不同林分类型土壤及主要组分对重金属吸附特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浙江安吉主要植被类型土壤作为研究载体,用以探求土壤不同组分与重金属之间的吸附机理,研究土壤有机质含量、阳离子交换量(CEC)、pH值及土壤颗粒组成对土壤吸附重金属Cu~(2+)的影响。以土壤中主要成分黏土矿物(膨润土为代表)、腐殖质(胡敏酸代表)和水合锰氧化物为吸附材料,采用等温吸附法,分别研究重金属铜、铅、镉、镍在不同吸附剂中的吸附特征。研究双组分金属离子共存于吸附剂中的竞争吸附性能。研究结果表明:
     (1)不同植被类型土壤中,落叶栎林对Cu~(2+)的吸附量最大,灌木林次之,茶林与常绿苦槠-青冈混交林居中,毛竹林与湿地松林吸附量最小;不同层次土壤对Cu~(2+)的吸附量随土层深度增加而减少。
     (2)土壤有机质含量和CEC是影响供试土壤Cu~(2+)吸附量的主要因素。建立了土壤有机质含量和CEC与土壤Cu~(2+)吸附量的关系模型:
     Y(Cu~(2+)吸附量)=39.65+1.57X_1(有机质含量)+3.65 X_2(CEC)
     (3)膨润土对Cu~(2+)、Pb~(2+)的吸附明显强于Cd~(2+)、Ni~(2+),吸附强度大小顺序为pb~(2+)>Cu~(2+)>Ni~(2+)>Cd~(2+),对pb~(2+)的吸附量约十倍于Cd~(2+)。Langmuir、Freundlich和Temkin方程对这4种金属离子等温吸附的拟合均呈极显著关系。但Temkin等温式拟合Cu~(2+)、Pb~(2+)和Cd~(2+)最佳,Ni~(2+)最适合的方程为Freundlich。
     (4)胡敏酸对Cu~(2+)的吸附强度要大于对Pb~(2+)和对Cd~(2+)的吸附。吸附强度顺序为Cu~(2+)>Pb~(2+)>Cd~(2+)。Langmuir、Freundlich和Temkin方程对Pb~(2+)、Cd~(2+)的吸附呈显著关系,但其中Freundlich方程为最佳拟合方程:对Cu~(2+)的吸附,Langmuir等温式拟合程度最高,Freundlich方程其次,Temkin方程则不适合。
     (5)红外光谱图显示,胡敏酸与Pb~(2+)的结合点主要发生在酚羟基部位,与Cd~(2+)的结合点主要发生在芳环上的羧基部位,而Cu~(2+)与胡敏酸的结合则羧基和酚羟基都能发生。
     (6)水合锰氧化物中,δ-MnO_2对Pb~(2+)的吸附强度高于无定型MnO_2对Pb~(2+)的吸附,吸附量前者是后者的1.5倍。这是因为δ-MnO_2的晶粒小,结晶性差,比表面大,并含有表面羧基和晶胞结晶水,比无定型MnO_2能提供更多的吸附点位。
     (7)δ-MnO_2对pb~(2+)的吸附强度要远大于Cu~(2+)和Cd~(2+),吸附强度顺序为pb~(2+)>>Cu~(2+)≥Cd~(2+)。Langmuir、Freundlich和Temkin方程对Pb~(2+)的吸附均呈显著关系,其中Temkin方程为最佳拟合方程:对Cu~(2+)的吸附Freundlich方程的拟合程度高于Temkin方程,Langmuir方程不适合:而Cd~(2+)的吸附则是Langmuir方程拟合最佳,Freundlich和Temkin方程方程则不适合。
     (8)不同pH值对δ-MnO_2、胡敏酸、膨润土与重金属的作用影响相似。低pH值均不利于吸附剂对重金属离子的吸附,随着pH值的增加,不论吸附量还是吸附率都呈上升趋势,但吸附剂材料不同曲线上升趋势不尽相同。
     (9)双组分离子竞争吸附表明,δ-MnO_2、胡敏酸、膨润土对Pb~(2+)、Cd~(2+)、Cu~(2+)均具有“选择性吸附”。双组分离子共存时,吸附剂对某一金属的吸附量均要低于单一离子存在时的吸附量。金属离子两两共存的竞争作用大小在不同的吸附剂中呈现不同的结果,但共性是Pb~(2+)在三种吸附剂中均表现出更强的竞争能力。
     (10)同一元素在不同吸附剂中的单位吸附量作比较分析,显示δ-MnO_2对Pb~(2+)、Cd~(2+)、Cu~(2+)的吸附量要大大高于胡敏酸和膨润土对相应离子的吸附量。这可能是由于δ-MnO_2不仅与金属离子产生表面吸附,而且在晶体内部也提供吸附点位与离子结合。更进一步机理有待以后继续研究。
     (11)以膨润土对Pb~(2+)和Cu~(2+)双组分离子竞争吸附为例,建立竞争吸附模型。传统IAS和LCA模型在高浓度时不适用本实验。对LCA模型引入一个修正系数P_i,用修正LCA模型对膨润土与pb~(2+)、Cu~(2+)双组分离子竞争吸附进行模拟,得到较好结果。
Cu~(2+) adsorption of 24 soil samples gathered out of 4 soil layers (0~10、10~20、20~40、40~60cm) of 6 different types of forests in Anji, Zhejiang were determined to explore relationship of Cu~(2+) adsorption with organic matter content, CEC, pH and particle composition. A batch experiment was conducted to study the adsorption of copper, lead, cadmium and nickel by bentonite, humic acid and hydration manganese oxide in single component and binary systems. The result shows that:
     (1) In terms of Cu~(2+) adsorption the six types of forests are in the order of broadleaved deciduous forest>shrubbery>tea grove>broadleaved evergreen forest>bamboo grove>pine forest. Cu~(2+) adsorption decreases with the depth of the profile.
     (2) Organic matter content and CEC are the two major factors affecting soil Cu~(2+) adsorption. Based on the findings, a model is established to illuminate the relationship of Cu~(2+) adsorption with organic matter content and CEC: Y (Cu~(2+) adsorption)=39.65+1.57X_1(organie matter)+3.65 X_2(CEC)
     (3) Adsorption capacity of copper and lead are higher than that for cadmium and nickel by bentonite. The order of adsorption capacity was as follows: Pb~(2+)>Cu~(2+)>Ni~(2+)>Cd~(2+). Adsorption of Pb~(2+) is decuple of Cd~(2+). The single ion equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms. Temkin isotherms is best for Pb~(2+), Cu~(2+), and Cd~(2+) and the best for Ni~(2+) is Freundlich isotherms.
     (4) Adsorption capacity of Cu~(2+) by humic acid was higher than Pb~(2+) and Cd~(2+). The order of adsorption capacity was as follows: Cu~(2+)>Pb~(2+)>Cd~(2+). Equilibrium data of Pb~(2+) and Cd~(2+) were fitted to Langmuir, Freundlich and Temkin isotherms, and Freundlich isotherm is the best. Langmuir isotherm is best for Cu~(2+), than Freundlich isotherm, but Temkin isotherm is not fitted very well.
     (5) The results of infrared spectrum show that humic acid and Pb~(2+) link mainly on phenolic hydroxyl group. Humic acid and Cd~(2+) link on carboxyl of aromatic ring. Humic acid and Cu~+ link both on phenolic hydroxyl group and carboxyl of aromatic ring.
     (6) Adsorption capacity of Pb~(2+) byδ-MnO_2 is higher than non-crystal MnO_2. This is because the crystalline grain of isδ-MnO_2 smaller, crystallinity is weaker, specific surface is larger; contain more carboxyl and crystal water of unit cell. These characterstics ofδ-MnO_2 result in more absorption site than non-crystal MnO_2.
     (7) Adsorption capacity of Pb~(2+) is higher than that for Cu~(2+) and Cd~(2+) byδ-MnO_2. The order of adsorption capacity was as follows: Pb~(2+)>>Cu~(2+)≥Cd~(2+). The equilibrium data of Pb~(2+) is fitted to Langmuir, Freundlich and Temkin isotherms, and Temkin is the best. Freundlich isotherm is better than. Temkin for Cu~(2+), but Langmuir isotherm is not fitted very well. Langmuir isotherm for Cd~(2+) is best, but Freundlich and Temkin isotherms are not fitted very well.
     (8) The affects of pH to adsorption of metal ion by bentonite, humic acid andδ-MnO_2 are similar. The lower pH is not good for adsorption of metal ion. Along with the increasing of pH, both the adsorption capacity and adsorption rate increase.
     (9) The adsorption isotherms in binary-component systems showed that there were competition among copper, lead and cadmium byδ-MnO_2, humic acid and bentonite. Adsorption of one metal ion was depressed by the presence of other metal ion in the adsorption solution. Althoug the detail data of competition adsorption are different by virous sorbents, adsorption of Pb~(2+) is higher than other metal ion.
     (10) Unit adsorption capacity of different sorbents to the same metal ion is different. Adsorption capacity of metal ion byδ-MnO_2 is higher than humic acid and bentonite. This is becauseδ-MnO_2 absorbs metal ion not only by its surface but also by crystal interior site. The further mechanism will be studied later.
     (11) Equilibrium data for the binary adsorption of Pb~(2+) and Cu~(2+) by bentonite were analyzed by using Ideal-Adsorption-Solution (IAS) and Langmuir-Competitive-Adsorption models, but these equations weren't fitted to data for the mixed solutions. The Modified LCA model fits the binary adsorption equilibrium data satisfactorily and adequately. Finally, binary-component competitive adsorption of copper and lead was simulated by Modified LCA model in computer.
引文
[1] 周东美,王慎强,陈怀满.土壤中有机污染物-重金属复合污染的交互作用[J].土壤与环境,2000,9(2):143~145.
    [2] 李海华,刘建武,李树人,等.土壤—植物系统中重金属污染及作物富集研究进展[J].河南农业大学学报,2000,34(3):30-34.
    [3] 张金池,严逸伦,曾锋.重金属对森林生态系统效应的研究进展[J].南京林业大学学报(自然科学版),2001,25(5):52-56.
    [4] 朱丽(王君),童春发,乐美麟,等.南京大厂区林区土壤重金属铜、镍、锌、锰含量分析[J].南京林业大学学报,1999,23(3):67-70.
    [5] 张金池,曾锋,朱丽(王君).森林土壤对几种重金属污染的“记忆”效应[J].农村生态环境,2004,20(4):1-5.
    [6] Huffman, E. W., and stuber, H. A. In Aiken, G. R., Mcknight, D. M., and wershaw R. L. Eds. Humic Substances in soil, Sediment, and nater, wiley, New York 1985.
    [7] 蒋展鹏,廖孟钧.腐殖质及其在环境污染控制中的作用[J].环境污染与防治,1990,12(3):24-28.
    [8] Hayes, M. H. B., Maccarthy, P., Malcolm, R. L, and Swift, R. S.,(Eds) Humic Substances Ⅱ. In search of Strucure, while, New york 1989.
    [9] Ikai, A. And Qsterberg, R. Atomic force microscopy of humic acids. Scanning Microscopy 1996, 10(4): 1947-1951.
    [10] 宋宽秀,辛春伟,颜秀茹等.2MxOy·nH2O表面性质及其对F-离子吸收作用的研究.天津大学学报,2002,35(1):83~86.
    [11] 刘锐平,杨艳玲,夏圣骥等.水合二氧化锰界面特性及其除污染效能.环境化学.2005,24(3):338~341.
    [12] 刘金萍.钙硼复合对土壤锌吸附-解吸热力学和动力学的影响[J].重庆环境科学,2003,25(8):15~19.
    [13] 于颖,周启星.重金属铜在黑土和棕壤中解吸行为的比较[J].环境科学,2004,25(1):128~132.
    [14] 孙国红,徐应明,李军幸.重金属镉在固-液界面的吸附动力学模型研究[J].农业环境科学学报,2003,22(3):321~324.
    [15] A. I. Kalinichev, W. H. Hoell. Modeling of the Sorption Dynamics in Multi- component Ion-Exchange Systems with Consideration of Complexation Reac- tions on the Basis of the Surface Complexation Theory[J]. Theoretical Foundations of Chemical Engineering, 2003, 37(3): 256~262.
    [16] 莫争,王春霞,陈琴等.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化[J].农业环境保护,2002,21(1):9-12.
    [17] 何振立主编.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998:1~37.
    [18] 杨亚提,张一平,张卫华.铜在土壤—溶液界面吸附—解吸特性的研究[J].西北农业大学学报,1998,7(4):82~85.
    [19] 龙新宪,倪吾钟,杨肖娥.菜园土壤铜吸附—解吸特性的研究[J].农村生态环境,2000,16(3):39~41.
    [20] 倪吾钟,龙新宪,杨肖娥.菜园土壤镉吸附-解吸特性的研究[J].广东微量元素科学,2000,7(10):11~15.
    [21] 康立娟,霍庆来,谢忠雷.稻砂土吸附铜镍铅砷能力的比较[J].吉林大学学报(理学版),2002,40(4):417~418.
    [22] 张淼,李亚青,王敏新.黄土对重金属的吸附等温模型[J].西北水资源与水工程,1998,9(1):28~31.
    [23] 张增强,张一平,全林安等.镉在土壤中吸持等温线及模拟研究[J].西北农业大学学报,2000,28(5):88~94.
    [24] 王果.Cu、Cd在2种土壤上的吸附特征[J].福建农业大学学报,1995,24(4):436~441.
    [25] T. Kparmwang. Zinc Adsorption and Desorption at Low Concentrations by Basaltic Soil on Jos Plateau, Nigeria[J]. Communications in Soil Science and Plant Analysis, 2003, 34(11): 1589~1609.
    [26] 刘云,吴平霄.黏土矿物与重金属界面反应的研究进展[J].环境污染治理技术与设备,2006,7(1):17-21.
    [27] 高海英,杨仁斌,龚道新.蒙脱石的吸附行为及其环境意义[J].农业环境科学学报,2006,25(增刊):438-442
    [28] 刘廷志,田胜艳,商平,等.蒙脱石吸附Cr~(3+)、Cd~(2+)、Cu~(2+)、pb~(2+)、Zn~(2+)的研究:pH值和有机酸的影响[J].生态环境,2005,14(3):353-356
    [29] 吴平霄,编著.黏土矿物材料与环境修复[M].化学工业出版社.北京:2004
    [30] 何宏平,郭九皋,谢先德.可膨胀性层状黏土矿物对铜离子吸附机理的模拟研究[J].环境科学,2000,21(4):47-51
    [31] 夏畅斌,何湘柱.膨润土对Zn(Ⅱ)和Cd(Ⅱ)离子的吸附作用研究[J].矿产综合利用,2000,(4):38-41
    [32] 胡振琪,杨秀红,高爱林.黏土矿物对重金属镉的吸附研究[J].金属矿山,2004,(6):53-55.
    [33] 席永慧,赵红,胡中雄.粉煤灰黏土粉质黏土膨润土对镍离子吸附试验研究[J].岩土工程学报,2005,27(1):59-63.
    [34] 丁述理,彭苏萍,刘钦甫,等.膨润土吸附重金属离子的影响因素初探[J].岩石矿物学杂志,2001,20(4):579-582.
    [35] 王玉洁,田莉玉,王丽荣,等.膨润土对重金属离子吸附的研究[J].非金属矿,2003,26(4):46-48.
    [36] 夏海萍,柯家骏.膨润土对重金属离子的吸附动力学[J].中国有色金属学报,1995,5(4):51-54.
    [37] 王亚军等.腐殖酸对六价铬在砂土中吸附行为的影响研究[J].兰州交通大学学报(自然科 学版),2005,24(4):67-71.
    [38] 王旭东等.Fe~(2+)与胡敏酸的络合特征及其抗氧化性和生物有效性研究[J].植物营养与肥料学报,2004,10(3):267-271.
    [39] 李光林等.土壤胡敏酸对Pb的吸附特征与影响因素[J].农业环境科学学报,2004,23(2):308-312.
    [40] 王丹丽,关子川,王恩德.腐殖质对重金属离子的吸附作用[J].黄金,2003,24(1):47-49.
    [41] 李克斌,刘维屏等.重金属离子在腐殖酸上的吸附研究[J].环境污染与防治1997,17(1):9-11.
    [42] 吕福荣 刘艳.腐殖酸与钴和镉的作用研究[J].大连大学学报,2002,23(4):63-67.
    [43] 李英,李树源等.滩涂沉积物中腐殖酸对Cr(Ⅲ)的吸附的吸附平衡实验[J].岩石矿物学杂志,2006,25(2):157-161.
    [44] Sikora F. J. and Stevenson F. J., Silver complecation by humic substances: conditional stability constants and nature of reactive site., Geoderma 1988, 42: 353-363.
    [45] Esteves D S, Joaquim C G. Chemom. Incell. Lab. Syst., 1995, 27(1): 115-128.
    [46] Senesi N, Sposito G, Martin J P. Sci. Total Environ., 1986, 55: 351.
    [47] 刘锐平,杨艳玲,夏圣骥等.水合二氧化锰界面特性及其除污染效能[J].环境化学.2005,24(3):338~341.
    [48] 刘凡,谭文峰,刘桂秋,李学垣,贺纪正.几种土壤中锰结核的重金属离子吸附与锰矿物类型[J].土壤学报.2002,39(5):699~706
    [49] 汤艳杰,贾建业,谢先德.锰氧化物在污染土壤修复中的作用[J].地球科学进展.2002,17(4):557~564
    [50] 丁振华,冯俊明.氧化矿物对重金属离子的吸附及其表面特征[J].矿物学报.2000,20(4):349~352
    [51] 文湘华,杜青,李莉莉等.天然水体沉积物对重金属离子的吸附特性[J].环境化学.1996,15(3):197~200.
    [52] Wang F, Chen J, Forsling W. Modeling sorption of trace metals on natural sediments by surface complexation model[J]. Environ. Sci. Technol, 1997, 31: 448~453
    [53] 张淼.土壤对重金属离子的吸附.山西水利,2005,(1):84~90.
    [54] Kinniburgh D G, Syers J K, Jackson M L. Specific adsorption of trace amounts of Ca and Sr by hydrous oxides of iron and aluminum[J]. Soil Sci. Soc. Amer. Proc, 1975, 39: 464~470.
    [55] James R. O. Surface Ionization and Complexation at the Colloid/Aqueous Electrolyte Interface[J]. in "Adsorption of Inorganics at SolidLiquid Interface"[M]. by Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan, 1981.
    [56] I. Christl, R. Kretzschmar. Interaction of copper and fulvic acid at the hematite-water interface[J]. Geochimica Cosmochimica Acta, 2001, 65(20): 3435-3442.
    [57] M. Petrovic, M. K. Macan, A. J. Horvat. Interactive sorption of metal ions and humic acids onto mineral particles[J]. Water, Air and Soil Pollution, 1999, 78(12): 41-56.
    [58] 陈怀满.土壤对镉的吸附与解吸Ⅰ.土壤组分对镉的吸附和解吸的影响[J].土壤学报, 1988.25(1):66-73.
    [59] 陈同斌,陈志军.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响[J].植物营养与肥料学报,1998,4(3):201-210.
    [60] 陈同斌,陈志军.水溶性有机质对土壤中镉吸附行为的影响[J].应用生态学报,2002,13(2}:183-186.
    [61] 马明广,周敏,蒋煜峰等.不溶性腐殖酸对重金属离子的吸附研究[J].安全与环境学报,2006,6(3):68-71.
    [62] 张桃红,张桂银,毕淑琴等.富啡酸对潮褐土吸附重金属离子的影响[J].农业环境科学学报,2005,24(3):460-464.
    [63] 符娟林,章明奎,黄昌勇.长三角和珠三角农业土壤对Pb、Cu、Cd的吸附解吸特性[J].生态与农村环境学报,2006,22(2):59-64.
    [64] 王芳.李恋卿,潘根兴.黄泥土不同粒径微团聚体对Cd~(2+)的吸附与解吸研究[J].环境科学,2006,27(3):590-593.
    [65] J. Y. Yang, X. E. Yang, Z. L. He et al. Effects of pH, organic acids, and inorganic ions on lead desorption from soils[J]. Environmental Pollution 2006, 143(1): 9-15.
    [66] 李瑛,李洪军,张桂银等.几种电解质对土壤吸附Cu~(2+)的影响[J].生态环境,2003,12(1):8-11.
    [67] 陆雅海,黄昌勇.袁可能.砖红壤及其矿物表面对重金属离子的专性吸附研究[J].土壤学报.1995,32(4):370-376.
    [68] Alloway B J. Heavy Metals in Soils[M]. Blackie Glasgow and London, 1990. 176-183.
    [69] P. A. Marques, M. F. Rosa, H. M. Pinheiro. pH effects on the removal of Cu~(2+), Cd~(2+) and Pb~(2+) from aqueous solution by waste brewery biomass[J]. Bioprocess Engineering 2000, 23(1): 135-141.
    [70] 凌婉婷,李学恒,贺纪正等.土壤表面电荷特征与重金属吸附-解吸的相互关系[J].土壤通报,2002,33(6):456-460
    [71] 李成保,季国亮.恒电荷土壤和可变电荷土壤动电性质的研究Ⅱ.阴离子吸附和pH的影响[J].土壤学报,2000,37(1):62-68.
    [72] 王维君,邵宗臣,何群.红壤黏粒对Co,Cu,Pb和Zn吸附亲和力的研究[J].土壤学报,1995,32(2):167-178.
    [73] 马毅杰,袁朝良.我国五种主要土壤胶体的表面化学性质研究[J].土壤通报,1988,19(1):25-28.
    [74] 邹献中,徐建民,赵安珍等.可变电荷土壤中铜离子的解吸[J].土壤学报,2004,41(1):68-73.
    [75] Mauricio Paulo, F. Fontesa, Paulo Cesar Gomesb. Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils[J]. Applied Geochemistry 2003, 18(6): 795-804.
    [76] Parul Sharma, Pushpa Kumari, M. M. Srivastava, et al. Ternary biosorption studies of Cd(Ⅱ), Cr(Ⅲ) and Ni(Ⅱ) on shelled Moringa oleifera seeds[J]. Bioresource Technology 2007,98(2):474-477
    [77] 陆雅海,朱祖祥,袁可能等.针矿对重金属离子的竞争吸附研究[J].土壤学报,1996,33(1):78~84.
    [78] 何江,李朝生,王新伟.多离子体系中黄河沉积物对重金属的竞争吸附研究[J].沉积学报,2003,21(3):500~505.
    [79] 何宏平,郭九皋,谢先德等.蒙脱石等黏土矿物对重金属离子吸附选择性的实验研究[J].矿物学报,1999,19(2):231~235.
    [80] 吴大清,刁桂仪,彭金莲.矿物对金属离子的竞争吸附实验研究[J].地球化学,1997,26(6):25~32.
    [81] 刘继芳,曹翠华,蒋以超等.重金属离子在土壤中的竞争吸附动力学初步研究Ⅰ.竞争吸附动力学的竞争规律与竞争系数[J].土壤肥料,2000,(2):30~34.
    [82] 刘继芳,曹翠华,蒋以超等.重金属离子在土壤中的竞争吸附动力学初步研究Ⅱ.铜与镉在褐土中竞争吸附动力学[J].土壤肥料,2000,(3):10~15.
    [83] Krishnaiah Abburi. Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin[J]. Journal of Hazardous Materials 2003, 105(1): 143-156.
    [84] Jun Peng, Hongyan Ban, Xiaotong Zhang, et al. Binary adsorption equilibrium of propylene and ethylene on silicalite-1: prediction and experiment[J]. Chemical Physics Letters, 2005, 401(1): 94-98
    [85] Renato Baciocchia, Maria Rosaria Bonib, Roberto Lavecchiac. Modeling of chlorophenols competitive adsorption on soils by means of the ideal adsorbed solution theory[J]. Journal of Hazardous Materials, 2005, 118(2): 239-246
    [86] Wojciech Piatkowski, Dorota Antos, Fabrice Gritti, et al. Study of the competitive isotherm model and the mass transfer kinetics for a BET binary system[J]. Journal of Chromatography, 2003, 1003(1): 73-89
    [87] Gunther Mullerb, C. J. Radkeb, J. M. Prausnitzb. Adsorption of weak organic electrolytes from dilute aqueous solution onto activated carbon. Part Ⅰ. Single-solute systems[J]. Journal of Colloid and Interface Science 1985, 103(2): 466-483
    [88] Gunther Mullerb, C. J. Radkeb, J. M. Prausnitzb. Adsorption of weak organic electrolytes from dilute aqueous solution onto activated carbon. Part Ⅱ. Multisolute systems[J]. Journal of Colloid and Interface Science 1985, 103(2): 484-492.
    [89] 郗怡佳.单孔、多孔材料的分子吸附模型[J].青海大学学报(自然科学版),2001,19(6):30-35.
    [90] 方春芽,蒋展鹏.阳离子嫩黄染料与苯酚在活性炭上竞争吸附的研究[J].化工环保,1996,16(3):131~136
    [91] 华伟,孙宇梅.两种有机污染物的吸附研究[J].四川环境,1998,17(1):13~18.
    [92] 苗莘,李长海,白岩军.液相多组分竞争吸附模拟计算研究[J].吉林化工学院学报,2004,21(3):45~48.
    [93] Ji-Young Yoo, Jaeyoung Choi, Teayong Lee et al. Organobentonite for Sorption and Degradation of Phenol in the Presence of Heavy metals[J]. Water, Air, and Soil Pollution, 2004, 100(1): 1~14
    [94] M. Jose, A. Rafael, G. Cesar et al. Competitive Retention of Lead and Cadmium on an Agricultural Soil[J]. Environmental Monitoring and Assessment, 2003, 89(2): 165~177
    [95] J. P. Gustafsson. Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil[J]. European Journal of Soil Science, 2001, 52(7): 639~653.
    [96] 南京农业大学主编.土壤农化分析(第二版)[M].北京:农业出版社,1988
    [97] 中国林业标准汇编(营造林卷)[M].北京:中国林业出版社,1998.
    [98] F.J.斯帝文森(美)著,夏荣基译.腐殖质化学[M].北京农业大学出版社.
    [99] 文启孝.土壤有机质研究法[M].农业出版社,1982:234~247.
    [100] 李克斌.土壤胡敏酸的提取及表征环境科学[J].陕西化工,1998(4):15~18.
    [101] 张笑一,潘渝生.重金属致毒的化学机理[J].环境科学研究,1997,10(2):45~49.
    [102] 何增耀主编.农业环境科学概论[M].上海:上海科学技术出版社,1991.
    [103] 汪政富,陈青云.土壤中重金属的污染与危害[J].金属世界,1996,(5):20~21.
    [104] 陈怀满等著.土壤-植物系统中的重金属污染[M].科学出版社,北京:1996.
    [105] 张磊,宋凤斌.土壤吸附重金属的影响因素研究现状及展望[J].土壤通报,2005,36(4):628-631
    [106] 胡红青,陈松,李妍等.几种土壤的基本理化性质与Cu吸附的关系[J].生态环境,2004,13(4):544-548
    [107] 白庆中,宋燕光,王晖.有机物对重金属在黏土中吸附行为的影响[J].环境科学,2000,21(5):64-68.
    [108] Covelo, E. F, Couce. M. L, Vega, F. A. Competitive Adsorption and Desorption of Cadmium, Chromium, Copper, Nickel, Lead, and Zinc by Humic Umbrisols[J]. Communications in Soil Science & Plant Analysis, 2004, 35(19): 2709-2729
    [109] Katerina M Dontsova, L Darrell Norton, Cliff T Johnston, et al. Influence of Exchangeable Cations on Water Adsorption by Soil Clays[J]. Soil Sci. Am. J, 2004, 68(4): 1218~1227.
    [110] 朱波,汪涛,王艳强等.锌、镉在紫色土中的竞争吸附[J].中国环境科学,2006,26(增刊):73~77
    [111] 张玉革,姜勇,梁文举等.潮棕壤不同利用方式pH和Olsen-P的垂直变化特征[J].水土保持学报,2004,18(4):89-92.
    [112] 范康年主编.物理化学(第二版)[M].北京:高等教育出版社,2005:637~639.
    [113] 黄岁梁,万兆惠,张朝阳等.泥沙粒径对重金属污染物吸附影响的研究[J].水利学报,1994,(10):53-60
    [114] 侯梅芳,高原雪,夏钟文等.我国各地膨润土的水理特性[J].生态环境,2003,12(2):166-169
    [115] 王合印,自旭永.河北阳原某地膨润土的性质[J].河北地质学院学报,1995,18(1):27-32
    [116] 刘彬.新疆托克逊膨润土胶体的某些物理化学性质[J].光谱学与光谱分析,1998,18(1):58-62
    [117] 章庆和.膨润土差热曲线与物理化学特性的关系[J].矿物学报,1989,9(2):177-180
    [118] Srivastava V C, Mall I D, Mishra I M. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash[J]. Chemical Engineering Journal, 2006, 117(1): 79-91.
    [119] Julita M P, Andrew H, Hanna P K. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit[J]. Environment International, 2005, 31(4): 513-521.
    [120] 薛含斌,董惠茹.腐植酸和黏土矿物对镉的联合吸附性能[J].环境化学,1982,1(2):160-167.
    [121] Y. S. Ho, J. F. Porter, G. Mckay. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems[J]. Water, Air, and Soil Pollution 2002, 141: 1~33
    [122] Khan S U.著,吴虎奇译.环境中的腐殖物质[M].北京,科学出版社,1979.
    [123] Kodam a H, Schnitzer M. Kinetics and mechanism of the thermal decomposition of fulvic acid. Soil Sci, 1970, 109(5): 265~271.
    [124] 李光林,魏世强.胡敏酸对铜的吸附与解吸特征[J].生态环境,2003 12(1):4~7.
    [125] Xun Wang and Yadong Li. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods. Chem. Eur. J. 2003, 9, NO. 1, 302~306.
    [126] 邹卫平,刘晨湘,江利等.二氧化锰对铜、铅离子的吸附研究[J].郑州大学学报.2005,26(3):15~19.
    [127] 周代华,李学垣,徐凤琳.重金属在氧化物表面的吸附形态[J].土壤学报.199734(3):348~351.
    [128] KANUNGO SB, TRIPATHYS S, MISHRA S K, et al. Adsorption of Co~(2+), NI~(2+), Cu~(2+) and Zn~(2+) onto amorphous hydrous manganese dioxide from simple(1-1) electrolyte solutions[J]. Journal of Colloid and Interface Science, 2004, 269(1): 11~21.
    [129] Spark K M, Joson B B, WellsJ D. Characterizing heavy metal absorption on oxides and oxyhydroxidesJ. Euro p J of Soil Sci, 1995, 46: 621~631.
    [130] Daniels B G, Lindsay R, Thornton Q. A review of quantitative structural determination of adsorbates on metal oxides surfaces[J]. Surf Rev Lett, 2001, 8(1 &2): 952120.
    [131] 凌婉婷,李学垣,贺记正.土壤表面电荷特征与重金属吸附—解吸的相互关系.土壤通报 2002,33(6):456~460.
    [132] 周代华,李学垣,徐风琳.电解质浓度对、铅氧化物表面解吸重金属离子的影响及原因[J].科学通报.1995,22:2088~2090.
    [133] 杨春文,冯治库,范重秀.重金属元素铜、镉在石灰性土壤上的吸着[J].甘肃教育学院学报(自然科学版),1997,(1):55-61.
    [134] apan Adhikari, M. V. Singh. Sorption characteristics of lead and cadmium in some soils of India: Sorption characteristics of lead and cadmium in some soils of India[J]. Geoderma 2003, 114: 81-92
    [135] 谢丹,徐仁扣,蒋新等.不同体系中不同土壤对Cu(Ⅱ),Pb(Ⅱ)、Cd(Ⅱ)吸附能力的比较[J]农业环境科学学报[J],2005,24(5):899-904.
    [136] Runping Han, Jinghua Zhang, Weihua Zou, et al. Biosorption of copper(Ⅱ) and lead(Ⅱ) from aqueous solution by chaff in a fixed-bed column[J]. Journal of Hazardous Materials 2006, 133: 262-268
    [137] Jülide-Hizal, Resat Apak. Modeling of copper(Ⅱ) and lead(Ⅱ) adsorption on kaolinitebased clay minerals individually and in the presence of humic acid[J]. Journal of Colloid and Interface Science 2006, 295: 1-13
    [138] 朱一民,王忠安,苏秀娟等.钙基膨润土对水相中铜离子的吸附[J].东北大学学报(自然科学版),2006,27(1):99-102
    [139] Sciban M, Radetic B, Kevresan Z, et al. Adsorption of heavy metals from electroplating wastewater by wood sawdust[J]. Bioresource Technology, 2007, 98(2): 402-409.
    [140] 谢丹,徐仁扣,卞永荣.不同体系中不同土壤对Cu、Pb、Cd吸附能力的比较[J].农业环境科学学报,2005,24(5):899-904
    [141] Fei Qin, Bei Wen, Xiao-Quan Shan. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat[J]. Environmental Pollution 2006,144: 669-680
    [142] Lu Lv, Mei Peng Hor, Fabing Su, et al. Competitive adsorption of Pb~(2+), Cu~(2+), and Cd~(2+) ions on microporous titanosilicate ETS-10[J]. Journal of Colloid and Interface Science, 2005, 287: 178-184
    [143] E. F. Covelo, M. L. Andrade, F. A. Vega. Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics[J]. Journal of Colloid and Interface Science, 2004, 280: 1-8
    [144] Runping Han, Weihua Zou, Hongkui Li et al. Copper(Ⅱ) and lead(Ⅱ) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite[J]. Journal of Hazardous Materials 2006, 137: 934-942
    [145] Runping Han, Zhu Lu, Weihua Zou, et al. Removal of copper(Ⅱ) and lead(Ⅱ) from aqueous solution by manganese oxide coated sand Ⅱ. Equilibrium study and competitive adsorption[J]. Journal of Hazardous Materials 2006, 137: 480-488
    [146] 邹卫华,刘晨湘,江利等.二氧化锰对铜、铅离子的吸附研究[J].郑州大学学报(工学版),2005,26(9):15-19.
    [147] 冯雄汉,翟丽梅,谭文峰等.几种氧化锰矿物的合成及其对重金属的吸附和氧化特性[J].岩石矿物学杂志,2005,24(6):531-538.
    [148] 邹卫华,陈宗璋,韩润平等.锰氧化物/石英砂(MOCS)对铜和铅离子的吸附研究[J].环境科学学报,2005,25(6):779-784

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700