黄瓜高锰毒害及缓解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰中毒易发生在连作多年的温室、大棚和酸性土壤中,会导致作物生长受抑,影响产量。黄瓜(Cucumis sativus L.)是我国主要的蔬菜作物之一,在设施和露地中均广泛种植,具有喜肥又不耐肥的特点,容易发生各种生理障碍,也易发生锰毒。因此探讨黄瓜锰毒害及其解毒机理,对指导黄瓜生产和提高我国园艺设施的利用效率具有重要的理论和实践意义。本试验采用水培的方法,研究了锰毒害对黄瓜幼苗的伤害机理,并探讨了降低光照强度、硅和水杨酸对黄瓜锰中毒的缓解效应。取得了以下主要研究结果:
     1.不同pH下高锰对黄瓜生长及营养元素吸收的影响
     营养液中高锰离子明显抑制了黄瓜地上部和地下部的生长,降低pH加重了抑制的程度。黄瓜植株各组织中Mn的含量随着营养液中Mn~(2+)浓度的增加而增加,降低pH增加了黄瓜植株地上部Mn的含量。高Mn处理显著降低了Ca、Mg和Fe在黄瓜植株体内的积累量,并且降低pH进一步降低了Mg的吸收,由于Mg和Fe是叶绿素的重要组成部分,因此它们的降低可能是叶绿素含量下降的一个主要原因,结果导致净光合速率显著下降。
     2.低pH值和高锰对黄瓜氧化胁迫的复合效应
     随着营养液中Mn~(2+)浓度的提高黄瓜叶片和根系中膜脂过氧化产物MDA的含量呈明显的上升趋势,降低pH进一步加剧了膜脂过氧化程度。高锰胁迫诱导了黄瓜植株中Mn-SOD和Fe-SOD活性增加,而Cu,Zn-SOD对高锰胁迫比较敏感,因此Mn-SOD和Fe-SOD在清除高Mn下黄瓜植株内的O_2~-发挥重要作用。CAT对高锰胁迫比较敏感,高锰和低pH处理导致其活性明显下降,而GPX以及抗坏血酸—谷胱甘肽循环过程中的重要酶类APX、DHAR和GR在低pH和一定范围的高锰处理下活性上升,对降低高锰胁迫下活性氧伤害具有重要作用。
     3.不同光强下高锰对黄瓜光合特性和营养吸收的影响
     高锰处理抑制了黄瓜植株的生长,与弱光处理相比强光下抑制幅度更加显著。降低光强减少了黄瓜植株内锰的含量,并且缓解了高Mn对Ca、Mg、Fe、Zn等元素吸收的抑制作用。强光下,高锰处理显著降低了叶绿素含量,但降低光强却增加了其含量。强光下,高锰处理显著降低了原初光能转换效率(Fv/Fm)、光合电子传
Mn toxicity easily occurs in the soils of succesive cropping greenhouses and acidity. Cucumber (Cucumis sativus L.) is widely planted in open field and greenhouse and easily affected by excess Mn toxicity. Therefore, it is very important to study the physiological mechanisms of Mn toxicity in cucumber and take measures to decrease the toxicity. In this study, hydroponic culture experiments were conducted to investigate the physiological mechanisms of Mn toxicity to cucumber and the effects of pH, light intensity, silicon and salicylic acid. The main results obtained were presented as follows:1. Effects of excess Mn on plant growth and nutrient element uptake in cucumber at different pHExcess Mn in nutrient solution inhibited the growth of shoots and roots, especially at low pH. The Mn content increased with the increasing Mn concentration in nutrient solution, and low pH increased the Mn distribution in the shoots. Excess Mn inhibited the absorption of Ca, Mg and Fe, and low pH decreased Mg content. Because Mg and Fe deficiency influence chlorophyll synthesis, the decrease in chlorophyll content induced by excess Mn may be due to the decreased absorption of Mg and Fe by excess Mn. As a result, the net photosynthesis rate was decreased.2. Combined effects of excess Mn and low pH on oxidative stress in cucumberThe MDA content, as an index of lipid peroxidation, dramatically increased with increasing Mn concentration, especially at low pH. Excess Mn led to an elevation in activities of Mn-SOD and Fe-SOD, which play an important role in removing O2 . Cu,Zn-SOD and CAT were sensitive to excess Mn, and their activity significantly decreased under excess Mn and low pH, while activities of GPX, APX, DHAR and GR increased under low pH and higher concentrations of Mn, which indicated their important roles in scavenging reactive oxygen species in cucumber roots tolerance to low pH and excess Mn.3. Effects of excess Mn on photosynthesis characteristics and nutrition uptake in cucumber under different light intensityExcess Mn inhibited plant growth and the plants under high light intensity showed more serious symptoms of Mn toxicity compared to those under low light intensity. Low light intensity decreased the Mn content in cucumber plant and decreased the inhibitory effects for
    absorption of Ca, Mg, Fe, and Zn under excess Mn. Under high light intensity the primary maximum photochemical efficiency of PSII (Fv/Fm), the quantum efficiency of non-cyclic electron transport of PSII ( φ PSII) and photochemical quenching (qP) significantly decreased in excess Mn treatment, however, under low light intensity no significant effects on Fv/Fm and qP were observed. Excess Mn significantly decreased the chlorophyll content, and low light intensity increased chlorophyll content. Excess Mn decreased net photosynthetic rate (Pn) and stomatal conductance (Gs), particularly under high light intensity. Excess Mn increased intracellular CO2 (Ci) under high light intensity and decreased Ci under low light intensity. Therefore, we could conclude that stomatal limitation was a dominant factor on Pn decrease in excess Mn treatment under high light intensity and non-stomatal limitation was a dominant factor on Pn decrease in excess Mn treatment under low light intensity.4. Oxidative stress and antioxidant system in cucumber influenced by excess Mn under different light intensitiesLow light intensity decreased the O2- producing rate and H2O2 content in cucumber leaves, and reduced the lipid peroxidation induced by excess Mn. Under the same Mn concentration, low light intensity decreased the activity of antioxidant enzymes, which adapted to the low O2- producing rate and H2O2 content. Compared to normal Mn treatment, excess Mn significantly decreased ascorbate and glutathione content, particularly under the high light intensity. Antioxidant enzymes showed different changes in different organelles. Activities of SOD, GPX, APX, DHAR and GR in cytosol and chloroplast were stimulated by excess Mn treatment. APX, DHAR and GR activities in chloroplast were
引文
Ahn S J, Sivaguru M, Osawa H. Aluminum inhibits the H~+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol, 2001, 126:1381-1390
    Al-aghabary K, Zhu Z J, Shi QH. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr, 2004, 27:2101-2115
    Alam S, Kamei S, Kawai S. Amelioration of manganese toxicity in barley with iron. J Plant Nutr, 2001, 24, 9:1421-1433
    Alam S, Kamei S, Kawai S. Amelioration of manganese toxicity in young rice seedlings with potassium. J Plant Nutr, 2003, 26, 6:1301 - 1304
    Alam S, Kamei S, Kawai S. Phytosiderophore release from manganese-induced iron deficiency in barley. J Plant Nutr, 2000, 23: 1193-1207
    Alam S, Rahnman MH, Kamei S et al. Alleviation of manganese toxicity and manganese-induced iron deficiency in barley by additional potassium supply in nutrient solution. Soil Sci Plant Nutr, 2002, 48, 3:387-392
    Alcantara E, de la Guardia MD, Romera FJ. Plasmalemma redox activity and H~+ extrusion in roots of Fe-deficient cucumber plants. Plant Physiol, 1991, 96:1034-1037
    Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. JExp Bot, 2002, 53:1331-1341
    Alscher RG. Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant, 1989, 77:457-464
    Arnon DI. Copper enzymes in isolated chloroplasts, Polyphenol oxidase in Brta vulgaris. Plant Physiol, 1949, 24:1-15
    Asard H, Horemans N, Caugergs RJ. Involvement of ascorbic acid and a b-type cytochrome in plant plasma membrane redox reactions. Protoplasma, 1995, 184:36-41
    Aso K. On the physiological influence of manganese compounds on plants. Bull Coll Agric Tokyo, 1902, 18:1917-1929
    Assmann SM, Haubrick LL. Transport proteins of the plant plasma membrane. Current Opinion Cell Biol, 1996, 8:458-467
    Barker AV, Mills HA. Ammonium and nitrate nutrition of horticultural crops. Hort Rev, 1980, 2: 395-423
    Barkla B J, Pantoja O. Physiology of ion transport across the tonoplast of higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47:159-184
    Barkosky RR, Einhellig FA. Effects of salicylic acid on plant water relationship. J Chem Ecol,1993, 19:237-247
    Barr R. The possible role of redox-associated protons in growth of plant cells. J Bioenerg Biomembr, 1991, 23: 443-464
    Baum JA, Scandalios JG. Developmental expression and intracellular localization of superoxide dismutases in maize. Differentiation, 1979, 13: 133-140
    Beauchamp EG, Rossi N. Effects of Mn and Fe supply on the growth of barley in nutrient solution.Can J Plant Sci, 1972, 52: 575-581
    Bekker AW, Hue NV, Yapa LGG et al. Peanut growth as affected by liming, Ca-Mn interaction, and Cu plus, Zn applications to oxidic Samoan soil. Plant Soil, 1994, 164:203-211
    Berry WL. Plant factors influencing the use of plant analysis as a tool for biogeochemical prospecting.-In Mineral Exploration: Biological system and organic matter, Rubey Vol.5(Carlisle D, Berry IR, Kaplan IR et al) 1986:13
    Bienfait HF. Regulated redox process at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr, 1985, 17: 73-83
    Bot JL, Goss MJ, Carvalho MJGPR et al. The significance of the magnesium to manganese ratio in plant tissues for growth and alleviation of manganese toxicity in tomato (Lycopersicon esculentum) and wheat (Triticum aestivum) plants. Plant Soil, 1990, 124: 205-210
    Bot JL, Kirkby EA, Beusicchem MLV. Manganese toxicity in tomato plants: effects on cation uptake and distribution. J Plant Nutr, 1990, 13: 513-525
    Bouteau F, Pennarun AM, Kurkdjian A et al. Ion channels of intact young root hairs from Medicago sativa. Plant Physiol Biochem, 1999, 37: 889-898
    Briat JF, Lebrun M. Plant responses to metal toxicity. Comptes Rendus Del Acdaemine Des Sci Serie Ⅲ-Sci De LA Vie-Life Sci, 2002, 322 (1): 43-54
    Brightman AO, Barr R, Crane FL. Auxin-stimulated NADH oxidase purified from plasma membrane of spybean. Plant Physiol, 1988, 86: 1264-1269
    Brooks RR, Shaw S, Marfill AA. The chemical form and phsiological function of nickle on some Iberian alyssum species. Physiol Plant, 1981, 51: 167-170
    Buckhout TJ, Bell PF, Luster DG et al. Iron-stress induced redox activity in tomato (Lycopersicum esculentum Mill.) is localized on the plasma membrane. Plant Physiol, 1989,90: 151-156
    Burnell JN. The biochemistry of manganese in plants. manganese in soils and plants.Derdrecht-Boston-London: Kluwer Academic Publishers, 1988
    Bush DS. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Mol Biol, 1995,46:95-122
    Buttner GR. In the absence of catalytic metals ascorbate does not antioxidize at pH 7: ascorbate as a test for catalytic metals. J Biochem Biophys Methods, 1988, 16: 27-40
    Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of
     superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol, 1992, 98: 1222-1227
    Candan N, Tarhan L. The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca~(2+), Mg~(2+), Cu~(2+), Zn~(2+) and Mn~(2+) stress conditions. Plant Sci, 2003, 165: 769-776
    Chaoui A, Mazhoudi S, Ghorbal M H et al. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci, 1997, 127:139-147
    Chardonnens AN, Koevoets PLM, Van Zanten A et al. Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerance silence vulgaris. Plant Physiol, 1999, 120:779-785
    Clark RB, Pier PA, Knudsen D et al. Effect of trace element deficiencies and excesses on mineral nutrients in sorghum. J Plant Nutr, 1981, 3: 357-374
    Dat JF, Lopez-Delgado H, Foyer CH et al. Parallel change in H_2O_2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in musturd seedlings. Plant Physiol, 1998, 116: 1351-1357
    Datnoff LE, Snyder GH. Effect of calcium silicate on blast and brown spot intensities and yields of rice. Plant Dis, 1991, 75: 729-732
    Davey MW, Montagu MV, Inze D et al. Plant-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric, 2000, 80: 825-860
    Davis JG. Soil pH and magnesium effects on manganese toxicity in peanuts. J Plant Nutr, 1996,19:535-550
    del Castillo-OlivaresA, del Valle AE, Marquez J et al. Effects of protein kinase C and phosphoprotein phosphatase modulators on Ehrlich cell plasma membrane redox system activity. Bioch Bioph Acta, 1996, 1313: 157-160
    Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z et al. Biochemical changes in barley plants after excess supply of copper and manganese. Environ Exp Bot, 2004, 52: 253-266
    Drazic G, Mihailovic N. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci, 2005, 168: 511-577
    Drazkiewicz M, Skorzynska-Polit E, Krupa Z. Response of the ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana(L.). Plant Sci, 2003, 164: 195-202
    Elamin OM, Wilcox GE. Effect of magnesium and manganese on muskmelon growth and manganese toxicity. J Am Soc Hort Sci, 1986a, 111: 582-587
    Elamin OM, Wilcox GE. Manganese toxicity development in muskmelons as influenced by nitrogen form, J Am Soc Hort Sci, 1986c, 111: 323-327
    El-Jaoual T, Cox DA. Manganese toxicity in plants. J Plant Nutr, 1998, 24: 353-386
    Elstner EF. Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol Plant Mol Biol, 1982,
     33: 73-96
    Epstein E. Silicon. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 641-664
    Evans DE, Williams LE. P-type calcium ATPases in higher plants-biochemical molecular and functional properties. Bioch Biophy Acta, 1998,1376: 1-25
    Farquhar DG, Sharkey TD. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 1982, 33:317-345
    Fecht-Christoffers MM, Braun HP, Lemaitre-Gullier C et al. Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol, 2003, 133: 1935-1946
    Fecht-Christoffers MM, Maier P, Horst W. Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol Plant, 2003, 117: 237-244
    Ferroni L, Baldisserotto C, Fasulo MP. Adaptive modifications of the photosynthetic apparatus in euglena gracilis klebs exposed to excess manganese. Protoplasma, 2004, 224: 167-177
    Foy CD, Webb HW, Jones JE. Adaption of cotton genotypes to an acid manganese toxic soil. AgronJ, 1981,73: 107-111
    Foy CD, Weil RR, Coradetti CA. Differential manganese tolerance of cotton genotypes in nutrient solution. J Plant Nutr, 1995, 18: 685-706
    Foyer CH, Descourvieres P, Kunert KJ. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ, 1994, 17: 507-523
    Foyer CH, Halliwell B. Presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 1976, 167: 521-526
    Foyer CH, Looez-Delgado H, Dat JF et al. Hydrogen peroxide- and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant, 1997, 100: 241-254
    Foyer CH, Theodoulou FL, Delrot S. The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci, 2001, 6: 486-492
    Fridovich I. The biology of oxygen radicals. Science, 1978, 201: 875-880
    Gallego SM, Benavides MP, Tomaro ML. Effect of heavy metal ion excess on sunflower leaves:evidence for involvement of oxidative stress. Plant Sci, 1996, 121: 151-159
    Galvex L, Clark RB, Courley LM et al. Silicon interactions with manganese and aluminium toxicity in sorghum. J Plant Nutr, 1987, 10:1139-1147
    Galvez L, Clark RB, Courley LM et al. Effect of silicon on mineral composition of sorghum growth with excess manganese. J Plant Nutr, 1989, 12:547-561
    Geisler M, Axelsen KB, Harper JF. Molecular aspects of higher plant P-type Ca~(2+)-ATPases. Bioch Biophy Acta, 2000, 1465: 52-78
    Genty BE, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem Biophys Acta, 1989,990:87-92
    Gong HJ, Chen KM, Chen GC et al. Redox system in the plasma membranes of two ecotypes of
     reed (Phyragmites communis Trin.) leaves from different habits. Colloids and Surfaces B: Biointerfaces, 2003, 32:163-168
    Gonzalez A, Korenkov V, Wangner GJ. A comparison of Zn, Mn, Cd, and Ca transport mechanisms in oat root tonoplast vesicles. Physiol Plant, 1999, 106:203-209
    Gonzalez A, Lynch JP. Effects of manganese toxicity on leaf CO_2 assimilation of contrasting common bean genotypes. Physiol Plant, 1997, 101 : 872-880
    Gonzalez A, Steffen KL, Lynch JP. Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiol, 1998, 118:493-504
    Gselin G, Llanos J, Prieur D et al. The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microb, 2001, 152:901-905
    Gupta M, Cuypers A, Vangronsveld J et al. Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol Plant, 1999, 106:262-267
    Gutierrez-Coronado MA, Trejo-Lopez C, Larque-Saavedra A. Effects of salicylic acid on the frowth of roots and shoots in soybean. Plant Physiol Biochem, 1998, 36:563-565
    Hall JL. Cellular mechanism for heavy metal detoxification. JExp Bot, 2002, 56:1-11
    Hamilton CA, Good AG, Taylor GJ. Vacuolar H~+-ATPase, but not mitochondrial FlF0-ATPase, is required for aluminum resistance in Saccharomyces cerevisiae. FEMS Microb Letters, 2001, 205:231-236
    Han ZH, Zhu JT, Wang Q et al. Effects of iron deficiency stress on iron-reductase activity at plasmalemma of apple root cells. JPlant Nutr, 2002, 25:2535-2544
    Hans JW, Hans JJ. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol, 1980, 65:480-482
    Hara T, Gu MH, Koyama H. Effect of silicon aluminum injury in the rice plant. Soil Sci Plant Nutr, 1999, 45:929-936
    Harper JR, Balke NE. Characterization of the inhibition of K~+ absorption in oats roots by salicylic acid. PlantPhysiol, 1981, 88:1349-1353
    Hauck M, Alexander P, Shana G et al. Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environ Exp Bot, 2003, 49:181-191
    Heenan DP, Campbell LC. Influence of potassium and manganese on growth and uptake of magnesium by soybean (Glycine max L. Merr.cv Bragg). Plant Soil, 1981, 61 : 447-456
    Heenan DP, Campbell LC. Manganese and iron interactions on their uptake and distribution in soybean (Glycine max (L.) Merr.). Plant Soil, 1983, 70:317-326
    Heenan DP, Carter DG. Response of two soybean cultivares to manganese toxicity as affected by pH and calicium levels. Aust J Agric Res, 1975, 26:967-974
    Hiradate S, Taniguchi S, Sakurai K. Aluminum speciation in aluminum-silica solutions and potassium chloride extracts of acidic soils. Soil Sci Soc Am J, 1998, 62:630-636
    Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem, 1976, 74: 214-226
    Hodges DM, Andrews CJ, Johnson DA et al. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant, 1996, 98: 685-692
    Hodges TK, Leonard RT, Bracker CE et al. Purification of an ion-stimulated ATPase from plant root: association with plasma membrane, Proc Natl Acad Sci USA, 1972, 69: 3307
    Horemans N, Foyer CH, Potters G et al. Ascorbate function and associated transport systems in plants. Plant Physiol Biochem, 2000, 38: 531-540
    Horiguchi T. Mechanism of manganese toxicity and tolerance of plants. Ⅶ. Effect of light intensity on manganese-induced chlorosis. J Plant Nutr, 1988b, 11: 235-246
    Horiguchi T. Mechanism of manganese toxicity and tolerance of plants. Ⅳ. Effects of silicon and alleviation of manganese toxicity of rice plants. Soil Sci Plant Nutr, 1988, 34: 65-73
    Hulsebosch RJ, Hoff AJ, Shuvalov VA. Influence of KF, DCMU and removal of Ca~(2+) on the light-spin EPR signal of the cytochrome b-599 Fe (Ⅲ) ligated by OH- in chloroplasts.Biochim Biophys Acta, 1996,1277: 103-106
    Inze D, Monyagu MV. Oxidative stress in plants. Current Opinion Biotech, 1995, 6: 153-181
    Issa AA, Abdek-Basset R, Adam MS. Abolition of heavy metal toxicity on Kirchneriella lunaris (Chlorophyta) by calcium. Ann Bot, 1995, 75: 189-192
    Iwasaki K, Maier P, Fecht M et al. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata(L.) Walp.). Plant Soil, 2002, 238: 281-288
    Iwasaki K, Matsumura A. Effect of silicon on alleviation of manganese toxicity in Pumpkin (Cucurbita moschata Duch cv. Shintosa). Soil Sci Plant Nutr, 1999, 45: 909-920
    Jachson TL, Westermann DT, Moore DP. The effect of chloride and lime on the manganese uptake by bush beans and sweet corn. Soil Sci Soc Am Proc, 1996, 30: 70-73
    Janda T, Szalai G, Tari I. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 1999, 208: 175-180
    Kasamo K. Comparison of plasma membrane and tonoplast H~+-translocating ATPase in Phaseolus mungo L. roots. Plant Cell Physiol, 1986, 27: 49-59
    Kenten RH, Mann PJG. The oxidation of manganese by peroxidase systems. Biochem J, 1950,46:67-73
    Killham K. Soil Ecology. London: Cambridge University Press, 1994
    Kitao M, Lei TT, Koike T. Application of chlorophyll fluorescence to evaluate Mn tolerance of deciduous broad-leaved tree seedlings native to northern Japan. Tree Physiol, 1998,18:135-140
    Kitao M, Lei TT, Koike T. Effects of manganese toxicity on photosynthesis of white birch(Betula platyphylla var. japonica). Physiol Plant, 1997, 101(2): 249-256
    Kitao M, Lei TT, Nakamura T et al. Manganese toxicity as indicated by visible foliar symptoms of hapanese white birch (Betula platyphylla var. japonica). Environ Poll, 2001, 111: 89-94
    Kjiellbom P, Larsson C et al. Cytochrome P-450/P-420 in plant plasma membrane: a possible component of the blue-light reducible flavoprotein-cytochrome complex. Photochem Photobiol, 1985, 42: 779-783
    Knox JP, Dodge AD. Singlet oxygen and plants. Phytochem, 1985, 24: 889-896
    Kutschera U, Schopfer P. Evidence against the acid growth theory of auxin action. Planta, 1985,163:483-493
    Kuzniak E, Sklodowska M. Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Sci, 2001, 160: 723-731
    Kuzniak E, Sklodowska M. The effect of Botrytis cinerea infection on ascorbate-glutathione cycle in tomato leaves. Plant Sci, 1999, 148: 69-76
    Larssen L, Carmichael GR. Acid rain and acidification in China: the importance of base deposition. Environ Poll, 2000, 110: 89-102
    Larssen T, Seip HM, Semb A et al. Acid deposition and its effects in China: an review. Environ Sci Policy, 1999,2:9-24
    Le-Bot J, Kirby EA, Van Beusuchem ML. Manganese toxicity in tomato plants: effects on cation uptake and distribution. J Plant Nutr, 1990, 13: 513-525
    Ledin M, Krantz-Rulcker C, Allard B. Microorganisms as metal sorbents: comparison with other soil constituents in multi-compartment systems. Soil Biol Biochem, 1999, 31: 1639-1648
    Liang F, Cunningham KW, Karper JF. EGA 1 complements yeast mutants defective in Ca~(2+) pumps and encodes an ER-type Ca~(2+)-ATPase in arabidopsis thaliana. Plant Physiol, 1997, 114: 54
    Liang YC, Wong JWC, Wei L. Silicon-mediated enhancement of cadmium tolerance in maize(Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 2005, 58: 475-483
    Liang YC, Zhang WH, Chen Q et al. Effects of silicon on H~+-ATPase and H~+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot, 2005, 53: 29-37
    Liang YC. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil, 1999, 209: 217-224
    Lidon FC, Rice adaptation to excess manganese: Nutrient accumulation and implications of the quality of crops. J Plant Physiol, 2000, 156: 652-658
    Lidon FC, Teixeira MG. Oxy radicals production and control in the chloroplast of Mn-treated rice.Plant Sci, 2000, 152:7-15
    Lidon FC. Rice plant structural changes by addition of excess manganese. J Plant Nutr, 2002, 25:287-296
    Lidon, FC, Henriques FS. Oxygen metabolism in higher plant chloroplasts. Photosynth, 1993, 29:249-279
    Liu HY, Zhu ZJ, Lu GH et al. Chilling tolerance and physiological parameters as influenced by grafting in watermelon seedlings. Agri Sci China, 2003, 2: 1164-1169
    Long XX, Yang XE, Ye ZQ et al. Differences of uptake and accumulation of zinc in four species of sedum. Acta Bot Sin, 2002, 44:152-157
    Lynch J, Brown KM. Ethylene and plant responses to nutritional stress, Physiol Plant, 1997, 100:613-619
    Ma JF. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr, 2004, 50:11 -18
    Ma T, Liu Q, Li Z, Zhang X. Tonoplast H~+-ATPase in responses to salt stress in Populus euphratica cell suspensions. Plant Sci, 2002, 163: 499-505
    Madgava Rao KV, Sresty TVS. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci, 2000, 157: 113-128
    Maeshima M. Vacuolar H~+-pyrophosphatase. Bioch Biophy Acta, 2000, 1465: 37-51
    Malamy J, Carr JP, Klessig DF et al. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science, 1990, 250: 1002-1004
    Marschner H. Mechanisms of adaptation of plants to acid soils. Plant Soil, 1991, 134: 1-20
    Marsh KB, Peterson LA, McCown BH. A microculture method for assessing mutrient uptake. Ⅱ.The effect of temperature on manganese uptake and toxicity in potato shoots. J Plant Nutr,1989, 12:219-232
    Mates JM, Perez-Gomez C, Nunez De Castro I et al. Glutathione and its relationship with intracellular redox status, oxidative stress and cell proliferation/death, int J Biochem Cell Biol,2002, 34:439-458
    Mauch-Mani B,Metraux JP. Salicylic acid and systemic acquired resistance to pathogen attack.Ann Bot, 1998,82:535-540
    Maxwell K, Johnson GN. Chlorophyll fluorescence- a practical guide. J Exp Bot, 2000, 51:659-668
    May MJ, Vernoux T, Leave C et al. Glutathione homeostasis in plants: implications for environmental sensing and plant development, J Exp Bot, 1998, 49: 649-667
    McAinsh MR, Webb ARR, Taylor JE et al. Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell, 1995, 7: 1207-1219
    McCord JM, Fridovich I. Superoxide dismutase: an enzymatic function for erythrocuprein(hemocuprein). J Bio Chem, 1969, 244: 6049-6055
    Mehlhorn H, Lelandais M, Korth HG et al. Ascorbate is the natural substance for plant peroxidases. FEBS Letters, 1996, 378: 203-206
    Melgarejo E, Carnicas E, Niell FX et al. Effects of photoacclimation on plasma membrane ferricyanide reductase from the rhodophyta Gracilaria tenuistipitata. Plant Sci, 2002, 162:753-759
    Memon AR, Chino M, Hara K et al. Microdistribution of manganese in the leaf tissues of different plant species as revealed by X-ray microanalyzer. Physiol Plant, 1981, 53: 225-232
    Metwally A, Finkemeier I, Georgi M et al. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol, 2003, 132: 272-291
    Michelt B, Boutry M. The plasma membrane H~+-ATPase: a highly regulated enzyme with multiple physiological function. Plant Physiol, 1995,108:1-6
    Mikami K, Murata N. Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res, 2003,42: 527-543
    Minorsky PV. An heuristic hypothesis of chilling injury in plants: a role for calcium as the primary physiological transducer of injury. Plant Cell Environ, 1985, 8: 75-94
    Minosky PV, Spanswick RM. Electrophysiological evidence for a role for calcium in temperature sensing by roots of cucumber seedlings. Plant Cell Environ, 1989, 12:137-143
    Mishra A, Choudhuri MA. Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biolog Plant, 1999, 42: 409-415
    Misra PC. Transplasma membrane electron transport in plants. J Bioenerg Biomembr, 1991, 23:425-441
    Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405-410
    Moraghan JT, Freeman TJ. Influence of Fe-EDTA on growth and manganese accumulation in flax. J Soil Sci Soc Am, 1978, 42: 455-459
    Mukaopadhyay MJ, Sharma A. Manganese in cell metabolism of higher plants. Bot Rev, 1991, 51:117-149
    Mφller IM, Crane FL. Redox processes in the plant plasma membrane. In the Plant Plasma MembranepStructure, Function and Molecular Biology. Berlin:springer-Verlag, 1990
    Nable RO, Houtz RL, Cheniae GM. Early inhibition of photosynthesis during development of Mn toxicity in tobacco. Plant Physiol, 1988. 86: 1136-1142
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981,22: 867-880
    Narayana A, Ramana EV, Reddy GL. Iron deficiency symptoms of food legumes in relation to manganese accumulation. Plant Physiol Biochem, 1993, 19: 85-87
    Nazrul-Islam AKM. Effects of interaction of calcium and manganese on the growth and nutrition of Epilobium hirsutum L. Soil Sci Plant Nutr, 1986, 32: 161-168
    Neumann D, zur Nieden U, Schwieger W et al. Heavy metal tolerance of Minuartia verna. J Plant Physiol, 1997, 151: 101-108
    Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279
    Nogueira MA, Cardoso EJBN, Hampp R. Manganese toxicity and callose deposition in leaves are attenuated in mycorrhizal soybean. Plant Soil, 2002, 246: 1-10
    Novak VA, Ivankina NG. Nature of electrogenesis and ion transport in plant cells. Dokl Biophys,1978,242: 1229-1232
    Ogawa K, Kanenatsu S, Adada K. Intra-and extra-cellular localization of "cytosolic"
    CuZn-superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physiol, 1996, 37:790-799
    Oner G, sentiirk UK. Reversibilitz of manganeseβinduced learning defect in rats. Food chem toxicol, 1995,33:559-563
    Ortiz-Lopez A, Chang HC, Bush DR. Amino acid trasnpoters in plants. Bioch Biophy Acta, 2000,1465: 275-280,
    Osawa T, Ikeda H. Heavy metal toxicities in vegetable crops. I. The effect of iron concentrations
    in the nutrient solution on manganese toxicities in vegetable crops. J Jpn Soc Hort Sci, 1976,45: 55-58
    Palmgren MG, Harper JF, Hall J et al. Pumping with plant P-type ATPases. J Exp Bot, 1999, 50:883-893
    Pastore D, Laus MN, Fonzo ND et al. Reactive oxygen species inhibit the succinate oxidation-supported generation of membrane potential in wheat mitochondria. FEBS Letters,2002,516: 15-19
    Patterson B D, Mackae EA. Ferguson IB. Estimation of hydrogen peroxide in plant extracts using titanium(Ⅳ). Anal Biochem, 1984, 139:487-492
    Petrie SE, Jackson TL. Effects of nitrogen fertilization on manganese concentration and yield of barley and oats. Soil Sci Soc Am J, 1984,48: 319-322
    Pignocchi C, Foyer CH. Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Current Opinion Plant Biol, 2003, 6: 379-389
    Rao KVM, Sresty TVS. Antioxidant parameters in the seedlings of pigonpea (Cajanus cajan(L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci, 2000, 157: 113-128
    Rao MV, Psliyath G, Ormrod DP et al. Influence of salicylic acid on H_2O_2 production, oxidative stress, and H_2O_2-metabolizing enzymes: salicylic acid-mediated oxidative damage requires H_2O_2. Plant Physiol, 1997, 115: 137-149
    Rasin I. Role of salicylic acid in plants. Ann Rev Plant Physiol Mol Biol, 1992a, 43: 439-463
    Rasin I. Salicylate, a new plant hormone. Plant Physiol, 1992b, 99: 799-803
    Ratajczak R. Structure, function and regulation of the plant vacuolar H~+-translocating ATPase.Bioch Biophy Acta, 2000, 1465: 17-36
    Rauser WE, Acker CA. Localization of cadmium in gtrqanules within differentiatin and mature root cells. Can J Bot, 1987, 65: 643-646
    Rea PA, Poole RJ. Vacuolar H~+-translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol, 1993,44: 157-180
    Rengel Z, Elliott DC. Mechanism of aluminium inhibition of net ~(45)Ca~(2+) uptake by Amaranthus
     protoplasts. Plant Physiol, 1992, 98: 632-638
    Rengel Z. Uptake of aluminum by plant cells. New Phytol, 1996, 134:389-406
    Rennenberg H. Glutathione metabolism and possible biological roles in higher plants. Phytochem,1982,21:2771-2781
    Rogalla H, Romheld V. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ, 2002, 25: 549-555
    Rubinstein B, Luster DG. Plasma membrane redox activity: compoments and role in plant processes. Annu Rev Plant Physiol Plant Mol Biol, 1993,44: 131-155
    Rufty TW, Miner GS, Raper CDJ. Temperature effects on growth and manganese tolerance in tobacco. Agron J, 1979, 71: 638-644
    Sandmann C, Richard M. Iron-sulfur centers and activities of the photosynthetic electron transport chain in iron-deficient cultures of the blue-green alga aphanocaosa. Plant Physiol, 1983, 73:724-728
    Schutzenubel C, Nikolova P, Rudolf C et al. Cadium and H2O2-induced oxidavitve stress in Populus × canescens roots. Plant Physiol Biochem, 2002, 40: 577-584
    Senaratna T, Touchell D, Bunn E et al. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Reg, 2000, 30: 157-161
    Serrano R. Structure and function of plasma membrane ATPase. Ann Rev Plant Physiol Plant Mol Biol, 1989,40:61-94
    Shakirova FM, Sakhabutdinova AR, Bezrukova MV et al. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci, 2003, 164: 317-322
    Shen B, Richard G, Hans J et al. Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol, 1997, 115:527-532
    Shirasu K, Dixon RA, Lamb C. Signal transduction in plant immunity. Current Opinion Immun,1996,8:3-7
    Shuman LM, Wang J. Effect of rice variety on zinc, cadmium, iron, and manganese cotent in rhizosphere and non-rhizosphere soil fractions. Commun Soil Sci Plant Anal, 1997, 28: 23-36
    Siegel N, Haug A. Aluminium interaction with calmodulin:Evidence for altered structure and function from optical and enzymatic studies. Plant Physiol, 1983, 744: 36-45
    Smirnoff N, Pallanca JE. Ascorbate metabolism in relation to oxidative stress. Biochem Soc Trans,1996,24:472-478
    Smirnoff N. Antioxidant and plant response to the environment: Environment and plant Metabolism. Oxford: BIOS Scientific Publishers, 1995
    Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation.New Phytol, 1993,125:27-31
    Somers Ⅱ, Shive JW. The iron-manganese ralation in plant metabolism. Plant Physiol, 1942, 17:582-602
    Stochs S J, Bagchi D. Oxidative mechanism in the toxicity of metal ions. Free Rad Biol Med, 1995, 18:321-336
    Subrahamanyam D, Rathore VS. Influence of manganese toxicity on photosynthesis in ricebean (Vigna unguiculata) seedlings. Photosynth, 2000, 38:449-453
    Takahashi MA, Asada K. Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophy, 1983,226:558-566
    Tamaoki M, Mukai F, Asai N et al. Light-controlled expression of a gene encoding L-galactono-γ-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana. Plant Sci, 2003, 164:1111-1117
    Temple-Smith MG, Koen TB. Comparative responses of poppy (papaver somniferum L.) and eight cropand vegetable species to manganese excess in solution culture. J Plant Nutr, 1982, 5: 1153-1169
    Terrier N, Deguilloux C, Sauvage FX et al. Proton pumps and anion transport in Vitis vinifera: The inorganic pyrophosphatase plays a predominant role in the energization of the tonoplast. Plant Physiol Biochem, 1988, 36:367-377
    Terry N, Abadia J. Function of iron in chloroplasts. Plant Nutr, 1986, 9:609-646
    Timonin. Microflora of rhizospere in the relation to the manganese-deficiency disese of oats. Proc Soil Sci Soc Am, 1946, 10:284-292
    Tkahama U, Oniki T. Regulation of peroxidase-dependent oxidation of phenolies in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol, 1992, 33:379-387.
    Tkahama U. Redox state of ascorbic acid in the apoplast of stems of Kalanchoe daigremontiana. PhysiolPlant, 1993, 89:791-798
    Vega S, Calisay M, Hue NV. Manganese toxicity in cowpea as affected by soil pH and sewage sludge amendments. J Plant Nutr, 1992, 152:219-231
    Vorm PDJ van der. Dry ashing of plant material and dissolution of the ash in HF for the colorimetric determination of silicon. Comm Soil Sci Plant Anal, 1987, 18:1181-1189
    Wang YS, Wang J, Yang ZM. Salicylic acid modulates aluminium-induced oxidative stress in roots of Cassia tora. Acta Bot Sin, 2004, 46:819-828
    White JA, Scandalios JG. In vitro synthesis, importation and processing of Mn-superoxide dismutase (SOD-3) into maize mitochondria. Biochim Biophys Acta, 1987, 926:16-25
    Willekens H, Chamnongpol S, Davey M et al. Catalase is a sink for H202 and is indispensable for stress defence in C-3 plants. EMBO Jornal, 1997, 16:4806-4816
    Williams DF, Vlamis J. The effect of silicon on yield and manganese-54 uptake and distribution in the leaves of barley plants grown in culture solution. Proc Soil Sci Soc Am, 1957, 32: 404-409
    Williams LE, Lemoine R, Sauer N. Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends Plant Sci, 2000, 5:283-290
    Wissemeier AH, Horst WJ. Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea(Vigna unguiculata(L.) Walp.). Plant Soil, 1992, 143, 2:299-309
    Wu J, Seliskar DM, Gallagher JL. Stress tolerance in the marsh plant Spartina patens: impact of NaCl on growth and root plasma membrane lipid composition. Physiol Plant, 1998, 102: 307-317
    Yarnasaki H, Uefuji H, Sakihama Y et al. Bleaching of the red anthocyanin induced by superoxide radical. Arch Biochem Biophys, 1996, 332:183-186
    Zhang S, Zhou Z, Fu J. Effect of manganese chloride exposure on liver and brain mitochondria function in rats. Environ Res, 2003, 93:149-157
    Zheng X, Van Huystee AB. On tyrosine oxidation by cationic POD. Plant Cell Tiss Organ Culture, 1991, 25:35-44
    Zhu ZJ, Wei GQ, Li J et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci, 2004, 167: 527-533.
    Zoccchi G, Cocucci S. Fe uptake mechanism in Fe-efficient cucumber roots. Plant Physiol, 1990, 92: 908-911
    安国勇,董发才,胡楠等.盐胁迫条件下钙对小麦根细胞膜电位和钾离子吸收的影响.河南大学学报(自然科学版),2002,32(3):25-28
    曹翠玲,高俊凤,曹薇.小麦根细胞质膜氧化还原系统对干旱胁迫反应与K+累积的关系.西北农业大学学报,1996,24(3):25-29
    柴次芳,祝汉民.微量元素化学概论,北京:原子能出版社,1994
    陈国安.菜地土壤的酸化及其治理.长江蔬菜,1996,8:29-31
    陈珈.植物细胞质膜氧化还原系统.植物学通报,1994,11(2):1-10
    陈坤明,宫海军,王锁民.植物谷胱甘肽代谢与环境胁迫.西北植物学报,2004,24(6):1119-1130
    陈日远,曾绮玲,苏蔚等.遮光对里莎蕨生长与一些生理的影响.华南农业大学学报,1999,20(3):77-80
    陈思学,焦新之.植物质膜氧化还原系统的生理作用,生命科学,1995,7(4):24-31
    陈思学,李琳,颜季琼等.杜氏盐藻细胞质膜氧化还原系统与K~+吸收.植物学报,1996,38(4):295-301
    陈思学,颜季琼.植物质膜氧化还原作用.生物学通报,1996,31(10):4-6
    迟伟,王荣富,张成林.遮荫条件下草莓的光合特性的变化.应用生态学报,2001,12(4):566-568
    储玲,刘登义,王友保等.铜污染对三叶草幼苗生长及活性氧代谢影响的研究.应用生态学报,2004,15(1):119-122
    丁维新.不同耕作制度对土壤中锰贮存形态及其有效性的影响.热带亚热带土壤科学,1994,3(3):15
    宫海军,陈坤明,陈国仓等.春小麦叶片质膜氧化还原系统及其对缓慢干旱胁迫的响应.西 北植物学报,2003,23(2):229-234
    桂宝康.职业卫生与安全百科全书,第一版,北京:中国大百科全书出版社,1987
    郝鲁宁,余叔文.大麦根细胞质膜Ca~(*2+)-ATP酶和Ca~(2+)转运系统的特性.植物生理学报,1993,19(2):172-180
    何电源.中国南方土壤肥力与栽培植物施肥.科学出版社,北京:1994
    何龙飞,刘友良,沈振国等.铝对小麦根细胞质膜ATP酶活性和膜质组成的影响.中国农业科学,2001,34(5):465-468
    何龙飞,沈振国,刘友良.铝胁迫下钙对小麦根系细胞质膜ATP酶活性和膜脂组成的效应.中国农业科学,2003,36(10):1139-1142
    何龙飞,沈振国,刘友良等.铝胁迫对小麦根系液泡膜ATP酶、焦磷酸酶和膜脂组成的效应.植物生理学报,1999,25(4):350-356
    何亚丽,刘友良,陈权等.水杨酸和热锻炼诱导的高羊茅幼苗的耐热性与抗氧化的关系.植物生理与分子生物学学报,2002,28(2):89-95
    黄爱霞,余小平.水杨酸对黄瓜幼苗抗冷性的影响.陕西师范大学学报(自然科学版),2003,31(3):107-109
    黄昌勇,沈冰.对大麦铝毒的消除和缓解作用研究.植物营养与肥料学报,2003,9(1):98-101
    纪秀娥,张美善,于海秋等.植物的硅素营养.农业与技术,1998,2:11-13
    黎晓峰,顾明华,白厚义等.水稻锰毒与铁素营养关系的研究.广西农业大学学报,1996,15(3):190-194
    李春九,石伟勇,陈美意等.杭州市菜园土壤酸化问题的研究.浙江农业大学学报,1995,21(5):460
    李国婧,周燮.水杨酸与植物抗非生物胁迫.植物学通报,2001,18(3):295-302
    李红玉,何晨阳,王金生.活性氧对植物防卫信号传导的作用探讨.农业生物技术学报,1996,4(2):190-196
    李花粉,张福锁,李春俭等.根分泌物对根际重金属动态的影响.环境科学学报,1998,18(2):199-203
    李学军,吕世华,张福锁等.土壤中锰的化学行为及其生物有效性.土壤农化通报,1998,13(1):51-57
    李兆亮,原永兵,刘成连等.水杨酸对黄瓜叶片抗氧化剂酶系的调节作用.植物学报,1998,40(4):356-361
    李志洪,田淑珍,孙艳君等.白浆型床土人参红皮病发生原因的研究.土壤学报,1997,4(2):328-335
    梁艳荣,胡晓红,张颍力等.植物过氧化物酶生理功能研究进展.内蒙古农业大学不报,2003,24(2):110-113
    梁永超,孙万春.硅和诱导接种对黄瓜碳疽病的抗性研究.中国农业科学,2002,32(6):75-83
    梁永超,张永春,马同生.植物的硅营养.土壤学进展,1993,21(3):7-14
    廖祥如,陈彤,刘小丽.植物液泡的形成及其功能.细胞生物学杂志,2002,24(2):95-101
    林建军,魏幼璋.植物细胞Ca~(2+)的微调系统—Ca~(2+)-ATPase.植物学通报,2001,18(2):190-196
    刘慧英.嫁接影响西瓜果实品质和幼苗抗冷性的生理机制研究.浙江大学博士论文,2003
    刘鑫,朱端卫,雷宏军等.酸性土壤活性锰与pH、Eh关系及其生物反应.植物营养与肥料学报,2003,9(3):317-323
    毛桂莲,许兴,徐兆桢.植物质膜H~+-ATPase及其在胁迫中的反应.宁夏农学院学报,2003,24(4):81-91
    潘根兴.土壤酸化过程中的土壤化学分析.生态学杂志,1990,9(6):48-52
    强维亚,杨晖,陈拓等.镉和增强紫外线2B辐射复合作用对大豆生长的影响.应用生态学报,2004,15(4):697-700
    邱全胜,李琳,梁厚果等.水分胁迫对小麦根细胞质膜氧化还原系统的影响.植物生理学报,1994,20(2):145-151
    邱泽生,张力,杨志伟.植物细胞质膜氧化还原系统.植物生理学通讯,1993,29(4):306-314
    全国土壤普查办公室.中国土壤.北京:中国农业出版社,1998:965-971
    仁红旭,陈雄,孙国钧等.抗旱性不同的小麦幼苗对水分和NaCl胁迫的反应.应用生态学报,2000,11(5):718-722
    沈文飚,黄丽琴,徐朗莱.植物抗坏血酸过氧化物酶.生命的化学,1997,17(5):24-26
    沈振国,刘友良,陈怀满.整合剂对重金属超量积累植物Thlaspi caerulescens的锌、铜、锰和铁吸收的影响.植物生理学报,1998,24(4):340-346
    施益华,刘鹏.锰在植物体内生理功能研究进展.江西林业科技,2003,2:26-28
    史庆华,朱祝军,Al-aghabary K等.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报,2004,10(2):188-191
    史庆华,朱祝军,Al-aghabary K等.等渗盐胁迫对番茄抗氧化酶和ATP酶及焦磷酸酶活性的影响.植物生理与分子生物学学报,2004,30(3):311-316
    孙大业.植物细胞信号转导研究进展。植物生理学通讯,1996,32(2):81-91
    孙光闻.小白菜镉积累及毒害生理机制的研究,浙江大学博士论文,2004
    孙艳,王亚娟.水杨酸对黄瓜幼苗光合氧化胁迫的缓解效应.西北农林科技大学学报(自然科学版,2004,32(5):38-40
    孙玉,陈珈.植物细胞质膜氧化还原系统与信号转导.植物生理学通讯,1997,33(3):161-167
    田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展.武汉植物学研究,2001,19(4):332-344
    汪良驹,刘友良.植物细胞中的液泡及其生理功能.植物生理学通讯,1998,34(5):394-400
    王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系.植物生理学通讯,1990,6:55-57
    王宝山,赵可夫,Luttge U.盐生车前根液泡膜ATPase对盐胁迫的响应.西北植物学报,1995,15(3):189-196
    王宝山,赵可夫.NaCl胁迫对玉米根质膜H~+分泌和氧化还原系统的影响.植物学报,1997,39(4):341-346
    王宝山,邹琦.NaCl胁迫对高梁根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响.植物 生理学报,2000,26(3):181-188
    王宝山,邹琦.质膜转运蛋白及其与植物耐盐性关系研究进展.植物学通报,2000,17(1):7-26
    王精明,李洪清,李美茹.水稻幼苗根细胞质膜和液泡膜微囊Ca~(2+)-A/P酶的特性.植物生理学通讯,2004,40(1):22-26
    王凯荣,周建林,龚慧群.土壤镉污染对苎麻的生长毒害效应.应用生态学报,2000,11(5):773-776
    王可玢,许春辉,赵福洪等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响.生物物理学报,1997,13(2):273-278
    王夔.生命科学中的微量元素(下卷).北京:中国计量出版社,1994,390-414
    王仁雷,华春.高等植物叶绿体中活性氧的产生及清除.生物学通报,1992(9):12-13
    王延枝.植物液泡膜上的焦磷酸酶.植物生理学通讯,1990,4:73-76
    网松华,杨志敏,徐朗莱.植物铜素毒害及其抗性机制研究进展.生态环境,2003,12(3):336-341
    魏国强.硅提高黄瓜白粉病抗性和耐盐性的生理机制研究.2004,浙江大学博士学位论文
    翁俊,徐春和.光合作用氧释放机理研究进展.植物生理与分子生物学学报,2003,29(2):83-91
    翁晓燕,孙建义.植物细胞质与溶质跨膜运输.生物技术,1997,7(1):4-8
    邬飞波,张国平.不同镉水平下大麦幼苗生长和镉及养分吸收的品种间差异.应用生态学报,2002,13(12):1595-1599
    夏石头,萧浪涛,彭克勤.高等植物中硅元素的生理效应及其在农业生产中的应用.植物生理学通讯,2001,37(4):356-360
    徐坤,邹琦,赵燕.土壤水分胁迫与遮荫对生姜生长特性的影响.应用生态学报,2003,14(10):1645-1648
    徐勤松,施国新,周红卫等.2003.Cd、Zn复合污染对水车前叶绿素含量和活性氧清除系统的影响.生态学杂志,2003,22(1):5-8
    许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯,1997,33(4):241-244
    许明丽,孙晓艳,文江祁.水杨酸对水分胁迫下小麦幼苗叶片膜损伤的保护作用.植物生理学通讯,2000,1:35-36
    薛继澄,李家金,毕德义等.保护地栽培土壤硝酸盐积累对辣椒生长和锰含量的影响.南京农业大学学报,1995,18(1):53-57
    薛生国,陈英旭,林琦等.中国首次发现的锰超积累植物—商陆.生态学报,2003,23(5):935-937
    阎海,潘纲,霍润兰.铜、锌和锰抑制月形藻生长的毒性效应.环境科学学报,2001,21:328-332
    杨福愉.生物膜的流动性.生物化学与生物物理进展,1981,5:1-6
    殷奎德,马连菊,刘世强.逆境条件下植物活性氧(AOS)的研究进展.沈阳农业大学学报,2003,34(2):147-149
    余叔文,植物生理与分子生物学.北京:科学出版社,1997
    余小平,贺军民,何志学等.水杨酸对黄瓜幼苗盐伤害的缓解效应.陕西师范大学学报(自然科学版),2001,29(3):99-101
    余小平,贺军民,张键等.水杨酸对盐胁迫下黄瓜幼苗生长抑制的缓解效应.西北植物学报,2002,22(2):401-405
    於丙军,龚红梅,李名旺.葡聚糖与蔗糖密度梯度离心制备膜微囊方法的比较.南京农业大学学报,1997,20(4):14-18
    岳才军,陈珈.以谷胱甘肽为电子供体的细胞质膜氧化还原系统.植物学报,1997,39(5):433-438
    曾韶西,王以柔,刘鸿先.低温下黄瓜幼苗子叶硫氢基(SH)含量变化与膜脂过氧化.植物学报,1991,33(1):50-54
    张尔贤,陈杰,顾伟文等.乌梅果超氧化物歧化酶的纯化和部分性质研究.中国药物杂志,1991,26(7):404-406
    张芬琴,沈振国,刘友良.铝和铝斗钙对小麦幼苗根尖质膜、液泡膜微囊ATP酶和膜流动性的影响.植物生理学报,2000,26(2):105-110
    张福锁.植物营养生态生理学和遗传学.北京:中国科学技术出版社,1993
    张西科,张福锁,毛达如.植物锰中毒研究进展.土壤学进展,1994,22(5):13-21
    赵菲佚,翟禄新,陈荃.CdPb复合处理下对植物膜的伤害初探.兰州大学学报(自然科学版),2002,38(2):115-120
    赵利辉,刘友良.液泡膜H~+-PPase及其对逆境胁迫的反应.植物生理学通讯,1999,35(6):441-445
    周卫,王洪,林葆.Cd胁迫下Ca对Cd在玉米细胞中分布及对叶绿体结构与酶活性的影响.植物营养与肥料学报,1999,5(4):335-340
    朱祝军,喻景权,Gerendas J等.氮素形态和光照强度对烟草生长和H_2O_2清除酶活性的影响.植物营养与肥料学报,1998,4(4):379-385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700