基于室温磷光的H_2O_2传感器对H_2O_2的测定及固态[Ru(dpp)_3][(4-Clph)_4B]_2的电致化学发光行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化氢是一种重要的痕量气体,在空气中它扮演了重要的角色。此外,过氧化氢还广泛的应用于工业生产中。由于过量的过氧化氢是有害的,因此,一个灵敏的、可靠的过氧化氢检测方法在临床、食品、制药以及环境领域中十分重要。
     近年来,已经报道了很多检测过氧化氢的方法,包括滴定法、分光光度法、荧光法、电化学法、化学发光法以及色谱法等。但是,基于室温磷光的过氧化氢传感器还未见报道。在此,我们用溶胶-凝胶法合成了磷光材料纳米TiO_2 / SiO_2复合物,当激发波长为403 nm时,该复合物在450 nm到650 nm范围内有一个很强的磷光吸收峰。在水溶液中存在其他常见离子、酸或者碱的情况下,该复合物的磷光能够被H_2O_2选择性的熄灭。因此,我们用纳米IiO_2/ SiO_2复合物为敏感材料制备了H_2O_2传感器。
     当溶液中存在H_2O_2时,H_2O_2传感器的磷光强度随着溶液中H_2O_2浓度的增加而降低,当H_2O_2的浓度在7.0×10-7到7.0×10-2 mol/L时,H_2O_2浓度与磷光强度的下降程度呈线性关系。并且,其磷光能够在盐酸羟胺等强还原性溶液中恢复,此时,对H_2O_2溶液进行连续测定也出现了线性响应,H_2O_2浓度的线性范围为7.0×10-6到7.0×10-2 mol/L。
     我们还讨论了基于纳米IiO_2/ SiO_2复合物室温磷光的H_2O_2传感器在加过氧化氢后的变化机理。文中指出复合物磷光消失的原因可能是由于H_2O_2的氧化作用,在Ti (IV)上生成了稳定的O-O。我们对它磷光恢复的条件和机理也作了研究。磷光恢复的原因是由于在还原剂的强还原作用下生成的O-O受到破坏,从而恢复到原来的状态。
     H_2O_2的测定在酶反应中非常重要。我们通过测定酶催化反应过程中产生的H_2O_2的量,在葡萄糖氧化酶的存在的情况下,用此传感器可以初步判断溶液中葡萄糖的含量。当存在葡萄糖氧化酶时,滴加不同浓度的葡萄糖溶液,纳米IiO_2/ SiO_2复合物的颜色以及磷光强度都会发生改变。
     我们还用这个H_2O_2传感器测定了两个商品中的H_2O_2浓度。我们提出的方法的测定结果同传统的滴定法一致,每个样品的相对标准偏(RSD)差小于7.0 %。测量结果显示此传感器能够用于实际样品中H_2O_2浓度的测定。
     本文还研究了固态钌(II)络合物([Ru(dpp)_3][(4-Clph)_4B]_2)在氧化铟锡(ITO)电极上的电致化学发光行为。我们用简单的方法将[Ru(dpp)3] [(4-Clph)4B]2固定在ITO电极上,用草酸钠作为共反应剂的时候,[Ru(dpp)3] [(4-Clph)4B]2能够获得强的、稳定的ECL信号。此电致化学发光行为在黑暗中能够用肉眼观察到。并且,[Ru(dpp)_3][(4-Clph)_4B]_2不溶于水,不容易从ITO电极上剥离,因此该电极能够反复使用。此外,我们发现浓度很低的苯酚溶液(2.0×10-8 mol/L)能够使[Ru(dpp)_3][(4-Clph)_4B]_2的ECL信号明显的降低,因此,它有可能测定更低浓度的酚类物质。
Hydrogen peroxide is an important trace gas that plays a significant role in the troposphere. In addition, hydrogen peroxide is also widely used in industrial process. The excess of hydrogen peroxide are hazardous, so, a sensitive and reliable detection method for hydrogen peroxide is of great importance in clinical, food, pharmaceutical and environmental fields.
     In recent years, a great number of methods for H2O2 determination have been reported, including titrimetric, spectrophotometric, fluorescence, electrochemical, chemiluminescence, and chromatographic methods However, H2O2 sensor based on room-temperature phosphorescence is seldom reported. In this study, the phosphorescence material of nano TiO2/SiO_2 composite oxides which produces highly emissive broadband phosphorescence from 450 nm to 650 nm at an excitation wavelength of 403 nm was synthesized with sol-gel method, and it exhibited a remarkable selective phosphorescence quench toward hydrogen peroxide in the presence of common ions, acids, and bases in aqueous solution. So, we fabricate H_2O_2 sensor using nano TiO2/SiO_2 composite oxides as sensitive material.
     In the presence of H_2O_2, the phosphorescence intensity of the H_2O_2 sensor is reduced gradually as H_2O_2 concentration increased. There are linear relationships between phosphorescence intensity and H_2O_2 concentration ranging from 7.0×10-7 to 7.0×10-2 mol/L. Moreover, the phosphorescence of the H_2O_2 sensor can be recovered in strong reducing agents, such as hydroxylamine hydrochloride solution and also exhibit good linear response in H_2O_2 concentration going from 7.0×10-6 to 7.0×10-2 mol/L of successive determination.
     We studied the mechanism of the change of the H_2O_2 sensor based on room- temperature phosphorescence of TiO2/SiO_2 composite after adding H_2O_2. It suggested that the reason of disappearance of the phosphorescence after adding H_2O_2 is owe to formation of stability of O-O moieties on Ti(IV) species. We also studied the conditions and mechanism of phosphorescence recovery. The phosphorescence recovery of the composite is owe to the strong reducibility of hydroxylamine hydrochloride, which can destroy the O-O bond and make it reduction.
     The determination of H_2O_2 is of great importance in enzyme reaction. We can determine the concentration of glucose in the prescence of glucose oxidase through determination of H_2O_2 producing during the process of the enzymatic catalytic reaction. In the presence of glucose oxidase, the color and the phosphorescence intensity change of nano TiO2/SiO_2 composite oxides also took place when different concentrations of glucose solution were added.
     Using this H_2O_2 sensor, we can determinate the the H_2O_2 concentration in two commercial samples. Satisfactory agreement between the proposed method and titrimetric method was obtained and the relative standard deviation (R.S.D) was less than 7.0 % for each sample. The results indicate that the sensor is suitable for the determination of H_2O_2 real samples.
     The electrochemiluminescence (ECL) based on solid-state Ruthenium (II) complexes ([Ru(dpp)_3][(4-Clph)_4B]_2) on indium-doped tin oxide (ITO) electrode is also described here. The proposed method used simple method to immobilize [Ru(dpp)_3][(4-Clph)_4B]_2 on ITO electrode and [Ru(dpp)_3][(4-Clph)_4B]_2 can obtain strong and stable ECL signals using oxalate as the co-reactant. The ECL could be observed with naked eye in dark room. Moreover, [Ru(dpp)_3][(4-Clph)_4B]_2 was not dissolve in aqueous solution and will not cause leaching from the ITO electrode,so it can be used reproducibly. Further more, we found the obvious inhibition of [Ru(dpp)_3][(4-Clph)_4B]_2 ECL by the very low phenol concentration (2.0×10-8 mol/L), so it has the potential possibility to determine lower concentration of phenolic compounds.
引文
[1] Dislich H. New routes to multicomponent oxide glasses [J]. Angew. Chem. Int. Ed. Engl., 1971, 10:363-370.
    [2] 王芳辉, 朱红, 高苏珍. 溶胶-凝胶技术的应用及研究进展[J]. 化工时刊, 2003, 17:4 -8.
    [3] 朱冬生, 赵朝晖, 吴会军, 李军. 溶胶-凝胶法制备纳米薄的研究进展[J]. 材料导报, 2003, 17:53-55.
    [4] 邱泽皓, 叶巧明. 溶胶-凝胶法制备有机/无机杂化材料工艺及其应用[J]. 广州化学, 2006, 31:40-45.
    [5] Hench L L, West J K. The sol-gel process [J]. Chem. Rev., 1990, 90, 33-72.
    [6] 张庆合, 冯钰, 达世禄. 溶胶-凝胶技术在分析化学中的应用进展[J]. 化学通报, 1999, 6:8-13.
    [7] Unger K, Schick-Kalb J, Krebs K-F. Prepration of porous silica spheres for column liquid [J]. J. Chromatogra., 1973, 83:5-9.
    [8] Dvorak O, De Armond M K, Electrode modification by the sol-gel method [J]. J. Phys. Chem., 1993, 97:2646-2648.
    [9] Wang J, Pamidi P V A, Park D S. Screen-printable sol-gel enzyme-containing carbon inks [J]. Anal. Chem., 1996, 68:2705-2708.
    [10] Rottman C, Ottolenghi M, Zusman R, Lev O, Smith M, Gong G, Kagan M L, Avnir D. Doped sol-gel glasses as pH sensors [J]. Mater. Chem., 1992, 13:293-298.
    [11] 王大伟, 黄世震. WO3基低浓度 NO2气敏传感器的研究[J]. 计测技术, 2006, 26:50-53.
    [12] 张亚彦, 林荔, 苏必桔. 碘化钾电蓝分光光度法测定微量过氧化氢[J]. 分析试验室,2001,20:41-42.
    [13] Zhu M, Huang X, Liu L, Shen H. Spectropotometric determination of hydrogen peroxide by using the cleavage of Eriochrome black T in the presence of peroxidase [J]. Talanta, 1997, 44:1407-1412.
    [14] Matsubara C, Kudo K, Kawashita T, Takamura K. Spectropotometric determination of hydrogen peroxide with titanium 2 - ( (5 - bromopyridyl) azo) - 5 - (N - propyl - N - sulfopropylamino) phenol reagent and its application to the determination of serum glucoseusing glucose oxidase [J]. Anal. Chem., 1985, 57:1107-1109.
    [15] Tanner P A, Wong A Y S. Spectropotometric determination of hydrogen peroxide in rainwater [J]. Anal. Chim. Acta., 1998, 370:279-287.
    [16] Mori I, Takasaki K, Fujita Y, Matsuo T. Selective and sensitive fluorometric determinations of cobalt (II) and hydrogen peroxide with fluorescein-hydrazide [J]. Talanta, 1998, 47:631-637.
    [17] Wolfbeis O S, Dürkop A, Wu M, Lin Z. A europium - ion - based luminescent sensing probe for hydrogen peroxide [J]. Angew. Chem. Int. Ed. 2002, 41:4495-4498.
    [18] Harrar J E. Controlled - potehtial coulometric determination of hydrogen peroxide [J]. Anal. Chem., 1963, 35:893-896.
    [19] Somasundrum M, Kirtikara K, Tanticharoen M. Amperometric determination of hydrogen peroxide by direct and catalytic reduction at a copper electrode [J]. Anal. Chim. Acta., 1996, 319:59-70.
    [20] Wang K, Glaze W H. High - performance liquid chromatography with postcolumn derivatization for simultaneous determination of organic peroxides and hydrogen peroxide [J]. J. Chromatogr. A, 1998, 822:207-213.
    [21] Osborne P G, Yamamoto K. Disposable, enzymatically modified printed film carbon electrodes for use in the high - performance liquid chromatographic – electrochemical detection of glucose ot hydrogen peroxide from immobilized enzyme reactors [J]. J. Chromatogr. B, 1998, 707:3-8.
    [22] Choi M M F, Yiu T P. Immobilization of beef liver catalase on eggshell membrane for fabrication of hydrogen peroxide biosensor [J]. Enzyme and Microbial Technology, 2004, 34:41-47.
    [23] Yang R, Ruan C, Deng J. A H2O2 biosensor based on immobilization of horseradish peroxide in electropolymerized methylene green film on GCE [J]. J. Appl. Electrochem., 1998, 28:1269-1275.
    [24] Skulachev V P. H2O2 sensors of lungs and blood vessels and their role in the antioxidant defense of the body [J]. Biochemistry, 2001, 66:1425-1429.
    [25] Sun N, Guan L, Shi Z, Li N, Gu Z, Zhu Z, Li M, Shao Y. Ferrocene peapod modified electrodes: preparation, characterization, and mediation of H2O2 [J]. Anal. Chem., 2006,78:6050-6057.
    [26] Li J, Tan S N, Oh J T. Silica sol – gel immobilized amperometric enzyme electrode for peroxide determiantion in the organic phase [J]. J. Electroanal. Chem., 1998, 448:69-77.
    [27] Chen X-L, Li D-H, Yang H-H, Zhu Q-Z, Zheng H, Xu J-G. Study of tetra - substituted amino aluminum phthalocyanine as a new red-region substrate for the fluorometric determination of peroxidase and hydrogen peroxide [J]. Ananl. Chim. Acta., 2001, 434:51-58.
    [28] 樊义峰. 过氧化氢色度测定方法研究[J]. 黎明化工,1992,31:31-33.
    [29] Kiassen N V, Marchington D, McGowant H C E. H2O2 determination by the I3- method and by KMnO4 titration [J]. Anal. Chem., 1994, 66:2921-2925.
    [30] 周增柟, 陈健, 范小芹, 李芳. 流动注射分析光度法测定过氧化氢[J]. 中国纺织大学学报, 1990, 16:79-84.
    [31] 范华锋, 张忠义, 刘振林. 分光光度法测定食品中的过氧化氢[J]. 中国卫生检验杂志, 2006,16:1079-1080.
    [32] 徐晓斌, 王美蓉, 邵可声, 唐孝炎. 大气降水中 H2O2 的分析测定方法[J]. 环境化学, 1990, 9:26-31.
    [33] Masuoka N, Wakimoto M, Ubuka T, Nakano T. Spectrophotometric determination of hydrogen peroxide: catalase activity and rates of hyfrogen peroxide removal by erythrocytes [J]. Clinica Chimica Acta, 1996, 254:101-112.
    [34] Khayyami M, Johansson G, Kriz D, Xie B, Larsson P-O, Danielson B. Flow – injection determination of trace hydrogen peroxide or glucose utilizing an amperometric biosensor based on glucose oxidase bound to a reticulated vitreous carbon electrode [J]. Talanta, 1996, 43:957-962.
    [35] Zambonin C G, Losito I. Kinetic investigation of the reactions connected to the system ascorbate + O2 by amperometric detection of H2O2 at a modified Platinum electrode [J]. Anal. Chem., 1997, 69:4113-4119.
    [36] Darder M, Takada K, Pariente F, Lorenzo E, Abrun H D. Dithiobissuccinimidyl propionate as an anchor assembling peroxidases at electrodes Surfaces and its application in a H2O2 biosensor [J]. Anal. Chem., 1999, 71:5530-5537.
    [37] Yamamoto K, Shi G, Zhou T, Xu F, Xu J, Kato T, Jin J – Y, Jin L. Study of carbon nanotubes – HRP modified electrode and its application for novel on – line biosensors [J]. Analyst,2003, 128:249-254.
    [38] 张凌燕, 袁若, 柴雅琴, 曹淑瑞, 黎雪莲, 王娜. 基于辣根过氧化物酶/纳米金/辣根过氧化物酶/多壁纳米碳管修饰的过氧化氢生物传感器的研究[J]. 化学学报, 2006, 64:1711-1715
    [39] 李华清, 刘春秀, 郭宗慧, 姜利英, 催大付, 蔡新霞. 氧化还原聚合物修饰的过氧化氢传感器的研究[J]. 传感技术学报, 2006, 19:549-551.
    [40] Miah M R, Ohsaka T. Cathodic detection of H2O2 using iodide – modified gold electrode in alkaline media [J]. Anal. Chem., 2006, 78, 1200-1205.
    [41] Jie N, Yang J, Huang X, Zhang R, Song Z. Fluorimetric determination of hydrogen peroxide in water using acetaminophen [J]. Talanta, 1995, 42:1575-1579.
    [42] Sakuragawa A, Taniai T, Okutani T. Fluorometric determination of microamounts of hydrogen peroxide with an immobilized enzyme perpared by coupling horseradish peroxidase to chitosan beads [J]. Anal. Chim. Acta., 1998, 374:191-200.
    [43] 陈秋影, 李东辉, 郑洪, 杨黄浩, 许金钩. 四磺基铁酞菁做为过氧化物模拟酶在过氧化氢及葡萄糖测定中的应用[J]. 分析化学, 1999, 27:997-999.
    [44] 朱昌青, 李东辉, 郑洪, 朱庆枝, 许金钩. 利用四磺基锰酞菁催化酪氨酸与过氧化氢荧光反应测定环境水样中的过氧化氢[J]. 厦门大学学报(自然科学版), 2001, 40:68-73.
    [45] 迟晓妮, 李金焕, 王玲玲, 温晓甜, 高吉刚, 周杰. 非酶反应体系过氧化氢含量荧光测定方法研究及分析应用[J]. 山东农业大学学报(自然科学版), 2005, 36:377-380.
    [46] Tsourkas A, Newton G, Perez J M, Basilion J P, Weissleder R. Detection of peroxidase / H2O2 – mediated oxidation with enhanced yellow fluorescent protein [J]. Anal. Chem., 2005, 77:2862-2867.
    [47] Navas M J, Jiménez A M, Galán G. Air analysis: determination of hydrogen peroxide by chemiluminescence [J]. Atmospheric Environment, 1999, 33:2279-2283.
    [48] 刘昱, 赵慧春, 易琳, 孙春燕, 陈世稆. H2O2 的 KMnO4 – Luminol 化学发光体系测[J]. 分析测试学报, 2003, 22:91-93.
    [49] 常薇, 郁翠华, 杨定国. 流动注射-化学发光法测定降水中微量过氧化氢[J]. 甘肃环境研究与监测, 2003, 16:104-105.
    [50] Li B, Zhang Z, Zhao L. Chemiluminescent flow-through sensor for hydrogen peroxide based on sol – gel immobilized hemoglobin as catalyst [J]. Anal. Chim. Acta., 2001, 445:161-167.
    [51] Janasek D, Spohn U, Beckmann D. Novel chemiluminometric H2O2 sensors for the selective flow injection analysis [J]. Sensors and Actuators B, 1998, 51:107-113.
    [52] 瞿鹏, 李保新, 章竹君. 流通式化学发光植物组织传感器测定过氧化氢[J]. 分析化学, 2003, 31:1240-1243.
    [53] Lin J-M, Arakawa H, Yamada M. Flow injection chemiluminescent determination of trace amounts of hydrogen peroxide in snow-water using KIO4 - K2CO3 system [J]. Anal. Chim. Acta., 1998, 371:171-176.
    [54] Ma Q, Ma H, Wang Z, Su M, Xiao H, Liang S. Synthesis of a novel chemiluminescent reagent for the determination of hydrogen peroxide in snow waters [J]. Talanta, 2001, 53:983-990.
    [55] Luo L, Zhang Z, Hou L. Development of a gold nanoparticles based chemiluminescence imaging assay and its application [J]. Anal. Chim. Acta., 2007, 584:106-111.
    [56] Oszwaldowski S, Lipka R, Jarosz M. Sensitive reversed – phase liquid chromatographic determination of hydrogen peroxide and glucose based on ternary vanadium (V) - hydrogen peroxide - 2 (5 - bromo - 2 - pyridylazo) - 5 - diethylaminophenol system [J]. Anal. Chim. Acta., 2000, 421:35-43.
    [57] 徐金荣,陈忠明. 高效液相色谱-荧光检测法测定环境样品中的过氧化物[J]. 色谱, 2005, 23:366-369.
    [58] Wada M, Inoue K, Ihara A, Kishikawa N, Nakashima K, Kuroda N. Determination of organic peoxides by liquid chromatography with on – line post – column ultraviolet irradiation and peroxyoxalate chemiluminescence detection [J]. J. Chromatogr. A, 2003, 987;189-195.
    [59] 胡俊明, 石文鹏, 林少彬. 高效液相色谱法测定化妆品中过氧化氢的方法研究[J]. 中国卫生检验杂志,2003, 13:593-596.
    [61] Roth M. Phosphorescence à température or dinaire: un moyen sélectif et non destructif pour la détection de certains composés aromatiques en chroatographie sur couche de cellulose [J]. J. Chromatogr. A, 1967, 30:276-278.
    [62] 郑用熙, 王志刚. 几种室温磷光法的回顾和展望 [J]. 分析化学, 1987, 15:582-560.
    [63] 陈国珍, 黄贤智, 郑朱梓, 许金钩, 王尊本. 荧光分析法(第二版)[M]. 北京: 科学出版社, 1990.
    [64] 张海容. 室温磷光化学传感器研究进展[J]. 忻州师院学报, 2000, 16:25-43.
    [65] Richter M M. Electrochemiluminescence (ECL) [J]. Chem. Rev., 2004, 104:3003-3036.
    [66] Rubinstein I, Bard A J. Electrogenerated Chemiluminescence. 37. Aqueous Ecl systems based on Ru (2, 2’ - bipyridine)32+ and oxalate or organic acids [J]. J. Am. Chem. Soc., 1981, 103, 512-516.
    [67] Leland J K, Bard A J. Electrogenerated chemiluminescence: a oxidative – reduction type ECL reation sequence tripropylamine [J]. J. Electrochem. Soc., 1990, 137, 3127-3129.
    [68] Sakura S. Electrochemiluminescence of hydrogen peroxide – luminal at a carbon electrode [J]. Anal. Chim. Acta, 1992, 262, 49-57.
    [69] Hercules D M. Chemiluminescence resulting from electrochemically generated species [J]. science, 1964, 145:808-809.
    [70] Visco R E, Chandross E A. Electroluminescence in solutions of aromatic hydrocarbons [J]. J. Am. Chem. Soc., 1964, 86:5350-5351.
    [71] Tokel N E, Bard A J. Electrogenerated chemiluminescence. IX. electrochemistry and emission from systems containing tris (2,2'-bipyridine) ruthenium (II) dichloride [J]. J. Am. Chem. Soc., 1972, 94:2862-2863.
    [72] Guan J, Lv B, Zhou Z, Hou X, Xiao D. An oxygen sensor based on Ru(bpy)32+/agar gel modified electrode for the determination dissolved oxygen in organic solvents [J]. Sensor Lett., 2006, 4:1-5.
    [73] Sun X, Du Y, Dong S, Wang E. Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection [J]. Anal. Chem., 2005, 77:8166-8169.
    [74] Zhang L, Dong S. Electrogenerated chemiluminescence sensors using Ru(bpy)32+ doped in silica nanoparticles [J]. Anal. Chem., 2006, 78:5119-5123.
    [75] Maus R G, Wightman M. Microscopic Imaging with Electrogenerated Chemilumin- escence [J]. Anal. Chem., 2001, 73:3993-3998.
    [76] Kim J I, Shin I-S, Kim H, Lee J-K. Efficient electrogenerated chemiluminescence from cyclometalated iridium (III) complexes [J]. J. Am. Chem. Soc., 2005, 127:1614-1615.
    [77] Guo Z, Shen Y, Wang M, Zhao F, Dong S. Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles / tris (2, 2’-bipyridyl) ruthenium (II) multilayer films on Indium tin oxide electrodes [J]. Anal. Chem., 2004, 76:184-191.
    [78] Miao W, Bard A J. Electrogenerated chemiluminescence. 72. determination of immobilized DNA and c - reactive protein on Au (111) electrodes using tris (2, 2’ - bipyridyl) ruthenium (II) labels [J]. Anal. Chem., 2003, 75:5825-5834.
    [79] Guo H, Dong S. Electrogenerated chemiluminescence from Ru(bpy)32+ ion - exchanged in carbon nanotube / perfluorosulfonated ionomer composite films [J]. Anal. Chem., 2004, 76:2683-2688.
    [80] Miao W, Bard A J. Electrogenerated chemiluminescence. 80. c-reactive protein determination at high amplification with [Ru(bpy)3]2+ - containing microspheres [J]. Anal. Chem., 2004, 76:7109-7113.
    [81] Bucur C B, Schlenoff J B. Electrogenerated chemiluminescence in polyelectrolyte multilayers: efficiency and mechanism [J]. Anal. Chem., 2006, 78:2360-2365.
    [82] Choi H N, Cho S-H, Lee W-Y. Electrogenerated chemiluminescence from tris (2, 2’ - bipyridyl) ruthenium (II) immobilized in titania - perfluorosulfonated ionomer composite films [J]. Anal. Chem., 2003, 75:4250-4256.
    [83] Fang L, Yin X, Sun X, Wang E. Determination of disopyramide in human urine by capillary electrophoresis with electrochemiluminescence detection of tris (2, 2’ - bipyridyl) ruthenium (II) [J]. Anal. Chim. Acta., 2005, 537:25-30.
    [84] Hai Y, Yuan H, Xiao D. High electrochemiluminescence intensity of the Ru(bpy)32+/oxalate system on a platinum net electrode [J]. Microchim Acta, 2007, 157:127-131.
    [85] Cui H, Zhao X-Y, Lin X-Q. Cathodic electrochemiluminescence of Ru(bpy)32+ / nafion coated on graphite oxide electrode in purely aqueous solution [J]. Luminescence, 2003, 18:199–202.
    [86] Byrd J, Bruno J. G, Richter M M. Electrochemiluminescence of dipicolinic acid (DPA) and (bpy)2Ru(DPA)+ (bpy = 2,2′-bipyridine) [J]. Luminescence, 2006, 21:72–76.
    [87] Morita H, Konishi M. Electrogenerated chemiluminescence derivatization reagent, 3 - isobutyl - 9, 10 - dimethoxy - 1,3,4,6,7,11 bhexahydro - 2H - pyrido [2,1 - a] isoquinolin - 2 - ylamine, for carboxylic acid in high-performance liquid chromatography using tris (2,2’ - bipyridine) ruthenium (II) [J]. Anal. Chem., 2003, 75:940-946.
    [88] Cui H, Li F, Shi M-J, Pang Y-Q, Lin X-Q. Inhibition of Ru complex electrochemilum- inescence by phenols and anilines [J]. Electroanalysis, 2005, 17:589-598.
    [89] Zheng H, Zu Y. Highly efficient quenching of coreactant electrogenerate chemiluminescenceby phenolic compounds [J]. J. Phys. Chem. B, 2005, 109:16047-16051.
    [90] Spehar A-M, Koster S, Kulmala S, Verpoorte E, Rooij N de, Koudelka-Hep, M. The quenching of electrochemiluminescence upon oligonucleotide hybridization [J]. Luminescence, 2004, 19, 287–295.
    [91] Wightman R M, Forry S P, Maus R, Badocco D, Pastore P. Rate - determining step in the electrogenerated chemiluminescence from tertiary amines with tris (2, 2’ - bipyridyl) ruthenium (II) [J]. J. Phys. Chem. B, 2004, 108:19119-19125.
    [92] Yu J, Zhao X, Yu J C, Zhong G , Han J, Zhao Q. The grain size and surface hydroxyl content of super-hydrophilic TiO2 / SiO2 composite nanometer thin films [J]. J. Mater. Sci. Lett., 2001, 20, 1745–1748.
    [93] Samantaray S K, Parida K, Kinet R. SO42- / TiO2 - SiO2 mixed oxide catalyst, 3. an eco – friendly catalyst for esterification of a acetic acid [J]. Catal. Lett., 2003, 78:381-387.
    [94] Zhai J W, Zhang L Y, Yao X, Shi W S. Sol–gel preparation and optical non – linearity of CdS microcrystallite-doped SiO2 – TiO2 thin films [J]. J. Mater. Sci. Lett., 1999, 18:1107–1109.
    [95] Lee J H, Choi S Y, Kim C E, Kim G D. The effects of initial sol parameters on the microstructure and optical transparency of TiO2 / SiO2 binary aerogels [J]. J. Mater. Sci., 1997, 32:3577–3585.
    [96] Bonoldi L, Busetto C, Congiu A, Marra G , Ranghino G , Salvalaggio M, Spano G , Giamello E. An ESR study of titanium-silicalite in presence of H2O2 [J]. Spectrochim. Acta. A, 2002, 58:1143-1154.
    [97] Ding S-N, Xu J-J, Chen H-Y. Tris (2, 2’ - bipyridyl)ruthenium (II) - zirconia - Nafion composite films applied as solid-state electrochemiluminescence detector for capillary electrophoresis [J]. Electrophoresis 2005, 26:1737–1744.
    [98] Zhang X, Bard A J. Eiectrogenerated chemiluminescent emission from an organized (L-B) monolayer of a Ru(bpy)32+ - based surfactant on semiconductor and metal electrodes [J]. J. Phys. Chem., 1988, 92:5566-5569.
    [99] Miller C J, Mcmord P, Bard A J. Study of langmuir monolayers of ruthenium complexes and their aggregation by electrogenerated chemiluminescence [J]. Langmuir, 1991, 7:2781-2787.
    [100] Obeng Y S, Bard A J. Electrogenerated chemiluminescence. 53. electrochemistry and emission from adsorbed monolayers of a tris (bipyridyl) ruthenium (II) - based surfactant ongold and tin oxide electrodes [J]. Langmuir, 1991, 7:196-201.
    [101] Sato Y, Uosaki K. Electrochemical and electrogenerated chemiluminescence properties of tris (2, 2' - bipyridine) ruthenium (II) - tridecanethiol derivative on ITO and gold electrodes [J]. J. Electroanal. Chem., 1995, 384:57-66.
    [102] Sun X, Du Y, Zhang L, Dong S, Wang E. Luminescent supramolecular microstructures containing Ru(bpy)32+: solution-based self-assembly preparation and solid - state electro- chemiluminescence detection application [J]. Anal. Chem., 2007, 79:2588-2592.
    [103] Klimant I, Wolfbeis O S. Oxygen - sensitive luminescent materials based on silicone - solubel ruthenium dilmine complexes [J]. Anal. Chem., 1995, 67:3160-3166.
    [104] Li L S, Wang R, Fitzsimmons M, Li D Q. Surface electronic properties of self - assembled, oppositely charged macrocycle and polymer multilayers on conductive oxides [J]. J. Phys. Chem. B, 2000, 104:11195-11201.
    [105] Yu A, Liang Z, Cho J, Caruso F. Nanostructured electrochemical sensor based on dense gold nanoparticle films [J]. Nano Lett., 2003, 3:1203-1207.
    [106] Lin F, Pang Y-Q, Lin X-Q, Cui H. Determination of noradrenaline and dopamine in pharmaceutical injection samples by inhibition flow injection electrochemiluminescence of ruthenium complexes [J]. Talanta 2003, 59:627-636.
    [107] Zhao X, You T, Qiu H, Yan J, Yang X, Wang E. Electrochemiluminescence detection with integrated indium tin oxide electrode on electrophoretic microchip for direct bioanalysis of lincomycin in the urine [J]. J. Chromatogr. B, 2004, 810:137-142.
    [108] Pang Y-Q, Cui H, Zheng H-S, Wan G-H, Liu L-J, Yu X-F. Flow injection analysis of tetracyclines using inhibited Ru(bpy)32+ / tripropylamine electrochemiluminescence system [J]. Luminescence, 2005, 20:8-15.
    [109] McCall J, Alecander C, Richter M M. Quenching of electrogenerated chemiluminescence by phenols, hydroquinones, catechols, and benzoquinones [J]. Anal. Chem., 1999, 71:2523-2527.
    [110] McCall J, Richter M M. Phenol substituent effects on electrogenerated chemiluminescence quenching [J]. Analyst, 2000, 125:545-548.
    [111] Ala-Kleme T, Kulmala S, Jiang Q. Generation of free radicals and electrochemi- luminescence from simple aromatic molecules in aqueous solutions [J]. Luminescence, 2006,21:118-125.
    [112] Zheng H, Zu Y. Emission of tris (2, 2’ - bipyridine) ruthenium (II) by coreactant electrogenerated chemiluminescence: from O2 - insensitive to highly O2 - sensitive [J]. J. Phys. Chem. B, 2005, 109:12049-12053.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700