-21. Denver, CO: AWWA,1997.
    [65]Werdehoff K S, Singer P C. Chlorine Dioxide Effects on THMFP, TOXFP and the Formation of Inorganic By-Products [J]. J. AWWA.,1987,79(9):107.
    [66]Dabrowska A, Hordern B K, Nawrock J. Aldehydes formation during water disinfection by ozone and chlorine dioxide[J]. Global NEST Journal,2005,7(1):61-71.
    [67]Richardson S D, Thruston J D, Caughran T V, et al. Identification of New Drinking Water Disinfection by-Products from Ozone, Chlorine Dioxide, Chloramine, and Chlorine[J].Water, Air, & Soil Pollution,2000,123(4):95-102.
    [68]Singer P C. Formation and characterization of disinfection byproducts [M]//Craun G F. Safety of Water Disinfection:Balancing Chemical and Microbial Risks. Washington: International Life Sciences Institute Press,1993:201-220.
    [69]Ivancev-Tumbas I, Dalmacija B. Effects of coagulation processes on aldehydes formation in groundwater treated with common oxidative agents [J]. Water Research,2001, 35(16):3950-3958.
    [70]Clarke S, Bettin W. Chlorine Dioxide Disinfection in the Use of Individual Water Purification Devices[R]. APG, MD:US Army Center for Health Promotion and Preventive Medicine,2006:9.
    [71]Taylor J B, Wohler D W, Amata R. Toxicological profile for chlorine dioxide and chlorite [M/OL]. PB/2004/1007332. Atlanta:Agency for Toxic Substances and Disease Registry (ATSDR),2004:19-27. http://www. atsdr.cdc.gov/toxprofiles/tpl60.html.
    [72]USEPA. Revised Public Notification Handbook [M/OL]. EPA 816-R-09-013. Washington, D.C:EPA's Office of Water,2010:153-154. http://www.epa.gov/safewater/publicnotification/pdfs.
    [73]Lubbers J R, Bianchine J R. Effects of the acute rising dose administration of chlorine dioxide, chlorate and chlorite to normal healthy adult male volunteers [J]. J. environ. Pathol. Toxicol. Oncol.,1984,5:215-228.
    [74]Lubbers J R, Chauhan S, Miler J K, et al. The effects of chronic administration of chlorine dioxide, chlorite and chlorate to normal healthy adult male volunteers [J]. J. environ. Pathol. Toxicol. Oncol,1984,5:229-238.
    [75]Lubbers J R, Chauhan S, Miler J K, et al. The effects of chronic administration of chlorite to glucose-6-phosphate dehydrogenase deficient healthy adult male volunteers [J]. J. environ. Pathol. Toxicol. Oncol.,1984,5:239-242.
    [76]USEPA. Toxicological Review of chlorine dioxide and chlorite [R/OL]. EPA/635/R-00 /007. Washington, D C:EPA's Office of Water,2000:1-26. http://www.epa.gov/iris.
    [77]USEPA. Chlorine dioxide toxicology disciplinary chapter [R/OL]. EPA-HQ-OPP-2006-0328. Washington, D C:Office of Pesticide Programs Antimicrobials Division,2006:3-24. http://www.epa.gov/iris.
    [78]Exner-Freisfeld H, Kronenberger H, Meier-Sydow J, et al. Intoxication from bleaching with sodium chlorite [J]. The toxicology and clinical course,1986, 111(50):1927-1930.
    [79]Meggs W J, Elsheik T, Metzger W J, et al. Nasal pathology and ultrastructure in patients with chronic airway inflammation (RADS and RUDS) following an irritant exposure [J]. Clin. Toxicol, 1996,34:383-396.
    [80]黄鸿飞.一起室内游泳馆二氧化氯急性中毒事故报告[J].职业与健康,2001,17(5):76-77.
    [81]温尔文,卢启冰,覃静.一起二氧化氯急性中毒事故调查报告[J].中国职业医学,2004,31(2):60-61.
    [82]崔秀波.二氧化氯中毒事故一起[J].中华劳动卫生职业病杂志,2005,23(6):483.
    [83]梁坚忠.一起二氧化氯消毒剂急性中毒流行病学调查[J].现代预防医学,2006,33(8):1375-1376.
    [84]赖荣德,梁子敬.二氧化氯吸入致急性肺损伤救治1例并文献复习[J].中国急救医学,2007,27(1):94-95.
    [85]Roensch L F, Richard H T, Dick H. Method for generating chlorine dioxide:US, 6436345[P].2001-03-23.
    [86]于祚斌,李君文,蔡心培,等.一种产二氧化氯袋及其生产方法:中国,93121244.8[P].1995-07-05.
    [87]张田,李永丹,肖亚,等.一元片剂二氧化氯消毒剂的制备方法:中国,03137084.5[P].2005-01-19.
    [88]陈亚鹏,师俊杰,霍鹏.稳定固体二氧化氯多层片的研究[J].日用化学品科学,2008,31(8):14-16.
    [89]刘南,熊鸿燕,李秀安,等.一种固体二氧化氯消毒相关性能的研究[J].中国消毒学杂志,2008,25(1):19-22.
    [90]李新杰,唐淑娟,于文敦.三元一体包装C102消毒粉剂的制备及性能研究[C]//黄志明.二氧化氯研究与应用.香港:大元出版社,2003:164-166.
    [91]李新杰,唐淑娟,包训祥.固体三元稳态C102杀菌剂稳定性、腐蚀性及杀菌消毒特性研究[J].工业水处理,2002,(6):32-35.
    [92]李新杰,唐淑娟,等.固体三元稳态二氧化氯急性经口、遗传及蓄积毒性的研究[J].工业水处理,2002,22(4):45-47.
    [93]程仕勇,晋日亚.中国二氧化氯固体制剂的研究与发展[J].无机盐工业,2011,42(2):7-9.
    [94]Deshwal B R, Lee H K. Manufacture of Chlorine Dioxide from Sodium Chlorate:State of the Art[J]. J. Ind. Eng. Chem.,2005,11(3):330-346.
    [95]李俊文.二氧化氯生产工艺及其发展[C]//2003全国水处理技术研讨会论文集.大连:全国二氧化氯协作组,2003:41-49.
    [96]Rapson W H, Hawkesbury M W. Method for Producing Chlorine Dioxide:US,2481240 [P].1949-09-06.
    [97]Hoekje H H, Welch C N, Process for the Production of Chlorine Dioxide:US,3864457 [P].1975-02-04.
    [98]Rapson W H. Chlorine Dioxide Production:US,2863722[P].1958-12-9.
    [99]Rapson W H. Production of Chlorine Dioxide:US,2936219[P].1960-05-10.
    [100]Rapson W H. Production of Chlorine Dioxide:US,3789108[P].1974-01-29.
    [101]包训祥,贺启环,丁海清.二氧化氯的制备方法及其发生装置:中国,94111378.7[P].1998-03-05.
    [102]Fuller W A, Schulz A C, Rosen H J. Chlorine Dioxide Generating System:US, 3816077[P].1974-06-11.
    [103]Winfield J D, Scribner I O, Mc Gilvery J D. Manufacture of Chlorine Dioxide, Chlorine and Anhydrous Sodium Sulphate:US,3864456[P].1975-02-04.
    [104]Day G A, Fenn E F, Process Producing Chlorine Dioxide:US,2484402[P].1946-10-11.
    [105]Winfield J D. Production of Chlorine Dioxide:US,3929974[P].1975-12-30.
    [106]ERCO. Chlorine Dioxide Technology[EB/OL]. Toronto, Canada:ERCO Worldwide, 2006 [2009-12-25]. http://www.ercoworldwide.com/products_chlorinedioxide.asp.
    [107]施来顺,谢朝仁,刘升沂,等.新型含氯消毒剂发生装置:中国,93111202.8[P].1996-10-12.
    [108]包训祥,贺启环,丁海清.二氧化氯的制备方法及其发生装置:中国,94111378.7[P].1998-03-05.
    [109]Kesting E E. Continuous Method and Apparatus for the Production of Chlorine Dioxide: US,2664341 [P].1953-12-29.
    [110]Hatherly D G Production of Chlorine Dioxide:US,3925540[P].1975-12-09.
    [111]Aker Chemetics. Integrated Chlorine Dioxide Technology[EB/OL].Vancouver,Canada: Aker Solutions Canada Inc.,2009[2009-12-25]. http://www.akersolutions.com/chemetics.
    [112]齐秀乐,任祥美.综合R6法二氧化氯生产工艺及其设备的比较[J].造纸化学品2009,21(3):18-21.
    [113]Julien A, Rogers S M. Production of Chlorine Dioxide:US,2881052[P].1959-04-07.
    [114]Swindells R, Fredette M C J. High Efficiency Production of Chlorine Dioxide by Solvay Process:US,4081520[P].1978-05-28.
    [115]Norell M. Process for Production of Chlorine Dioxide:US,4770868[P].1988-09-13.
    [116]陈安江,陈贞标.R8/P10法二氧化氯制备技术的特点[J].生产实践,2010,31(2):63-66.
    [117]Scribner H C, Fredette M C J, Bechberger E J. Metathesis of Acidic By-Product of Chlorine Dioxide Generating Apparatus:US,5205995[P].1993-04-27.
    [118]Stockburger P. What you need to know before buying your next chlorine dioxide plant[J]. Tappi Journal.1993,76(3):99-104.
    [119]Edward C S. Manufacture of chlorine dioxide:US,2332181[P].1943-10-19.
    [120]Sprauer J W. Production of chlorine dioxide:US,2833624[P].1958-05-06.
    [121]Engstrom J, Norell M. Process for the production of chlorine dioxide:US,5091166[P]. 1992-02-25.
    [122]Engstrom J, Falgen H. Process for the production of chlorine dioxide:US,5091167[P]. 1992-02-25.
    [123]陈赞.过氧化氢法制备环境友好氧化剂二氧化氯工艺及反应动力学研究[D].广州:华南理工大学,2003.
    [124]吴玉华.二氧化氯生产发展及应用[J].中国氯碱,1999,(3):10-12.
    [125]Rapson W H. The mechanism of formation of chlorine dioxide from sodium chlorate [J]. Tappi.,1956,39(8):554-556.
    [126]Rapson W H.A continuous process for the manufacture of chlorine dioxide [J]. P&P. Mag. Can.,1954:92~96.
    [127]Hong C, Rapson W H. Kinetics of disproportion of chlorous acid. [J] Can. J. Chem. Eng.,1968,46:2053-2060.
    [128]Rapson W H, Fredette M C J. Small Scale Generation of Chlorine Dioxide for water treatment:US,4534952[P].1985-08-13.
    [129]Tenney J, Crump B, Ernst W R, et al. Froth reactor for small-scale generation of chlorine dioxide[J]. AI. Chem. J.,1997,43(8):2148-2152.
    [130]Lenzi F, Rapson W H. Further studies on the mechanism of formation of chlorine dioxide [J]. P&P Mag. Can.,1962(9):442-448.
    [131]Rapson W H.A new process for the manufacture of chlorine dioxide[J]. Tappi. J.,1958, 41(4):181.
    [132]温和瑞,余建平.制备二氧化氯的新方法.现代化工,1999,19(11):272-291.
    [133]胡晓,黄桂英,程望.甲酸还原制备稳定性C102研究[J].河北化工,2000,(1):392-411.
    [134]彭清静,王继徽.硫铁矿还原氯酸钠制二氧化氯的研究[J].无机盐工业,2002,34(1):102-111.
    [135]彭清静,付伟旨.氯酸钠—硫磺法制二氧化氯的研究[J].化学世界,2002,43(7):3422-3441.
    [136]陈天朗,吴珧萍,卢云.尿素还原法生产纯二氧化氯新工艺研究[J].精细化工,2007,24(5):493-495.
    [137]黄君礼,鲁秀国,李海波.一种二氧化氯发生方法和装置:中国,98100962X[P].1999-10-06.
    [138]马玉翔,范迎菊.蔗糖还原法制备二氧化氯的实验条件研究[J].化学世界,2003,44(8):406-407,411.
    [139]杜小旺,张良桥,唐明建.淀粉还原氯酸钠制备二氧化氯的研究.西南师范大学学报:自然科学版,2005,30(4):703-706.
    [140]Hong C C, Rapson W H. Kinetics of disproportionation of chlorous acid[J].Can. J. Chem.,1967,46:2053-2060.
    [141]Emmenegger F, Gordon G. The Rapid Interaction between Sodium Chlorite and Dissolved Chlorine [J]. Inorg. Chem.1967,6(3):633-635.
    [142]Kieffer R G, Gordon G Disproportionation of Chlorous Acid. I. Stoichiometry [J]. Inorg. Chem.,1968,7(2):235-239.
    [143]Robert G, Kieffer R G, Gordon G. Disproportionation of Chlorous Acid.II. Kinetics [J]. Inorg. Chem.,1968,7(2):239-244.
    [144]Schmitz G, Rooze H. Mecanisme des reactions du chlorite et du dioxyde de chlore.l. Stoechiometrie des reactions du chlorite et cinetique en presence d'ortho-tolidine[J]. Can.J.Chem.1981,59:1177-1186.
    [145]Schmitz G, Rooze H. Mecanisme des reactions du chlorite et du dioxyde de chlore.2. Stoechiometrie des reactions du chlorite et cinetique en presence d'ortho-tolidine[J]. Can.J.Chem.,1983,62:2231-2234.
    [146]Aieta E M, Roberts P V. Kinetics of the Reaction between Molecular Chlorine and Chlorite in Aqueous Solution [J]. Environ. Sci. Technol.,1986,20(1):50-55.
    [147]Ni Y, Yin G. The Effect of Chloride on the HC1O2-HOCl Reaction in a 4.5 mol/L Sulfuric Acid Solution [J]. Can. J. Chem. Eng.,1998,76:248-252.
    [148]Lehtimaa T, Tarvo V, Mortha G, et al. Reactions and Kinetics of Cl(III) Decomposition [J]. Ind. Eng. Chem. Res.,2008,47(15):5284-5290.
    [149]Sokol J C. Process for continuously producing chlorine dioxide:US,5380517[P].1995-01-10.
    [150]Lenzi F, Rapson W H. Further studies on the mechanism of formation of chlorine dioxide [J]. P&PMag. Can.,1962, (9):442-448.
    [151]Taube H, Dodgen H. Applications of radioactive chlorine to the study of the mechanisms of reactions involving changes in the oxidation state of chlorine [J].J. Am. Chem. Soc.,1949, (71):3330.
    [152]Gordon Q Kieffer R G, Rosenblatt D H. The chemistry of chlorine dioxide [M]//Lippard S J. Progress in Inorganic Chemistry. New York:Wiley-Interscience,1972,15:202-259.
    [153]Hong C, Lenzi F, Rapson W H. The kinetics of mechanism of the chorate-chloride reaction [J]. Can. J. Chem. Eng.,1967(45):349.
    [154]Edwards J. Rate laws and mechanisms of oxyanion reactions with bases [J]. Chem. Rev., 1952, (50):455-482.
    [155]Muller H, Willner H. Synthesis and properties of chloryl chloride, CIClO2 [J]. Inorg. Chem.,1992,31:2527-2534.
    [156]Hoq M F, Indu B, Ernst W R. Kinetics and mechanism of the reaction of chlorous acid with chlorite in aqueous sulfuric acid. Ind [J]. Eng. Chem. Res.,1992,31(1):137-145.
    [157]Obijeski T. The effect of silver catalyst on the chloride-chlorate reaction [D]. Master's Thesis. Georgia Institute of Technology,1989.
    [158]USEPA.2009 Edition of the Drinking Water Standards and Health Advisories [S/OL]. EPA 822-R-09-011.Washington, D C:EPA's Office of Water,2009 [2009-12-12]. http:// www.epa.gov/waterscience/criteria/drinking/dwstandards2009.pdf.
    [159]GB 5749-2006.生活饮用水卫生标准[S].
    [160]梅喜雪.二氧化氯发生器问题分析[J].科技创新导报,2008,(21):82.
    [161]钱国栋,于萍,莫丹.复合法—氯酸钠+盐酸制取二氧化氯对饮用水消毒效果及设备的影响[J].中国环境卫生,2006,9(3):47-49.
    [162]郑文华.二氧化氯的研究进展[J].二氧化氯技术资料,2008,(2):8-12.
    [163]乔铁军,尤作亮,曹大勇.水厂二氧化氯和氯联合消毒的余氯控制[J].二氧化氯技术资料,2009,(1):45.
    [164]天津化工设计研究院.化学复合二氧化氯发生器国家标准编制说明[R].天津:天津化工设计研究院,2005.
    [165]何涛,岳银玲,凌波,等.饮用水消毒用二氧化氯发生器性能调查[J].环境与健康杂志,2009,26(11):976-977.
    [166]GB/T 20621-2006.化学法复合二氧化氯发生器[S].
    [167]张加芬,王秀英,孟庆虎,等.二氧化氯在农村饮用水工程中的应用[J].山东水利,2006,(6):4.
    [168]李春明,皮益辉.农村饮用水安全处理技术浅析[J].淮北职业技术学院学报,2008,7(5):31.
    [169]张利焱,张永顺,生活饮用水中二氧化氯限量标准的实验研究[J].医学动物防制,2007,23(10):780.
    [170]左金龙.饮用水处理技术现状及技术集成研究[D].哈尔滨:哈尔滨工业大学,2007.
    [171]韩建德,刘静民,戴振国.二氧化氯发生器在高压供水管道中的应用[J].给水排水,2002,28(3):79-81.
    [172]USEPA. Technologies and Costs Document for the Final Long Term 2 Enhanced Surface Water Treatment Rule and Final Stage 2 Disinfectants and Disinfection Byproducts Rule[S/OL]. EPA815-R-05-013. Washington, D C:EPA's Office of Water,2005:3-3~3-4. http://www.epa.gov/safewater/disinfection/lt2/pdfs/costs_lt2-stage2_technologies.pdf.
    [173]Finch G R, Black E K, Gyurek L, et al. Ozone inactivation of Crypto sporidium parvum in demand-free phosphate buffer determined by in vitro excystation and animal infectivity [J].Appl Environ. Microbiol,1993,59(12):4203-210.
    [174]Lee Y J, Nam S H. Reflection on Kinetic Models to the Chlorine Disinfection for Drinking Water Production [J]. J. Microbiol.,2002,40(2):119-124.
    [175]Hosni A A, Shane W T, Szabo J G, et al. The disinfection efficacy of chlorine and chlorine dioxide as disinfectants of Bacillus globigii, a Surrogate for Bacillus anthracis, in water networks:Acomparative study [J]. Can. J. Civ. Eng.,2009,36:732-737.
    [176]Falsanisi D, Gehr R, Santoro D, et al. Kinetics of PAA Demand and its Implications on Disinfection of Wastewaters [J]. Water Qual Res. J. Canada,2006,41(4):398-409.
    [177]USEPA. LT1ESWTR Disinfection Profiling and Benchmarking Technical Guidance Manual [M]. EPA816-R-03-004. Washington, D C:EPA's Office of Water,2003:21. http:// www.epa.gov/safewater/mdbp/lt1eswtr.html.
    [178]LeChevallier M W, Au K K. Water Treatment and Pathogen Control:Process Efficiency in Achieving Safe Drinking Water [M/OL]. Geneva, Switzerland:WHO, and London:IWA, 2004:52. http://www.who.int/water_sanitation_health/dwq/en/watreatpath.pdf.
    [179]张吉库,王林娥,刘晓静,等,全盐酸法生产C102消毒剂反应条件研究[J].沈阳建筑大学学报(自然科学版),2009,25(4):741-745.
    [180]张英姿,张应中.影响二氧化氯发生器效率因素的分析[J].实用预防医学,2012,19(1):74,140.
    [181]Shibuya M, Isa I, et al. Process of manufacturing chlorine dioxide:US,4178356[P]. 1971-12-11.
    [182]Isa I, Yamamoto H, Shindo S, et al. Process of manufacturing Highly pure chlorine dioxide:US,4421730[P].1983-12-20.
    [183]Isa I, Ebisawa M, Shibuya M. Manufacture of chlorine dioxide by reduction of a specified:US,4154810[P].1979-5-15.
    [184]Isa I, Shibuya M, Ebisawa M. Process for manufacturing dioxide:US,4051229[P].1977-5-15.
    [185]法国埃勒夫阿托化学公司.二氧化氯制备方法:中国,97120894.8[P].1998-7-29.
    [186]朱得民.盐酸法中小型二氧化氯发生器的工艺设计[J].青海科技,2009,(5):65-66.
    [187]聂振皓.影响二氧化氯发生器性能的因素及其改进的方法[J].辽宁城乡环境科技,2007,27(3):47-48.
    [188]李新杰,朱大成,包训祥,等.压力对二氧化氯发生器产气效率的影响[J].化工标准.计量.质量,2001,(7):27-30.
    [189]WHO. Chlorite and Chlorate in Drinking-water [M].Geneva, Switzerland:WHO,2005
    [190]汤俊灵.二氧化氯发生器渗漏问题浅析[J].科技资讯,2010,(15):50-51.
    [191]易卫民.盐酸法制备二氧化氯工业装置的风险控制[J].安全、健康和环境,2008,8(9):22-24.
    [192]杜淮强.综合法二氧化氯制备技术及分解现象分析[J].中国造纸学报,2003,增刊:420-422.
    [193]尹长春,刘景华.二氧化氯发生器设计中的问题探讨[J].化学工业与工程,2011,28(3):58-61.
    [194]王秀荣,浏园水厂采用二氧化氯消毒的实践总结[J].中国给水排水2010,26(12):103-105.
    [195]孙颖凯.二氧化氯消毒系统的故障分析及处理[J].水工业市场,2010,(1):68-70.
    [196]童祯恭,刘遂庆.供水管网水质安全及其保障措施探讨[J].净水技术,2005,24(1):49-53.
    [197]裴元生,栾兆坤,朱琨,等.标准状态下水溶性二氧化氯的稳定及歧化[J].环境科学学报,2001,21(Suppl):70-74.
    [198]Cosson H, Ernst W R. Photodecomposition of Chlorine Dioxide and Sodium Chlorite in Aqueous Solution by Irradiation with Ultraviolet Light [J]. Ind. Eng. Chem. Res.1994, 33(6):1468-1475.
    [199]Odeh I N, Francisco J S, Margerum D W. New pathways for chlorine decomposition in basic solution [J]. Inorg. Chem.,2002,41(24):6500-6506.
    [200]Wang L, Nicoson J S, Hartz K E H, et al. Bromite ion catalysis of the disproportionation of chlorine dioxide with nucleophile assistance of electron-transfer reactions between ClO2 and BrO2 in basic solution [J]. Inorg. Chem.,2002,41:108.
    [201]Kris J, Munka K, Biichlerova K, et al. Chlorine dioxide disinfection by-products in the Nova Bstrica-Cadca-Zilina lone distance water supply system [J]. Water Science & Technology:Water Supply,2006,6(2):209-213.
    [202]Bergmann H, Koparal S. The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection [J]. Electrochimica Acta,2005,50:5218-5228.
    [203]Zhang Z, Stout J E, Yu V L, et al. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems [J]. Water research,2008,42:129-136.
    [204]Sorlini S, Collivignarelli C. Chlorite removal with granular activated carbon [J]. Desalination,2005,176(1-3):255-265.
    [205]尤作亮,张金松,惠如冰.二氧化氯净化副产物的控制与去除技术[J].给水排水,2003,29(3):17-21.
    [206]Simpson G D. Method for destroying chlorite in solution[P]. US 2002/0125198 Al, 2002.9.12
    [207]Swietlik J, Raczyk-Stanislawiak U, Bilozor S, et al. Effect of oxidation with chlorine dioxide on the adsorption of natural organic matter on granular activated carbon[J]. Polish Journal of Environmental Studies,2002,11(4):435-439.
    [208]Dixon K L, Lee R G. The effect of sulfur-based reducing agents and GAC filtration on chlorine dioxide by products[J]. J. AWWA,1991,5:48.
    [209]Leitner N K V, Laat J D, Dore M, et al. A Study of ClO2 in drinking water treatment: formation and control of inorganic by-products (ClO2- and ClO3-)[M]//Minear R A, Amy G L. Disinfection by-products in water treatment. Chelsea, MI:Lewis Publishers, Inc.,1996:393-407.
    [210]侯轶,高乃云,张楠,等.粉末活性炭(PAC)强化处理微污染原水国内外研究现状)[J].城镇供水,2008,(6):37-39.
    [211]吴迪胜,蒋家俊,皮耐安.化工基础(下册)[M].北京:高等教育出版社,2000:5-20.
    [212]GB/T 1618-2008.工业氯酸钠[S].
    [213]GB 320-2006.工业合成盐酸[S].
    [214]方赤光,王岙,黄新宇,等.五步碘量法测定消毒剂中二氧化氯的方法改进[J].中国消毒学杂志,2007,24(6):507-509.
    [215]中华人民共和国卫生部.消毒技术规范[S].2002年版.北京:中华人民共和国卫生部,2002.
    [216]Vincent G P. Preparation of chlorine dioxide, ClO2:US,2280938[P].1942-4-24.
    [217]吕文,周玲.锰元素体内平衡的营养状况[J].国外医学(医学地理分册),2007,28(3):36-38.
    [218]荆俊杰,谢吉民.微量元素锰污染对人体的危害[J].广东微量元素科学,2008,15(2):6-9.
    [219]梁炳耀,毛建华.地下水水质除铁锰处理分析[J].建材与装饰,2007,7:261-262.
    [220]刘庆元.二氧化氯预氧化除锰及氧化副产物亚氯酸盐的去除研[D].南京:南京理工大学化工学院,2010.
    [221]武利,唐玉兰,傅金祥,等.二氧化氯对水中锰离子去除的试验研究[J].辽宁化工,2010,39(1):4-7.
    [222]潘学行,薛叙明.传热蒸发与冷冻操作实训[M].北京:化学工业出版社,2006:235.
    [223]罗康碧,罗明河,李沪萍.反应工程原理[M].北京:科学出版社,2005:61-65.
    [224]朱炳晨.化学反应工程[M].第五版.北京:化学工业出版社,2012.
    [225]GB/T 5750.4-2006.生活饮用水卫生标准检验方法:感官性状和物理指标[S].
    [226]GB/T 5750.11-2006.生活饮用水卫生标准检验方法:消毒剂指标[S].
    [227]GB/T 5750.10-2006.生活饮用水卫生标准检验方法:消毒副产物指标[S].
    [228]中华人民共和国卫生部.生活饮用水消毒剂和消毒设备卫生安全评价规范(试行)[S].北京:中华人民共和国卫生部,2005.
    [229]高为新.隔膜计量泵简介及应用[J].给水排水,2003,29(11):75-76.
    [230]曹勤.计量泵发展和应用[J].石油化工设备,2001,30(5):44-47.
    [231]何涛,鄂学礼,王红伟,等.二氧化氯水消毒副产物的生成规律及其影响因素研究[J].环境与健康杂志,2008,25(2):101-102.
    [232]Ahmad M A, Rahman N K. Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon [J]. Chemcial Engineering Journal.2011,170:154-161.
    [233]Mussari F P, Francis D, Schmitz W. Chlorine dioxide generation method [P], US, 7407642B2,2008-08-05.
    [234]Gonce N, Voudrias E A. Removal of Chlorite and chlorate from water using granular activated carbon [J]. Wat. Res.,1994,28(5):1059-1069.
    [235]Ho Y S, Ng J C Y, McKay G. Kinetics of pollutant sorption by bio-sorbents:review [J]. Separation and purification methods,2000,29(2):189-232.
    [236]Aber S, Daneshvar N, Soroureddina S M, et al. Study of acid orange 7 removal from aqueous solutions by powdered activated carbon and modeling of experimental results by artificial neural network [J]. Desalination,2007,211:87-95.
    [237]Zawani Z, Luqman C A, Thomas S Y C. Equilibrium, Kinetics and Thermodynamic Studies:Adsorption of Remazol Black 5 on the Palm Kernel Shell Activated Carbon (PKS-AC) [J]. European Journal of Scientific Research,2009,37(1):63-71.
    [238]Abd El-Latif M M, Ibrahim A M, El-Kady M F. Adsorption Equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite [J]. Journal of American Science,2010,6(6):278.
    [239]Tan I A W, Ahmad A L, Hameed B H. Adsorption isotherms, kinetics, thermo-dynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon [J]. J. Hazard Mater,2009,164:473-482.
    [240]Zaghouane-Boudiaf H, Boutahala M. Adsorption of 2,4,5-trichlorophenol by organo-montmorillonites from aqueous solutions:Kinetics and equilibrium studies [J]. Chemical Engineering Journal,2011,170:120-126.
    [241]Ho Y S, Chiang C C, Hsu Y C. Sorption kinetics for dye removal from aqueous solution using activated clay [J]. Separation science and technology,2001,36(11):2473-2488.
    [242]Borsook H, Keighley G. Oxidation-reduction potential of ascorbic acid (vitamin C) [J]. Phisiology,1933,19:875-878.
    [243]Taylor M C, Whitte J F, Vincent G P, et al. Sodium chlorine dioxide and reactions [J]. Ind. Eng. Chem.,1940,32(7):899-903.
    [244]Gordon G, Slootmaekers B, Tachiyashiki S, et al. Minimizing Chlorite Ion and Chlorate Ion in Water Treated with Chlorine Dioxide [J]. J.AWWA.,1990,82(4):160-166.
    [245]Shimada Y, Ko S. Ascorbic Acid and Ascorbic Acid Oxidase in Vegetables [J]. CHUGOKUGAKUEN J.,2008,7:7-10.
    [246]Matei N, Birghila S, Popescu V, et al. Kinetic study of vitamin C degradation from pharmaceutical products [J]. Rom. Journ. Phys.,2008,53(1-2):343-35.
    [247]刘永,徐新华,江栋.L-抗坏血酸还原降解六价铬的影响因素[J].环境科学研究,2008,21(4):25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700