岩溶上覆风化壳的粒度分布特征及其对物源和形成过程的指示意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以贵州为中心的中国西南岩溶区是世界上连片分布面积最大的岩溶区,其上分布着厚度不一的红色土层。由于碳酸盐岩易溶蚀、酸不溶物含量极低(一般<5%)、成土慢,同时在风化过程中伴随着巨大的体积缩小变化,原岩结构和半风化带无法保留,岩-土界面呈突变接触关系,缺失过渡层,宏观上缺乏直接的野外地质证据支持二者之间存在着明确的继承关系,因此对于岩溶上覆风化壳的物质来源,长期以来一直存在着争议。对岩溶区风化壳成因存在的不同认识,成为利用风化壳进行一系列科学研究的障碍,因此正确理解岩溶上覆风化壳的物质来源和成因显得十分紧迫和重要。
     本文在已有成果的基础上,选择灰岩、白云岩与碎屑岩呈镶嵌产出的贵州岩溶台地(包括湘西吉首的一个剖面)作为研究区域,尝试利用粒度分析这一反映沉积岩(物)的结构组成的研究手段,通过对20条剖面的精细采样分析,系统地探讨了不同基岩与上覆风化壳的粒度分布特征,并以此为主线,结合磁化率、pH值、地球化学和矿物学资料,对贵州岩溶上覆风化壳的物质来源和剖面演化过程进行了探讨,取得了以下几点认识:
     第一,在碳酸盐岩上覆风化壳的成因研究中,粒度分析是一个有效而直观的物源示踪方法。不同沉积背景下形成的沉积岩其粒度分布特征是不同的,而在此基础上发育的风化壳就继承了母岩的粒度分布特征,粒度频率分布曲线表现出和母岩的一致性和渐变过渡性,在风化程度不是特别强烈的条件下(排除如铝土矿化的红土化阶段),风化壳仍保留了“源”的信息。而由碳酸盐岩发育的风化壳就继承了基岩酸不溶物的粒度分布特征。由不同粒度组成的沉积岩发育的风化壳,其粒度组成也存在着明显的差异。
     第二,通过对贵州岩溶区不同基岩(包括碎屑岩)及其上覆风化壳的粒度分析表明,各风化剖面的粒度分布特征与下伏基岩有明显的继承性,而各剖面之间的粒度分布存在着明显的差异,说明岩溶区上覆风化壳没有共同的物质来源。碳酸盐岩上覆风化壳是碳酸盐矿物溶蚀、残余酸不溶物长期积累的结果。
     第三,在非等体积风化过程中,风化前锋即“岩-土界面”是一个重要的地球化学作用场所,在这一狭窄的界面上,不仅碳酸盐矿物充分淋失,而且残余酸不溶物也开始了分解,同时岩-土界面的风化梯度明显强于已成风化剖而后期的演化强度。即从基
    
    岩酸不溶物到风化壳底部,风化强度突变性增大,而风化壳的后期演化则是一个缓慢
    的过程。
     第四,由于充沛的水热条件,风化壳的淋溶淀积作用普遍存在,粘粒含量在剖面
    上部由下向上表现为逐渐降低的“倒置”现象。在风化壳发育浅薄的石灰土剖面,淀
    积层甚至可以直接淀积在剖面底部。
     第五,石灰土尽管发育程度较低,可以看作碳酸盐岩风化壳演化的早期阶段,但
    是在形成石灰土的过程中,各风化指标己表现出显著的变化,具有了红色风化壳的发
    育特征。因此从严格意义上讲,石灰土己不具有从基岩到红色风化壳的“过渡层”身
    份。
     第六,石灰土剖面普遍具有典型残积风化的特征,粒度和地球化学指标表现为单
    调变化的趋势。而红色风化壳的粒度参数在整体上具有风化壳正向演化特征的基础上,
    在剖面上表现为强烈的波动,地球化学指标及矿物学组成在剖面上也呈现相应的波动。
    造成这种现象的原因可解释为:
     一是风化前锋向下拓展过程中风化条件的变化,二是后期古地下水位的波动对风
    化剖面的改造。石灰土剖面形成时间短,在浅薄的风化壳发育过程中,风化条件和水
    文状况稳定,风化壳的发育完全是在气下由大气降水形成的风化溶液对剖面由浅入深
    的风化作用形成的,未受到后期地下水的改造。而厚层红色风化壳,形成时间长,在
    其长期的地质演化过程中,风化条件的变化和古地下水位的波动将会频繁的发生。尤
    其岩一土界面是一个重要的地球化学风化界面,在风化前锋向下拓展过程中,风化条件
    的变化必然影响到相应层位风化程度的差异性,因此造成剖面上风化指标的波动性。
    在风化前锋,由风化条件的差异性导致粒度及地球化学指标的波动性,在这一过程中,
    粒度及地球化学指标的变化是可预测的,即强烈的风化条件可以导致粒度变细,粘粒
    含量增加,CIA增大,反之亦然,风化过程表现为活动元素的净带出。然而,由古地
    下水位的波动对风化剖面的改造作用是可变的,不可预测的,既可使剖面的物质被带
    出,也可以带入一些活动元素,如K、Na等的交代。同时,地下水对剖面粒度组成的
    影响也很复杂,物质的带入不一定就会使粒度变粗,粘粒含量降低,而物质的带出也
    不一定就导致粒度变细,粘粒含量增加。在两种机理的相互叠加影响下,使风化壳的
    演化趋势更趋复杂化。风化剖面中,粘粒含量和CIA之间既有同步变化的层段,也有
    呈强烈反相关的层段,还存在没有明显相关性的层段。作为等体积变化的典型剖面一
    
    一吉首剖面,其风化过程具有碎屑岩的发育特征,粘粒含量从下向上表现为顺次增大
    的趋势,如果也存在古地下水对剖面的改造作用,那么说明对粒度的影响是微弱的。
     第七,·对于红色风化壳,不管是碳酸盐岩风化过程中由于风化条件的差异?
In southwestern China, karst region centered on Guizhou Province is the vastest one in the world and is overlain by non-isopachous red earth. Since carbonate rock is easy to solve, acidic insoluble residua is very low (generally less than 5%), pedogenesis process is very slow, weathering crust volume is intensively reduced during weathering, mother rock texture and semi-weathering layer cannot be retained, contact relation of rock-earth interface shows abrupt change, transitional layer is absent, and macroscopically there isn't direct field geological evidence to support that inheritable characteristic exists between basement rock and overlying weathering crust, the provenance of overlying weathering crusts in karst regions has been on the debate for a long time. Because different viewpoints exist about the genesis of weathering crusts in karst regions, which becomes the obstacle to use weathering crusts to undertake a series of scientic researches, to precisely understand the provenance and genesis of overl
    ying weathering crusts in karst regions is very pressing and important.
    On the basis of results obtained, this paper selects karst terrains of mosaic occurrence among limestone, dolostone and clastic rock in Guizhou Province (including Jishou profile in western Hunan Province) as research area, attempts to use the grain size analysis method to discuss the grain size distribution characteristic of different basement rocks and overlying weathering crusts in detail. Based on the grain size analysis, merging with magnetic susceptibility, pH value, geochemistry and mineralogy data, Author discusses the provenance and profile development of overlying weathering crusts in karst region of Guizhou Province, and obtains several significant innovations as follows:
    1. The grain size analysis is a valid and intuitionistic method during the research on the genesis of weathering crusts underlying carbonatites. Sedimentary rocks derived from different sedimentary backgrounds possess different grain size distribution features, and weathering crusts developed on the basis of them inherit the grain size distribution characteristic of protolith rocks, their grain size frequency distribution curves show consistency and gradual transition with protolith rocks. Under the condition of moderate weathering intensity, weathering crusts still retain the information of the provenance. Weathering crusts developed on the carbonatites inherit the grain size distribution features
    
    
    of acidic insoluble residua of basement rocks. Weathering crusts developed on the sedimentary rock containing different grain size compositions take on obvious discrepancy in this aspect too.
    2. The grain size analysis results of different basement rocks and overlying weathering crusts show that the grain size distribution feature of every weathering profile obviously inherits that of its underlying basement rock. Among weathering profiles the grain size distribution features show remarkable diversities, which accounts for that there isn't the same provenance about weathering crusts in karst region of Guizhou Province. Weathering crusts underlying carbonatites are the offspring of basement rock weathering action through the dissolution of carbonates and long-term accumulation of acidic insoluble residua.
    3. During non-isometric weathering, weathering front (i.e. interface between rock and earth) is a important place of geochemical action. On this narrow interface, carbonate is dissolved wealthily, acidic insoluble residua is decomposed as well. Furthermore, weathering gradient on the weathering front obviously excesses that of weathering profile formed during subsequent weathering, i.e. from acidic insoluble residua of basement rock to the bottom of weathering crust, weathering intensity abrupt increases, and subsequent development of weathering crust is a slow process.
    4. Owing to plentiful water and heat condition, the phenomenon of eluviation and illuviation widely occurs in weathering profiles. Clay content shows gradual reduction fr
引文
[1]Ahmad N, Jones R L. 1969. Genesis, chemical properties and mineralogy of limestone-derived soils, Barbados, west Indies. Trop. Agric., 46: 1-15.
    [2]Ahmad N, Jones R L, and Beavers A H. 1966. Genesis, mineralogy of west Indian soils: I. Bauxitic soils of Jamaica. Prec. Soil Sci. Soc. Am., 30:719-722,
    [3]Alderton D H M, Pearce J A, and Ports P J. 1980. Rare earth element mobility during granite alteration: Evidence from Southwest England. Earth Planet. Sci. Lett., 49:149-165.
    [4]An Z S, Porter S C. 1997. Millennial-scale climatic oscillations during the last interglaciation in Central China. Geology, 25:603-606.
    [5]Baes C F, Mesmer R E. 1976. The Hydrolysis of Cations. John Wiley &. Sons.
    [6]Bain D C. 1976. A titanium-rich soil clay. J. Soil Sci., 27:68-70.
    [7]Balagh T M, Runge E C A. 1970. Clay rich horizons over limestone, illuvial or residual. Soil Sci, Soc, Am. Prec., 34:534-536.
    [8]Banfieid J F, Eggleton R A. 1988. Transmission electron microscope study of biotite weathering. Clays Clay Minerals, 36:47-60.
    [9]Banfield J F and Eggleton R A. 1989 Apatite replacement and rare earth mobilization, fractionation and fixation during weathering. Clays and Clay Minerals, 37:113-127.
    [10]Barshad I. 1967. Chemistry of soil development. In: Bear F E (Ed.). Chemistry of the Soil. Reinhold, New York, pp. 1-70.
    [11]Basile l, Grousset F E, Revel M, et al. 1997. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet. Sci. Lett., 146:573-559.
    [12]Bestland E A, Retallack G J, Rice A E, et al. 1996. Late Eocene detrital laterites in central Oregon: mass balance geochemistry, depositional setting, and landscape evolution. Geological Society of America Bulletin, 108:285-302.
    [13]Biscaye P E, Grousset F E, Revel M, et al. 1997. Asian provenance of glacial dust (Stage 2) in the GISP2 ice core, Summit, Greenland. J. Geophys. Res., 102 (C12):26315-26886.
    [14]Braun J -J, Pagel M, Muller J -P, et al. 1990. Cerium anomalies in lateritic profiles. Geochim. Cosmochim. Acta, 54:781-795.
    [15]Brimhall G H, Chadwick O A, Lewis C J, et al: 1991. Deformation mass transport and invasive processes in soil evolution. Science, 255:695-702.
    [16]Brimhall G H and Dietrich W E. 1987. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 51:567-587.
    [17]Brimhall G H, Lewis C J, Ague J J, et al. 1988. Metal enrichment in bauxites by deposition of chemically mature Aeolian dust. Nature, 333:819-824.
    [18]Borg L E, Banner J L. 1996. Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies. Geochim. Cosmochim. Acta. 60:4193-4206.
    [19]Boulange B, Muller J P, and Sigolo J B. 1990. Behaviour of the rare earth elements in a laterite bauxite from syenite (Bresil). Chem. Geol., 84:350-351,
    [20]Bourman R P, Oilier C D. 2002. A critique of the Schellmann definition and classification of 'laterite'. Catena, 47: 117-131.
    [21]Bronger A, Bruhn-Lobin N. 1997. Paleopedology of Terrae rossae-Rhodoxeralfs from Quaternary calcarenites in NW Morocco. Catena, 28(3-4):279-295.
    
    
    [22]Bronger A, Wichmann P, and Ensling J. 2000. Over-estimation of efficiency of weathering in tropical "Red Soils": its importance for geoecological problems. Catena, 41:181-197.
    [23]Busacca A J, McDonald E V. 1994. Regional sedimentation of Late Quaternary loess on the Columbia Plateau: sediment source areas and loess distribution patterns. Wash. Div. Geol. Earth Resour. Bull., 80: 181-190.
    [24]Celina Campell. 1997. Late Holoceae lake sedimentology and climate change in southern Alberta, Canada. Quaternary Research, 49:96-101.
    [25]Chadwick O A, Brimhall G H, and Hendricks D M. 1990. From a black to a gray box—a mass balance interpretation of pedogenesis. Geomorphology, 3:369-390.
    [26]Chen F H, Bloemendal J, Feng Z D, et al.. 1999. East Asian Monsoon variation during Oxygen Isotope Stage 5: evidence from the northwestern margin of the Chinese Loess Plateau. Quaternary Science Review, (18):1127-1135.
    [27]Chen Kaili, Gan Zhaodian, and Zhang Pengxiang. 1996. The Sources of ore-forming materials and controlling factors of main weathering deposits in Guangxi. Guangxi Geology, 9(1/2):101-130.
    [28]Chubb L J. 1963. Bauxite genesis in Jamaica. Econ. Geol., 58:286-289.
    [29]Clarke O M. 1966. The formation of bauxite on karst topography in Eufaula district, Labama, and Jamaica. Econ. Geol,, 61:903-916.
    [30]Comer J B. 1974. Genesis of Jamaican bauxite. Econ. Geol., 69:1251-1264.
    [31]Condie K C. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104:1-37.
    [32]Condie K C, Dengate J, and Cullers R L. 1995. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, CO, USA.. Geochim. Cosmochim. Acta, 59:279-294.
    [33]Condie K C and Wronkiewicz D J. 1990. The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth and Planetary Science Letters, 97:256-267.
    [34]Condie P. 1991. Another look at the rare earth elements in shales. Geochim. Cosmochim. Acta, 35:2527-2531.
    [35]Cullers R L. 1988. Mineralogical and chemical changes of the soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, USA. Lithos, 21:301-314.
    [36]Darwish T M, Zurayk R A. 1997. Distribution and nature of Red Mediterranean soils in Lebanon along an altitudinal sequence. Catena, 28(3-4): 191-202.
    [37]Dean W E, Piper D Z, and Perterson L C. 1999. Molybdenum accumulation in Cariaco basin sediment over the past 24k.y.: a record of water-column anoxia and climate. Geology, 27:507-510.
    [38]Deer W A, Howie R A, and Zussman J. 1966. An Introduction to the Rock-Forming Minerals. Longman Scientific & Technical.
    [39]Dequincey O, Chabaux F, Clauer N, et al. 2002. Chemical mobilizations in latcrites: Evidence from trace elements and ~(238)U-~(234)U-~(230)Th disequilibria. Geochimica et Cosmochimica Acta, 66(7): 1197-1210.
    [40]Dieglas D J. 1968, Grain-size indices, classification and environment. Journal of Sedimentary Petrology, 10:83-100.
    [41]Dill H G. 1989. Facies and provenance analysis of Upper Carboniferous to Lower Permian fan sequences at a convergent plate margin using phyllosilicates, heavy-minerals, and rock fragments (Erbendorf Trough, F R G.). Sedim. Geol., 61:95-110.
    [42]Ding Z L, Rutter N W, Sun J M, et al. 2000. Re-arrangement of atmospheric circulation at about 2.6 Ma over northern China: evidence from grain size records of loess-palaeosol and red clay sequences. Quaternary Science Reviews, 19:547-558.
    [43]Ding Z L, Sun J M, gang S L, et al. 1998. Preliminary magnetostratigraphy of a thick aeolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Geophysical Research Letters, 25:1225-1228.
    [44]Duck R W, Rowan J S, Jenkins P A, et al. 2001. A Multi-Method Study of Bedload Provenance and Transport Pathways in an Estuarine Channel. Phys. Chem. Earth (B), 26(9):747-752.
    
    
    [45]Ducloux J, Guero Y, Sardini P, et al.. 2002. Xerolysis: a hypothetical process of clay particles weathering under Sahelian climate. Geoderma, 105:93-110.
    [46]Duddy I T. 1980. Redistribution and fractionation of rare earth and other elements in a weathered profile. Chem. Geol., 30:363-381.
    [47]Dultz S. 2002. Effects of parent material and weathering on feldspar content in different particle size fractions from forest soils in NW Germany. Geoderma, 106:63-81.
    [48]Dum G, Ottner F, and Slovenec D. 1999. Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia. Geoderma, 91:125-150.
    [49]Eden D N, Qizhong W, Hunt J L, et al. 1994. Mineralogical and geochemical trends across the Loess Plateau, North China. Catena, 21:73-90.
    [50]Egli M and Fitze P. 2000. Formulation of pedologic mass balance based on immobile elements: a revision. Soil Science, 165:437-443.
    [51]Egli M, Fitze P. 2001. Quantitative aspects of carbonate leaching of soils with differing ages and climates. Catena, 46:35-62.
    [52]Eliopoulos D G, Economou-Eliopoulos M. 2000. Geochemical and mineralogical characteristics of Fe-Ni- and bauxitic-laterite deposits of Greece. Ore Geology Reviews, 16: 41-58.
    [53]Eutizio Vittori. 1995. Grain size of fluvial deposits and late Quaternary climate: A case study in the Po River Valley(Italy). Geology, 23(8):735-738.
    [54]FedoroffN. 1997. Clay illuviation in Red Mediterranean soils. In: Mermut A R, Yaalon D H and Kapur S (Eds.). Red Mediterranean Soils. Catena, 28(3-4):171-189.
    [55]Fedo C M, Nesbitt H W, and Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and pal eosols, with implications for paleoweathering conditions and provenance. Geology, 23(10):921-924.
    [56]Folk R L. 1966. A review of grain-size parameters. Sedimentology, 6:73-93.
    [57]Friedman G M. 1961. Distribution dune, beach, and river sands from their textural characteristics. Journal of Sedimentary Petrology, 31:514-529.
    [58]Friedman G M. 1967. Dynamic preeesses and statistical parameters compared for size frequency distribution of beach and river sands. Journal of Sedimentary Petrology, 37:327-354.
    [59]Fung P C, Shaw D M. 1978. Na, Rb, and TI distributions between phlogopite and sanidine by direct synthesis in a common vapour phase. Geochim. Cosmochim. Aeta, 56:899-909.
    [60]Gardner L R. 1980. Mobilization of AI and Ti during weathering—lsovolumetrie geochemical evidence. Chem. Geol., 30:151-165.
    [61]Gaudiehet A, Angelis M D, Lefevre R, et al. 1988. Mineralogy of insoluble particles in the Vostok Antarctic ice core over the last climatic cycle (150-ka). Geophys. Res. Lett., 15(13):1471-1474.
    [62]Gaudiehet A, Petit J R, Lefevre R, et al. 1986. An investigation by analytical transmission electron microscopy of individual insoluble mieropartieles from Antarctic (Dome C) ice core samples. Tellus, 38B:250-261.
    [63]Girard J -P, Razanadranorosoa D, and Freyssinet P. 1997. Laser oxygen isotope analysis of weathering goethite from the iateritie profile of Yaou, French Guiana: Paleoweathering and paleoclimatie implications. Appl. Geochem., 12:163-174.
    [64]Glassford D K, Semeniuk V. 1995. Desert-aeolian origin of late Cenozoic regolith in arid and semi-arid Southwestern Australia. Palaeography, Palaeoclimatology, Palaeoeeology, 114:131-166.
    [65]Goldieh S S. 1938. A study in rock weathering. J. Geology, 46:17-58.
    [66]Goldstein S, O'Nions R K, and Hamilton P J. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river sytems. Earth Planet. Sei. Lett., 70:221-236.
    [67]Grousset F E, Biscaye P E, Ravel M, et al. 1992. Antarctic (Dome C) ice-core dust at 18 k.y.B.P.: isotopic
    
    contraints on origins. Earth Planet. Sci. Lett., 111:175-182.
    [68]Grousset F E, Biscaye P E, Zindler A, et al. 1988. Neodymium isotopes as tracers in marine sediments and aerosols: North Atlantic. Earth Planet. Sci. Lett., 87:367-378.
    [69]Grousset F E, Parra M, Bory A, et al. 1998. Saharan wind regimes traced by Sr-Nd isotopic composition of subtropical Atlantic sediments: Last Glacial Maximum vs. today. Quat. Sci. Rev., 17(4-5):395-409.
    [70]Hallberg J A. 1984. A geochemical aid to igneous rock type identification in deeply weathered terrain. J. Geochem. Explor., 20:1-8.
    [71]Harnois L, Moore J M. 1988. Geochemistry and origin of the ore chemistry formation, a transported paleoregohth in the Grenville Province of Southern Ontario, Canada. Chemical Geology, 69:267-289.
    [72]Horváth Z, Varga B, and Mindszenty A. 2000. Micromorphological and chemical complexities of a lateritic profile from basalt (Jos Plateau, Central Nigeria). Chemical Geology, 170:81-93.
    [73]Inoue K, Saito M, and Naruse T. 1998. Physicochemical, mineralogical, and geochemical characteristics of lacustrine sediments of the Konya Basin, Turkey, and their significance in relation to climate change. Geomorphology, 23:229-243.
    [74]lsphording W C. 1978. Mineralogical and physical properties of Gulf Coast limestone soils. Trans. - Gulf Coast Assoc. Geol. Soc., 28:201-214.
    [75]Jackson M L. 1981. Oxygen isotopic ratios in quartz as an indicator of provenance of dust. In: Pewe T L (Ed.). Desert Dust: Origin, Characteristics, and Effect on Man. Geological Society of America, Special Paper 186, Boulder, CO, USA, pp.27-36.
    [76]Ji Hongbing, Wang Shijie, Ouyang Ziyuan, et al. 2004a. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau I. The formation of the Pingba profile. Chemical Geology, 203:1-27.
    [77]Ji Hongbing, Wang Shijie, Ouyang Ziyuan, et al. 2004b. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau ll. The mobility of rare earth elements during weathering. Chemical Geology, 203: 29-50.
    [78]Johnsson M J, Stallard R F, and Meade R H. 1988. First-cycle quartz arenites in the Orinoco River basin, Venezuela and Colombia: Journal of Geology, 96:263-277.
    [79]Khan D H. 1960. Clay mineral distribution in some Rendzinas, Red-brown Soils and.Terra Rossas on limestones of different geological ages. Soil Sci., 90:312-319.
    [80]Lasaga A C. 1984. Chemical kinetics of water-rock interactions. Journal of Geophysical Research, 89:4009-4025.
    [81]Legros J P. 1992. Soil of Alpine mountains. In: Martini I P and Chesworth W (ees). Weathering, Soil and Palaeosols. Amsterdam: Elservier, pp. 121-142.
    [82]Maher B A. 1998. Magnetic properties of modern soil and Quaternary Iocssic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoocology, 137: 25-54.
    [83]Marsh J S. 1991. REE fractionation and Ce anomalies in weathered Karoo dolerite. Chem. Geol., 90:189-194.
    [84]McLennan S M. 1993. Weathering and global denudation. Journal of Geology, 101:295-303.
    [85]McLennan S M, Hemming S, McDaniel D K, et al. 1993. Geochemical approaches to sedimentation, provenance and tectonics. Geol. Soc. Amer. Spec. Pap., 284:21-40.
    [86]Macleod D A. 1980. The origin of the Red Mediterranean Soils in Epirus, Greece. Journal of Soil Science, 31:125-136.
    [87]Marker M E, Holmes P J. 1999. Laterisation on limestones of the Tertiary Wankoe Formation and its relationship to the African Surface, southern Cape, South Africa. Catena, 38:1-21.
    [88]McAlister J J, Smith B J. 1997. Geochemical trends in Early Tertiary palaeosols from northeast Ireland: a statistical approach to assess element behaviour during weathering. In: Widdowson M (Ed.). Palaeosurfaces: Recognition, Reconstruction and Palaeoenvironmental Interpretation, Geological Society Special Publication, Geological Society,
    
    London, 120:57-65.
    [89]Menking K M. 1997. Climatic signals in clay mineralogy and grain-size variations in Owens Lake core O1-92, eastern California. Geological Society of America Special Paper, 317: 25-36.
    [90]Middelburg J J, Van Der Weijden C H, and Woittiez J R W. 1988. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem. Geol., 68:253-273.
    [91]Miko S, Durn G, and Prohi. E. 1999. Evaluation of terra rossa geochemical baselines from Croatian karst regions. Journal of Geochemical Exploration, 66:173-182.
    [92]Mizota C, Faure K, and Yamamoto M. 1996. Provenance of quartz in sedimentary mantles and laterites overlying bedrock in West Africa: evidence from oxygen isotopes. Geoderma, 72:65-74.
    [93]Mizota C, Inoue K, 1988. Oxygen isotope composition of eolian quartz in soils and sodiments—its significance as a tracer of eolian components. J. Clay Sci. Soc. Jpn., 28 (2):38-54 (in Japanese with English summary).
    [94]Moiola R J, Weisor D. 1968. Texture parameters: An evaluation. Journal of Sedimentary. Petrology, 38:45-53.
    [95]Sahu B K. 1964. Depositional mechanism from the size analysis of elastic sediments. Jour. Sed. Petrology, 34: 73-84.
    [96]Mongelli G. 1993. REE and other trace elements in a granitic weathering profile from "Serre," Southern ltaly. Chem. Geol., 103:17-25.
    [97]Monroe W H. 1986. Examples of the replacement of limestone by clay. Missisippi Geology, 7(1):1-6.
    [98]Moresi M, Mongelli G. 1988. The relation between the terra rossa and the carbonate-free residue of the underlying limestones and dolostones in Apulia, Italy. Clay Minerals, 23:439-446.
    [99]Morey G B, Setterholm D R. 1997. Rare earth element in weathering profiles and sediments of Minnesota: Implications for provenance studies. J. Sed. Res. Sec A, 67:105-115.
    [100]Morton A C. 1985. Heavy-minerals in provenance studies, in: Zuffa G G (Ed.). Provenance of Arenites. NATO ASI Set., C148: 249-277.
    [101]Moukarika A, O'Brien F, and Coey M D. 1991. Development of magnetic soil from ferroan dolomite. Geophysical Research Letters, 18(11): 2043-2046.
    [102]Muhs D R, AleinikoffJ N, Stafford Jr T W, et al. 1999. Late Quaternary loess in northeastern Colorado: I. Age and paleoclimatic significance. Geol. Soc. Am. Bull., 111 (12): 1861-1875.
    [103]Muhs D R, Bush C A, and Stewart K. 1990. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestone of Caribbean and western Atlantic islands. Quaternary Research, 33: 157-177.
    [104]Muhs D R, Crittenden R C, Rosholt J N, et al. 1987. Genesis of marine terrace soils, Barbados, west Indies: evidence from mineralogy and geochemistry. Earth Surf. Processes Landf., 12:605-618.
    [105]Muller J -P, Manceau A, Calas G, et al. 1995. Crystal chemistry of kaolinite and Fe-Mn oxides: Relation with formation conditions of low temperature systems. Am. J. Sci., 295: 1115-1135.
    [106]Nahon D. 1991. Introduction to the Petrology of Soils and Chemical Weathering. John Wiley, New York.
    [107]Nakai S I, Halliday A N, and Rea D K. 1993. Provenance.of dust in the Pacific Ocean. Earth Planet. Sci. Lett., 119: 143-157.
    [108]Nesbitt H W. 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Science, 279:206-210.
    [109]Nesbitt H W. 1992. Diagenesis and metamorphism of weathering profiles, with emphasis on Precambrian paleosols. In: Martini I P and Chesworth W (eds.). Weathering, soils and paleosols: Amsterdam, Elsevier, pp.127-152.
    [110]Nesbitt H W, Mac Rae N D, and Kronberg B I. 1990. Amazon deep-sea fan muds: light REE enriched products of extreme chemical weathering. Earth Planet. Sci. Lett., 100: 118-123.
    [111]Nesbitt H W, Markovics G. 1997. Weathering of granodioritic crust, long-term storge of element in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61 (8): 1653-1670.
    
    
    [112]Nesbitt H W, Markovics G, and Price R C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geoehim. Cosmochim. Aeta, 44: 1659-1666.
    [113]Nesbitt H W and Wilson R E. 1992. Recent chemical weathering of basalts. American Journal of Science, 292:740-777.
    [114]Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutite. Nature, 299:715-717.
    [115]Nesbitt H W, Young G M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48:1523-1534.
    [116]Nesbitt H W, Young G M. 1989. Formation and diagenesis of weathering profiles. Journal of Geology, 97:129-147.
    [117]Nevo E, Travleev A P, Belova N A, et al. 1998. Edaphie interslope and valley bottom differences at "Evolution Canyon", Lower Nahal Oren, Mount Carmel, lsrael. Catena, 33:241-254.
    [118]Norrish K, Rogers L E R. 1956. The mineralogy of some Terra Rossas and Redzinas of South Australia, J. Soil Sci., 7:294-301.
    [119]Olanipekun E O. 2000. Kinetics of leaching laterite. Int. J. Miner. Process, 60:9-14.
    [120]Olson G.G, Ruhe R V, and Mausbaeh M J. 1980. The Terra Rossa Limestone Contact Phenomena in Karst. Southern Indiana. Soil Sei. Soc. Am. J., 44:1075-1079.
    [121]Panahi A, Young G M, and Rainbird R H. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochimica et Cosmochimica Aeta, 64 (13):2199-2220.
    [122]Passaga R. 1957. Teatures as characteristic of elastic deposition. Bull. AAPG, 41: 1952-1984.
    [123]Passega R. 1964. Grain size representation by CM patterns as a geological tool. Jour. Sed. Petrology, 34: 830-847.
    [124]Plank T, Langmuir C H. 1998. The chemical composition of subdueting sediment and its consequences for the crust and mantle. Chem. Geol., 145:325-394.
    [125]Plaster R W, Sherwood W C. 1971. Bedrock Weathering and Residual Soil formation in Central Virginia. Geological Society of America Bulletin, 82:2813-2826.
    [126]Porter S C, An Z S. 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375:305-308.
    [127]Price R C, Gray C M, and Wilson R E. 1991. The effects of weathering on rare-earth element, Y and Ba abundaneas in Tertiary basaults from southeastern Australian, Chemical Geology, 93:245-265.
    [128]Prins M A, Postma G, and Weltje G. 2000. Controls on the terrigenous sediment supply to the Arabian Sea during the late Quaternay: The Makran continental slope. Marine Geology, 169:351-371.
    [129]Prospero J.M. 1981. Eolian transport to the world ocean. In: Emiliani C (Ed.). The Oceanic Lithosphere. The Sea, vol. 7. Wiley, New York, pp. 801-874.
    [130]Prudencio M I, Braga M A S, and Gouveia M A. 1993. REE mobilization, fraetionation and precipitation during weathering of basalt. Chem. Geol., 107:251-254.
    [131]Ruffet G, Innocent C, Michard A, et al. 1996. A geochronological ~(40)Ar/~(39_Ar and ~(87)Rb/~(87)Sr study of K-Mn oxides from weathering sequence of Azul, Brazil. Geoehimica et Cosmochimica Aeta, 60(12):2219-2232.
    [132]Sahu B K. 1964. Depositional mechanism from the size analysis of elastic sediments. Jour. Sed. Petrology, 34: 73-84.
    [133]Schellmann W. 1983. A new definition oflaterite. Nat. Resour. Dev., 18:7-21.
    [134]Schulz M S, White A F. 1999. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico Ⅲ:Quartz dissolution rates. Gcoehimica et Cosmochimiea Aeta, 63(3/4): 337-350.
    [135]Schwarz T. 1997. Distribution and genesis of bauxite on the Mambilla Plateau, SE Nigeria. Applied Geochemistry, 12:119-131.
    
    
    [136]Shotyk W. 1997. Atmospheric deposition and mass balance of major and trace element in two oceanic peat bog profiles, noethern Scotland and the Shetland Islands. Chemical Geology, 138:55-72.
    [137]Simonson R W. 1995. Airborne dust and its significance to soils. Geoderma, 65:1-43.
    [138]Smith B J, McAlister J J.1995. Mineralogy, chemistry and palaeoenvironmental significance of an Early Tertiary Terra Rossa from Noethern Ireland: A preliminary review. Geomorphology, 12:63-73.
    [139]Sugitani K, Horiuchi Y, Adachi M, et al. 1996. Anomalously low Al_2O_3/TiO_2 values for Archean cherts Pilbara Block, Western Australia—Possible evidence for chemical weathering on the early earth. Precam. Res., 80:49-76.
    [140]Sverdrup H U. 1990. The Kinetics of Base Cation Release Due to Chemical Weathering. Lund University.
    [141]Sverjensky D A. 1984. Europium redox equilibria in aqeous solution. Earth Planet. Sci. Let., 67:70-78.
    [142]Tardy Y. 1993. Pétrologie des latérites et des sols tropicaux. Masson, Paris, France.
    [143]Taylor S R, McLennan S M. 1985. The continental crust: its composition and evolution. Blackwell, London, pp.277-312.
    [144]Thompson R, Oldfield F. 1986. Environmental Magnetism. London: GeorgeAIlen and Unwin, pp.72-87.
    [145]Tole M P. 1985. The kinetics of dissolution of Zircon (ZrSiO_4). Geochim. Cosmochim. Acta, 48:453-458.
    [146]Van der Weijden C H and Reith M. 1982. Chromium(Ⅲ)-chromium (Ⅵ) interconversions in seawater. Mar. Chem., 11 :565-572.
    [147]Velbel M A. 1985. Geochemical mass balance and weathering rates in forested watersheds of the southern Blue Ridge. Amer. J. Sci., 285:904-930.
    [148]Visber G S. 1969. Grain size distribution and depositional processes. Journal of Sedimentary Petrology, 39:1074.
    [149]Vital H, Stattegger K. 2000. Major and trace elements of stream sediments from the lowermost Amazon River. Chemical Geology, 168:151-168.
    [150]Vital H, Stattegger K, Garbe-Schonberg C -D. 1999. Composition and trace-element geochemistry of detrital clay and heavy mineral suites of the lowermost Amazon river: a provenance study. J. Sediment. Res., 69:563-575.
    [151]Walden J, Slattery M C, and Burr T P. 1997. Use of mineral magnetic measurements to fingerprint suspended sediment sources: approaches and techniques for data analysis. Journal of Hydrography, 202:353-372.
    [152]Wang H, Liu H, Cui H, et al. 2001. Terminal Pleistocene/Holocene palaeoenvironmental changes revealed by mineral-magnetism measurements of lake sediments for Dali Nor area, southeastern Inner Mongolia Plateau, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 170: 115-132.
    [153]Wang L, Sarnthein M, Erlenkeuser H, et al. 1999. East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea. Marine Geology, 156: 245-284.
    [154]Wang Shijie, Ji Hongbing, Ouyang Ziyuan, et al. 1999. Preliminary study on weathering and pedogenesis of carbonate rock. Science in China(series D), 42(6): 572-581.
    [155]White A F. 1995. Chemical weathering rates of silieate minerals soils, In: White AF, Brantley S L (Eds.). Chemical weathering rates of silicate minerals. Rev. Mineral, 31:407-461.
    [156]White A F, Brantley S L. 1995.. Chemical weathering rates of silicate minerals, in:Reviews in Mineralogy. Mineralogical Society of America, 31:584.
    [157]White F, Blum E, Schulz S, et al. 1996. Chemical weathering rates of a soil chronosequence on granitic alluvium: Ⅰ. Quantification of mineralogical and surface area changes and calculation of primary Silicate reaction rates. Geochim Cosmochim Acta, 60(14):2533-2550.
    [158]Widdowson M, Gunnell Y. 1999. Lateritization, geomorphology and geodynamics of a passive continental margin: the Konkan and Kunara coastal lowlands of western peninsular India: In: Thiry M, Simon-Coincon R (Eds.). Palaeoweathering, Palaeosurfaces and Related Continental Deposits. Special Publication Number 27 of The International Association of Sedimentologists. Blackwell, Oxford, pp. 245-274.
    [159]Wilke B M, Mishra V K, and Rehfuess K E. 1984. Clay mineralology of a soil sequence in slope deposits derived
    
    from hauptdoiomit(dolomite) in the Bavarian. Geoderma, 32:103-116.
    [160]Wollast R, Chou L. 1992. Surface reactions during the early stages of weathering of albite. Geochim. Cosmochim. Acta, 56:3113-3123.
    [161]Wood S A. 1996. The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V). Ore Geol. Rev., 11:1-31.
    [162]Yaalon D H. 1997. Soils in the Mediterranean region: what makes them different? In: Mermurt A R, Yaalon D H, Kapur S (Eds.). Red Mediterranean Soils. Catena, 28:157-169.
    [163]Yaalon D H, Ganor E. 1975. Rates of Aeolian dust accretion in the Mediterranean and desert fringe environments of Israel. International Congress of Sedimentology, Nice, 2:169-174.
    [164]Young G M, Nesbitt H W. 1998. Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimantary rocks. J. Sediment. Res., 68:448-455.
    [165]Yuan Daoxian. 1997. Sensitivity of Karst progress to environmental change along the PEP Ⅱ transect. Quaternary International, 37:105-113.
    [166]Zans V A. 1959. Recent views on the origin of bauxite. Geonotes, 1:123-132.
    [167]Zhou L P, Oldfieid F, Wintle A G, et al. 1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 364:737-739.
    [168]安芷生,Kulda G,刘东生.1989.洛川黄土地层学.第四纪研究,(2):155-168.
    [169]崔之久,李德文,冯金良,等.2001a.覆盖型岩溶、风化壳与岩溶(双层)夷平面.中国科学(D辑),31(6):510-519.
    [170]崔之久,李德文,刘耕年,等.2001b.湘桂黔滇藏红色岩溶风化壳的性质与夷平面的形成.中国科学(D辑),31(增刊):134-141.
    [171]冯金良,崔之久.2002.拱王山风化壳的发育特征及其环境和构造意义.地理学与国土研究,18(2):56-60.
    [172]冯金良,崔之久,张威,等.2003.云贵高原碳酸盐岩风化壳的古地磁定年探讨.中国岩溶,22(3):178-190.
    [173]符必昌,黄英.2003.试论碳酸盐岩上覆红土的形成模式及演化趋势.地质科学,38(1):128-136.
    [174]符必昌,黄英,方丽萍.1998.红土地区地质灾害成因分析.中国地质灾害与防治学报,9(4):13-18.
    [175]高效江,章申,王立军,等.1999.赣南稀土矿区环境地球化学景观中稀土元素的迁移特征.环境科学,20(3):1-4.
    [176]顾尚义,毛健全,张启厚.2002.广西叫弄英安岩风化剖面与地下水作用的证据.贵州工业大学学报(自然科学版),31(2):48-52.
    [177]贵州省地质矿产局编著.1997.贵州省岩石地层.武汉:中国地质大学出版社,pp.2.
    [178]贵州省土壤普查办公室编.1994.贵州省土壤.贵阳:贵州科技出版社,pp.309-372.
    [179]韩家懋,Hus J J,刘东生,等.1991.马兰黄土和离石黄土的磁学性质.第四纪研究,4:310-325.
    [180]韩至钧,金占省.1996.贵州省水文地质志.北京:地震出版社.pp.27-38.
    [181]黄思静.1999.用EXCEL计算沉积物粒度分布参数.程度理工学院学报,26(2):195-198.
    [182]黄镇国,张伟强,陈俊鸿,等.1996.中国南方红色风化壳.北京:海洋出版社,1996,1-312.
    [183]季宏兵.2000.贵州岩溶台地白云岩.上覆红色风化壳的物质来源、形成地球化学过程和古环境重建.贵阳:中国科学院地球化学研究所博士学位论文.
    [184]季宏兵,欧阳自远,王世杰,等.1999.白云岩风化剖面的元素地球化学特征及其对上陆壳平均化学组成的意义——以黔北新蒲剖面为例.中国科学(D),29(6):504-513.
    [185]拉宾A B.1999.碳酸盐岩风化壳主要矿床类型的结构、形成条件和含矿性.地质科技动态,(8):13-14.
    [186]李庆逵.1983.中国红壤.北京:科学出版社,PP.1-23.
    [187]廖士范,梁同荣,张月恒.1989.论我国铝土矿床类型及其红土化风化壳形成机制问题.沉积学报,7(1):1-10.
    [188]廖义玲,张竹如,周训华.2000.从岩溶作用认识碳酸盐岩红土的胀缩性.中国岩溶,19(4):342-346.
    [189]林树基,周启永,陈佩英.1994.贵州的上新生界.贵州:贵州科技出版社,p.140
    [190]刘东生等.1966.黄土的物质成分和结构.北京:科学出版社,pp.46-58.
    
    
    [191]刘厚敏,杨理华,郑洪汉,等.1964.对黔东第四纪沉积物和地层划分的初步认识,第四纪地质问题.北京:科学出版社.
    [192]刘秀明.2003.贵州碳酸盐岩风化壳形成地球化学过程、对比及年代学研究.贵阳:中国科学院地球化学研究所博士学位论文.
    [193]刘秀铭,刘东生,Heller F,等.1990.黄土频率磁化率与古气候冷暖变换.第四纪研究,(1):42-49.
    [194]卢升高.2000.土壤频率磁化率与矿物粒度的关系及其环境意义.应用基础与工程科学学报,8(1):9-15.
    [195]卢升高,俞劲炎.2000.杭州附近几种红壤中磁性矿物的分离与鉴定.土壤通报,31(5):196-198.
    [196]卢升高,俞劲炎,章明奎,等.2000.长江中下游第四纪沉积物发育土壤磁性增强的环境磁学机制.沉积学报,18(3):336-340.
    [197]卢耀如.1986.中国喀斯特地貌的演化模式.地理研究,5(4):25-34.
    [198]吕厚远,刘东生.2001.C3,C4植物及燃烧对土壤磁化率的影响.中国科学(D辑),31(1):43-53.
    [199]李春来,林文祝,欧阳自远.1994.黄士中0.73Ma B.P.微玻璃石陨石赋存层位地球化学——Ⅱ.磁化率特征.科学通报,39(14):1309-1311.
    [200]李德文,崔之久,刘耕年.1999.青藏高原古岩溶的存在及其与东邻地区岩溶的对比.中国岩溶,18(4):309-318.
    [201]李景阳,王朝富,樊廷章.1991.试论碳酸盐岩风化壳与喀斯特成土作用.中国岩溶,10(1):29-38.
    [202]李景阳,王朝富,樊廷章,等.1995.碳酸盐岩残积红土的结构、构造特征及其成因研究.中国岩溶,14(1):31-40.
    [203]李启津,杨国高,侯正洪.1996.铝土矿床成矿理论研究中的几个问题.矿产与地质,10(1):22-26.
    [204]李瑞玲,王世杰,周德全,等,2003.贵州岩溶区土地石漠化与岩性的空间相关性研究.地理学报,58(2):314-320.
    [205]李文达,王文斌,程忠富,等.1995.华南红土化作用地球化学及红土型金矿形成的可能性.北京:地质出版社,pp.1-76.
    [206]马英军.1999.化学风化作用中的微量元素和锶同位素地球化学.贵阳:中国科学院地球化学研究所博士学位论文,pp.1-107.
    [207]马英军,刘丛强.1999.化学风化作用中的微量元素地球化学——以江西龙南黑云母花岗岩风化壳为例.科学通报,44(22):2433-2437.
    [208]全国土壤普查办公室.1996.中国土种志(第六卷).北京:中国农业出版社,pp.64-112.
    [209]史家莉.1996.阿尔泰山古风化壳的粒度组成.干旱区地理.19(2):44-49.
    [210]宋云华,沈丽璞,王贤觉.1987.某些岩石风化壳中稀土元素的初步探讨.科学通报,(9):695-698.
    [211]孙承兴.2002.贵州岩溶区红色风化壳物源及稀土元素地球化学研究.贵阳:中国科学院地球化学研究所博士学位论文.
    [212]孙承兴,王世杰,刘秀明,等.2000.风化壳剖面的定年研究.矿物岩石地球化学通报,19(1):54-59.
    [213]孙承兴,王世杰,季宏兵.2002a.碳酸盐岩风化成土过程中REE超长富集及Ce强烈亏损的地球化学机理.地球化学,31(2):119-128.
    [214]孙承兴,王世杰,刘秀明,等.2002b.碳酸盐岩风化壳岩-土界面地球化学特征及其形成过程——以贵州花溪灰岩风化壳剖面为例.矿物学报,22(2):126-132.
    [215]孙承兴,王世杰,周德全,等.2002c.碳酸盐岩酸不溶物作为贵州岩溶区红色风化壳主要物源的证据.矿物学报,22(3):235-242.
    [216]万国江,等.1995.碳酸盐岩与环境(卷一).北京:地震出版社,PP.16-40.
    [217]万国江,等.2000.碳酸盐岩与环境(卷二).北京:地震出版社,PP.1-6.
    [218]王世杰.2002.喀斯特石漠化概念演绎及其科学内涵的探讨.中国岩溶,21(2):101-105.
    [219]王世杰,季宏兵,欧阳自远,等.1999.碳酸盐岩风化成土作用的初步研究.中国科学(D),29(5):441-449.
    [220]王世杰,季宏兵,孙承兴.2001.贵州平坝县白云岩风化壳中稀土元素分布特征之初步研究.地质科学,36(4):474-480.
    [221]王世杰,孙承兴,冯志刚,等.2002a.发育完整的灰岩风化壳的矿物学及地球化学特征.矿物学报,22(1):19-29.
    [222]王世杰,孙承兴,周德全,等.2002b.贵州高原岩溶台地红色风化壳的物源辨析.第四纪研究,22(6):595.
    
    
    [223]王中刚,于学元,赵振华,等.1990.稀土元素地球化学.北京:科学出版社,PP.1-495.
    [224]文江泉,王贵清.1995.南昆线南那段红土类型划分及微观特征研究.工程地质学报,3(3):35-42.
    [225]席承藩.1991.论华南红色风化壳.第四纪研究,(1):1-7.
    [226]谢宇平.1994.第四纪地质学及地貌学.北京:地质出版社,pp.291-309.
    [227]熊尚发,刘东生,丁仲礼.2000.南方红土的剖面风化特征.山地学报,18(1):7-12.
    [228]续海金,马昌前,刘凡,等.2002.大别山南、北坡花岗岩风化作用的差异及其构造、气候环境意义.中国科学(D辑),32(5):415~422
    [229]杨明德.1988.论喀斯特地貌地域结构及其环境效应——以贵州高原为例.见:贵州喀斯特环境研究.贵阳:贵州人民出版社,pp.19-26.
    [230]杨胜利,方小敏,李吉均,等.2001.表土颜色和气候定性至半定量关系研究.中国科学(D),31(增刊):175-181.
    [231]杨守业,李从先.1999.长江与黄河现代表层沉积物元素组成及其示踪作用.自然科学进展,9(10):930-937.
    [232]俞劲炎,詹硕仁.1981.我国主要土类土壤磁化率的初步研究.土壤通报,(1):35-38.
    [233]俞劲炎,詹硕仁,吴劳生,等.1986.亚热带和热带土壤的磁化率.土壤学报,23(1):50-55.
    [234]袁道先.1992.中国西南部的岩溶及其与华北岩溶的对比.第四纪研究,(4):352-361.
    [235]袁道先.1993.中国岩溶学.北京:地质出版社,pp.1-8.
    [236]岳乐平,薛祥煦,著.1996.中国黄土古地磁学.北京:地质出版社,pp.15-26.
    [237]张虎才,李吉均,马玉贞,等.1997.腾格里沙漠南缘武威黄土沉积元素地球化学特征.沉积学报,15(4):152-158.
    [238]郑洪汉.1994.黄土高原黄土-古土壤的矿物组成及其环境意义.地球化学,23(赠刊):113-123.
    [239]周芳,陈世益.1994.广西贵港红土风化壳的地球化学特征.中南矿冶学院学报,25(2):151-155.
    [240]朱立军.1997.碳酸盐岩地区红土针铁矿中铝对铁的置换作用及其环境意义.地质地球化学,(1):42-45.
    [241]朱立军,李景阳.1996.贵州碳酸盐岩红土中的粘土矿物及其形成机理.矿物学报,15(3):290-297.
    [242]朱立军,万国江.1995.碳酸盐岩区域红色风化壳及其演化.见:万国江,等.碳酸盐岩与环境(卷一).北京:地震出版社,pp.41-57.
    [243]朱显谟.1993.中国南方的红土与红色风化壳.第四纪研究,(1):75-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700