大表面积Co系钙钛矿复合氧化物的制备及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷催化燃烧可降低污染气体(CO,NO_x)和未充分燃烧烃类的排放而日益受到重视。长期以来,贵金属催化剂尽管拥有良好的催化活性,但由于价格高昂、资源匮乏,从而制约其应用,研制一种高活性、价格低廉的催化剂就显得很有必要。钙钛矿型La_(0.8)Sr_(0.2)CoO_3复合氧化物具有较高的活性、稳定性和价格低廉而被受人们关注,然而La_(0.8)Sr_(0.2)CoO_3复合氧化物需要较高的焙烧温度才可形成,从而导致晶粒较大和比表面积较低(<5 m~2/g)而制约其应用。因此,寻找一种大比表面积La_(0.8)Sr_(0.2)CoO_3复合氧化物的制备方法具有一定的研究价值。
     本文采用丙氨酸溶液燃烧法、丙烯酰胺-丙氨酸法、丙烯酰胺-氨基乙酸法、环氧丙烷法等方法制备La_(0.8)Sr_(0.2)CoO_3复合氧化物,以CH_4催化燃烧为探针反应,研究了不同制备方法、有机燃料、有机燃料与氧化剂的化学计量比、稀土金属离子(Ce、Nd)的A位掺杂、过渡金属离子(Ni、Cu)的B位和焙烧温度对La_(0.8)Sr_(0.2)CoO_3复合氧化物催化剂甲烷催化燃烧性能的影响,采用XRD、FI-IR、比表面积测定、H_2-TPR等技术对催化剂进行了表征。
     1.研究了丙氨酸溶液燃烧法、丙烯酰胺-丙氨酸法、丙烯酰胺-氨基乙酸法、环氧丙烷法等制备方法对La_(0.8)Sr_(0.2)CoO_3催化剂甲烷催化燃烧性能的影响。结果表明,丙氨酸溶液燃烧法制备的复合氧化物催化剂表现出最好的甲烷催化燃烧活性,其半转化温度(T_(50))和完全转化温度(T_(100))分别为470℃和550℃,这是由于该法所制的催化剂平均晶粒度较小、表面和氧空穴处的化学吸附氧更容易移动、表观活化能较低所致。
     2.采用溶液燃烧合成法制备了La_(0.8)Sr_(0.2)CoO_3钙钛矿型复合氧化物,考察了丙氨酸、氨基乙酸和丙三醇等有机燃料对催化剂结构和CH_4催化燃烧活性的影响。结果表明,不同有机燃料所制La_(0.8)Sr_(0.2)CoO_3复合氧化物均具有较大比表面积,有机燃料对催化剂的结构和性能有较大的影响,其中以丙氨酸有机燃料制备的复合氧化物活性最好。
     3.以D,L-丙氨酸为有机燃料,考察了有机燃料与氧化剂的化学计量比(φ)对催化剂结构和性能的影响。实验结果表明,它们的结构和性能随φ的不同而变化,当φ=1.52时所制备的催化剂活性最好,T_(50)和T_(100)分别为460和540℃。
     4.采用Nd、Ce和Ni、Cu分别取代La_(0.8)Sr_(0.2)CoO_4复合氧化物A位La离子、掺杂B位中Co离子,结果表明,Nd、Ce和Ni、Cu的掺杂均不能提高La_(0.8)Sr_(0..2)CoO_3催化剂CH_4催化氧化反应活性,其活性顺序为La_(0.8)Sr_(0..2)CoO_3>Ce_(0.8)Sr_(0..2)CoO_3>Nd_(0.8)Sr_(0..2)CoO_3>La_(0.8)Sr_(0.2)Co_(0.5)Ni_(0.5)O_3>La_(0.8)Sr_(0.2)Co_(0.5)Cu_(0.5)O_3。
     5.考察了焙烧温度对La_(0.8)Sr_(0.2)CoO_3复合氧化物催化剂甲烷催化燃烧性能的影响。结果表明,不同焙烧温度制备的La_(0.8)Sr_(0.2)CoO_3复合氧化物催化剂均具有钙钛矿结构,700℃焙烧的催化剂具有较大的比表面积和较强的还原性能,其甲烷催化燃烧性能较好。
Catalytic combustion has attracted much attention due to high combustionefficiency as well as low emission of exhaust gas such as CO, NO_x and unburnedhydrocarbons. For long time the supported noble metal catalysts have been generallyused for methane combustion. However, supported noble metal catalysts, althoughwith outstanding activity, are not fully satisfactory based on high price and scarceresource. Therefore there is a strong demand for the development of high activity, andlow-cost catalysts for the combustion of methane. Perovskite LaCoO_3 has beenextensively studied due to high catalytic activity for methane combustion and highthermal ability. However, the high calcination temperature of the preparedLaCoO_3catalysts inevitably leads to large crystallite size and lower specific surfacearea of the catalysts (less than 5 m~2/g), so the potential applications of these materialsas catalysts are limited. Therefore, in order to increase the specific surface area of theperovskite-type catalysts, the new synthesis method of the catalysts will be required.
     In the paper, a series of La_(0.8)Sr_(0.2)CoO_3 catalysts were prepared by differentsynthesis methods and used successfully for the methane combustion. The selectedtechniques included the alanine solution combustion method, polyacrylamide-alaninegel method, polyacrylamide-glycine gel method and epoxide gel method. The effectsof organic fuels, coefficient ofφ, rare earths (Nd,Ce), transition metals (Ni,Cu) andcalcination temperature of catatlysts on methane combustion were studied. Theprepared samples were characterized by means of XRD, FI-IR, BET and H_2-TPRmethods.
     1. The effects of the preparation methods of catatlysts on methane combustionwere studied. The results indicate that La_(0.8)Sr_(0.2)CoO_3 catalyst prepared by alaninesolution combustion method has higher catalytic activity for methane combustion,whose T_(50) and T_(100) were 470℃and 550℃, respectively. It can be explained in termsof the smaller average crystal size, the higher pecific surface are, the lower activationenergy and more mobile chemical-adsorped oxygen in the surface and vacancy.
     2. The effects of organic fuels on the structure and the catalytic activities ofLa_(0.8)Sr_(0.2)CoO_3 mixed oxides were studied. The results indicate that all La_(0.8)Sr_(0.2)CoO_3mixed oxides have large surface area, whose structure and catalytic activities arerelated to the corresponding organic fuels. The catalytic activity of La_(0.8)Sr_(0.2)CoO_3catalyst prepared by alanine solution combustion synthesis is the best among allsamples.
     3. The effects of stoichiometric ratio of organic fuel to oxidizer (φ) on structureand catalytic activities of the catalysts were studied. The results indicate that allLa_(0.8)Sr_(0.2)CoO_3 mixed oxides with the different coefficient ofφhave perovskitestructure, whose structure and catalytic activities alter regularly with the changecoefficient ofφ. Whenφis equal to 1.52, the catalytic activity of La_(0.8)Sr_(0.2)CoO_3mixed oxides catalyst is the best, whose T_(50) and T_(100) are respectively 460℃and 540℃, respectively.
     4. The La_(0.8)Sr_(0.2)CoO_3 catalysts of A-site doped different rare earths (Nd,Ce) andB-site doped different transition metals (Ni,Cu) were synthesized by alanine solutioncombustion method. The catalytic activity of La_(0.8)Sr_(0.2)CoO_3 mixed oxides for CH_4combustion was studied. The sequences of activities are La_(0.8)Sr_(0.2)CoO_3>Ce_(0.8)Sr_(0.2)CoO_3>Nd_(0.8)Sr_(0.2)CoO_3>La_(0.8)Sr_(0.2)Co_(0.5)Ni_(0.5)O_3>La_(0.8)Sr_(0.2)Co_(0.5)Cu_(0.5)O_3,.
     5. La_(0.8)Sr_(0.2)CoO_3 mixed oxides were prepared by alanine solution combustionmethod and calcined at 600, 700 and 800℃, respectively. The influence of thecalcination temperature of the mixed oxides on the performance of methanecombustion was studied. The catalysts calcined at 700℃has the higher surface area,smaller crystallize, and it has the best activity for methan combustion.
引文
[1] Pfefferle L D, Pfefferle W C. Catalysts in combustion. Catai. Rev. Sci. eng. ,1957, 29:219 ~ 267
    [2] Harrison B K, EmstW R. Catalytic Combustion in Qlindricai Channels: A Ho mogeneous-Heterogeneous Model,Combust. Sci. Tech., 1978,19:31~41
    [3] Oh S H, Mitchell P J, Siewert R M. Catalytic Contral of Air Pollution.ACS Symposium Sedes, 1992, 12:495~509
    [4] Baran E J. Structural chemistry and physicochemical of perovskite-like materials.Catal. Today 1990, 8: 133~152
    [5] A rai H, Yamada T, Eguch i K, et al. Catalytic combustion of methane over various perovskite-type oxides. Appl. Catal. A,1986, 26:265~276
    [6] Rayadurni J, Carbeny J J. Kinetics of Carbon Monoxide Oxidation on Solid Oxide Solution and Platinum on Alumina - A Comparative Study. J. Catal., 1994, 147:594~597
    [7] Jemigan G G, Somo rjai G A. Carbon Monoxide Oxidation over Three Different Oxidation States of Copper: Metallic Copper, Copper (Ⅰ) Oxide, and Copper (Ⅱ) Oxide - A Surface Science and Kinetic Study .J. Catal., 1994, 147:567~577
    [8] Ismagilov Z R, Kerzhentsev M A. Catalytic Fuel Combustion;A way of Reducing Emission of Nitrogen Oxides.Catal. Rev. Sci. Eng., 1990, 32:51~103
    [9] Bosch H, Janssen F. Formation and control of nitrogen oxides .Catal. Today, 1988, 2: 369~379
    [10] 曾汉才(Zeng H C).燃烧与污染(Combustion and Pollution,).武昌(w uchang):华中理工大学出版社(HuazhongS&E University Press),1992.27
    [11] T.P.Beebe,D.W.Goodman,B.D.Kay,et al. Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal suffaces.Chem.Phys. 1987,87(3): 2305~2310
    [12] Nora A. Merino, Bibiana P. Barbero, Patricio Ruiz, et al. Synthesis, characterisation, catalytic activity and structural stability of LaCol-yFeyO3±λ. perovskite catalysts for combustion of ethanol and propane. Journal of Catalysis, 2004, 240(2): 245~257
    [13] H. Takamura, K. Enomoto, Y. Aizumi, Preparation and oxygen permeability of Pr-AI-based perovskite-type oxides Solid State Ionics, 2004,175(3): 379-382
    [14] Falcon H, Martez-Lope M J, Alonso J A, et al. Large enhancement of the catalytic activity for CO oxidation on hole doped (Ln,Sr)NiO_3 (Ln=Pr, Sin, Eu) Perovskites. Solid State Ionics, 2000, 131(3-4): 237~248
    [15] Tejuca L J, Fierro J L G (eds). Properties and Applications of Perovskite Type Oxides[M]. Marcel Dekker, New York, 1993
    [16] Libby W F. Promising catalyst for auto exhaust. Science ,1971,171 (3): 499
    [17] Pedersen L A, Libby W F. Unseparated rare earth cobalt oxides as auto exhaust catalysts. Science, 1972,176 (7) : 1355.
    [18] Balker A, Marti P E, Kreusch P, et al. Influence of the A-site cation in ACoO_3 (A = La,Pr, Nd, and Gd) perovskite-type oxides on catalytic activity for methane combusiton. J .Catal., 1994,146 (1) : 268~276
    [19] Sumathi R, Johnson K, Viswanathan B, et al. Selective oxidation and dehydrogenation of benzyl alcohol on ABB'O_3 (A =Ba, B= Pb, Ce, Ti and B'= Bi, Cu, Sb)type perovskite oxides temperature programmed reduction studies. Appl. Catal. A, 1998, 172 (1) : 15~23
    [20] Arai H, Yamada T, Eguchi K, et al. Catalytic combustion of methane over various peroskite-type oxides . Appi. Catal., 1986, 26 (1-2): 265~276
    [21] Pela M A, Fierro J L G. Chemical structures and performance of perovskite oxides [J]. Chem Rev., 2001,101 (7): 1981~2017
    [22] Feral D, Forni L. Methane combustion on some perovskite-like mixed oxides [J]. Appl. Catal. B, 1998, 16 (2): 119~126
    [23] Fierro J L G. Structure and composition of perovskite surface in relation to adsorption and catalytic properties. Catal. Today, 1990, 8 (2) : 153~174
    [24] Ciambelli P, Cimino S, De Rossi S, et al. AMnO_3 (A = La ,Nd, Sin) and Sm_(1-x) Sr_x MnO_3 perovskites as combustion catalysts :structural, redox and catalytic properties. Appl. Catai. B, 2000, 24 (3-4): 243~253
    [25] Cimino S, Lisi L, De Rossi S, et al. Methane combustion and CO oxidation on LaAI_(1-x) Mn_xO_3 perovskite-type oxide solid solutions. Appl. Catal. B, 2003,43 (4) : 397-405
    [26] Szabo V, Bassir M, Van Neste A, et al. Perovskite-type oxides synthesized by reactive grinding-part Ⅳ. Catalytic properties of LaCo_(1-x)Fe_xO_3 in methane oxidation. Appl. Catal. B, 2003, 43 (1) : 81~90
    [27] Cimino S, Colonna S, De Rossi S, et al. Methane combustion and CO oxidation on zirconia-La, Mn oxides and LaMnO_3 perovskite. J. Catal, 2002, 205 (2): 309~317
    [28] Stathopouos V N, Belessi V C, Ladavos A K. Samarium based high surface area perovskite " type pxides SmFe_(1-x)AlxO_3, (x = 0.00, 0.50, 0.95). Part Ⅱ, catalytic combustion of CH_4. Reat. Kinet Catal. Let, 2001,72 (1): 49~57
    [29] Barnard K R, Foger K, Turney T W, et al. Lanthanum cobalt oxide oxidation catalysts derived from mixed hydroxide precursors [J]. J Cata., 1990, 125 (2) : 265~275
    [30] Wdghton M S. J Am Chem Soc, 1976,98:177
    [31] Kutty T R N. Photo-Catalysis. Catal Rev, 1992, 34(4): 373~389
    [32] Happel J. lnd Eng Chem. Prod Res Dev, 1975, 14:54~65
    [33] Narottam P, Zhimin Z, et ai. Application of(Sm_(0.5)Sr_(0.5))CoO_3 as cathode material to (Zr, Sc)O_2 electrolyte with ceria-based interlayers for IT-SOFCs. Journal of Power Sources, 2006, 158(7): 148~153
    [34] Ekambaram S. Solution combustion synthesis and luminescent properties of perovskite red phosphors with higher CRI and greater lumen output. Journal of Alloys and Compounds, 2005, 390(1~2): 7~9
    [35] Zanetti S M, Santiago E I, Bulhoes L O, et al. Preparation and characterization of nanosizod SrBi_2Nb_2O_9 powder by the combustion synthesis. Materials Letters, 2003, 57(19): 2812~2816
    [36] Stefania S, Andred C, Guido S. In situ combustion synthesis of perovskite catalysts for efficient and clean methane premixed metal burners. Chemical Engineering Science,, 2004, 59(22-23): 5091~5098
    [37] Magraso A, Calleja A, Capdevila X G.. Synthesis of Gd-doped BaPrO_3 nanopowders. Solid State Ionies, 2004, 166(3-4): 359~364
    [38] Rong W, Piyi D, Wenjian W. The structures and dielectric properties of Ba_(0.80)Sr_(0.20)TiO_3/Pb_(0.82)La_(0.18)TiO_3 composite thick films with addition of PbO-B_2O_3 glass. Journal of the European Ceramic Society, 2006, 26(9): 1611~1617
    [39] Chai Y L, Ray D T, Chen G J, et al. Synthesis of La_(0.8)Sr_(0.2)CO_(0.5)Ni_(0.5)O_(3-δ) thin films for high sensitivity CO sensing material using the Pochini process. Journal of Alloys and Compounds, 2002,333 (2): 147~153.
    [40] Abdei S H, Butt D P. Environmentally compliant silica conversion coatings prepared by sol-gel method for aluminum alloys. Surface and Coatings Technology, 2006,201(1-20): 401~407
    [41] 于洪浩,高文元,孙俊才.La_(0.7)Sr_(0.3-x)Ca_xCO_(0.9)Fe_(0.1)O_(3-δ)的柠檬酸盐法制备和性能.稀士,2005,26(8):1~5
    [42] Dan X, Wei P. Study on BaBi_4Ti_4O_(15) nanoscaled powders prepared by sol-gel method. Materials Letters, 2003, 57(19): 2970~2974
    [43] Reji T, Shoichi M, Toshiyuki M, et al. Preparation of ferroelectric Pb(Zr_(0.5),Ti_(0.5))O_3 thin films by sol-gel process: dielectric and ferroelectric properties. Materials Letters, 2003, 57(13-14): 2007~2014
    [44] Armstrong R D. Diagnostic criteria for distinguishing between the dissolution-precipitation and the solid state mechanisms of passivation. Corrosion Science, 1971, 11(10): 693~697
    [45] Aivani C L, Bruzzi S, Rondinella V, et al. Preparation of Li_2ZrO_3 by powder reaction and hydrolysis of metal alkoxides. Journal of the European Ceramic Society, 1989, 5(5): 295~302
    [46] 夏长荣,许大刚,高建 峰等.新型中温固体氧化物燃料电池阴极材料Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)的制备.功能材料[J].2001,32(3):269~271
    [47] Kong L B, Ma J, Zhang R E Preparation and characterization of bulk and nano particles of La_2Zr_2O_7 and Nd_2Zr_2O_7 by sol-gel method. Materials Letters, 2002,53(3): 205~210
    [48] Shi M, Liu N, Xu Y D, et al. Preparation of electrolyte foils La_(0.85)Sr_(0.15)Ga_(0.85)Mg_(0.15)O_(2.85) (LSGM) by means of tape casting. Journal of Materials Processing Technology, 2005,169(2): 179~183
    [49] Feng L, Hegen Z, Dianzhen J, et al. Syntheses of perovskite-type composite oxides nanocrystals by solid-state reactions. Materials Letters, 2002, 53(4-5): 282~286
    [50] Liyan W, Xiaoyan M, Wenjun Zh, et al. Hydrothermal synthesis and characterization of double perovskite Ba_2YSbO_6. Materials Letters, 2006, 60(19): 2326~2330
    [51] Li J Q, Sun W A, Ao W Q, et al. Hydrothermal synthesis and Magnetocaloric effect of La_(0.5)Ca_(0.3)Sr_(0.2)MnO_3. Journal of Magnetism and Magnetic Materials, 2006, 302(2): 463~466
    [52] Sun W A, Li J. Hydrothermal synthesis and magnetocaloric effect of La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3. Powder Technology, 2006, 166(2): 77~80
    [53] Lichtenberg F, Herrnberger A, Wiedenmann K, et al. Synthesis of perovskite-related layered A_nB_nO_(3n+2)=ABO_x type niobates and titanates and study of their structural, electric and magnetic properties. Progress in Solid State Chemistry, 2001, 29(1-2): 1~70
    [54] Kutty T, Vivekanadan R. BaSnO 3 fine powders from hydrothermai preparations. Materials Research Bulletin, 1987, 22(11): 1457~1465
    [55] Lihong X, Qiang L, Yillng Z, et al. Microstructure and dielectric properties of PLZST ceramics prepared by a modified coproeipitation. Materials Science and Engineering: B, 2006, 132(3): 253~257
    [56] Xiang P, Yoshiaki K, Takaaki N, et al. Sintering behaviors of bismuth titanate synthesized by a coprecipitation method. Materials Letters, 2005, 59(12): 3590~3594
    [57] Masahiro Y, Akane I, Kaoru I, et al. Thermoelectric properties of La-doped SrPbO_3 ceramics prepared by coprecipitation method]. Materials Letters, 2004, 58(27-28): 3536~3539
    [58] Cui X, Liu Y, et al. New methods to prepare ultrafine particles of some perovskite-type oxides.Chemical Engineering Journal, 2000, 78(2-3): 205~209
    [59] Stanly K J, IPackia S, Kmnat V, et al.Preparation of fine powers of PbTiO_3 derived from organmetallic solution. Materials Letters, 1999, 40(8): 118~123
    [60] Erbil A, Braun W, Kwak B S, et al. Oxide ferroelectdc materials grown by metalorganie chemical vapor deposition. Journal of Crystal Growth, 1992, 124(1-4): 684~689
    [61] Wang H B, Meng G Y, Peng D K. Aerosol and plasma assisted chemical vapor deposition process for multi-component oxide La_(0.8)Sr_(0.2)MnO_3 thin film. Thin Solid Films, 2000, 368(20): 275~278
    [62] Chung S, Kwangsoo N, Lee W. Crystalline structures of the PbTiO3 films prepared using the ECR PECVD method. Thin Solid Films, 1997,295 (1-2): 299~304
    [63] Robert J, Bell, Graeme J, et al. Solid State lonies, 2000, 131(6): 211~220
    [64] Yi Y, Kyekyoon K, Hyungsoo C. Fabrication of perovskite-based Pb(Zn_(1/3)Nb_(2/3))O_3 (PZN) thin films using charged liquid duster beam. Thin Solid Films, 2001, 396(1-2): 97~102
    [65] Javier F, Eseudero S, Jean F, et al. Membrane synthesis by mieroemulsion polymerisation stabilised by commercial non-ionic surfaetants. Desalination, 2006, 199(1-3): 127~129
    [66] 冉锐,吴晓东,翁端.稀土钙钛矿催化剂制备方法的研究进展.稀土,2004,25(10):46-50
    [67] LuC, Susanta K S. Synthesis of ultrafme strontium bismuth tantalate powder by colloid-emulsion technique. Materials Letters, 2000, 42 (3): 150~154
    [68] Yang X, Chaki T K. Hollow lead zirconate titanate microspheres prepared by sol-gel/emulsion technique. Materials Science and Engineering B, 1996, 39(2): 123~128
    [69] Emerson R, Elson L, Edson R. Phase evolution of lead titanate from its amorphous precursor synthesized by the OPM wet-chemical route. Journal of Solid State Chemistry, 2004, 177(6): 1994~2001
    [70] Panda P K, Sahoo B. Preparation of pyrochlore-free PMN powder by semi-wet chemical route. Materials Chemistry and Physics, 2005, 93(1): 231~236
    [71] 牛建荣,刘伟,戴洪兴,等.大比表面积锶掺杂钴酸镧高效钠米催化剂制备与表征.科学通报,2006,51(8):912-918
    [72] 杨小毛,罗来涛,钟华.LaSrCoO_4催化材料的制备及性能研究.无机材料学报,2005,20(2):413-418
    [73] Alifanti M., Kirchnerova J., Delmonb B., et al. Methane and propane combustion over lanthanum transition- metalperovskites: role of oxygen mobility. Appl. Catal. A. 2004,262(2): 167-176
    [74] 徐金光,田志坚,王军威,等.CeO_2/BaMnAl_(11)O_(19-α)催化剂制备及甲烷催化燃烧研究.化学报,2004,62(4):373~378.
    [75] Arai H, Machida M. Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion. J. Catal., 1996, 138 (2) : 161~172.
    [76] Otto K, Andino J M, Parks C L. The influence of platinum concentration and particle size on the kinetics of propane oxidation over Pt/γ-alumina. J. Catal., 1991,131 (1) : 243~250.
    [77] Saracco G, Geobaldo F, Baldi G. Methane combustion on Mg-doped LaMnO_3 perovskie catalysts[J]. Appl. Catal. B, 1999,20 (4) : 277~288.
    [78] Stojanovic M, Mires C M, Moudallal H, et al. Reaction kinetics of methane oxidation over LaCr_(1-x)Ni_xO_3 perovskite catalysts. J. Catal., 1997,166 (2) : 324-376
    [79] Belessi V.C., Ladavos A.K., Pomonis P.J. Methane combustion on La-Sr-Ce-Fe-O mixed oxides:bifunctional synergistic action of SrFeO_(3-x) and CeOx phases. Appl. Catal. B, 2001, 31 (3): 183-194
    [80] 赵震,杨向光,刘钰,等.LnSrNiO_(4-λ)系列复合氧化物的物化性质与对NO分解的催化性能.中国稀士学报,1998,16(4):324~328
    [81] 高利珍,董比礼,李庆生,等.ABO_3,A_2BO_4型复合氧化物催化剂用于CO·CH_4,NH_3完全氧化的比较.燃料化学学报,1994,22(2):115~117
    [82] 安德森J R,普拉特K c.催化剂表征与测试[M].北京:烃加工出版社,1989.
    [83] P Ciambelli, S Cimino, S De Rossi, et al. AMnO_3(A=La, Nd, Sm) and Sm_(1-x)Sr_xMnO_3 perovskites as combustion catalysts: structural, redox and catalytic properties. Appi.Catal.B 2000,
    [84] Alifanti. M, Kirehnerova. J, Delmonb.B., et al. Methane and propane combustion over lanthanum transition- metal perovskites: role of oxygen mobility[J]. Appl. Catal. A.,2004, 262(2):167~176.
    [85] 崔梅生,李明来,张顺利.钙钛矿催化材料La_(1-x)Ce_xCoO_(3+δ)钙钛矿催化材料的制备、表征及甲烷燃烧催化性质.中国有色金属,2004,14(9):1580~1584
    [86] P Ciambelli, S Cimino, G Lasorella, etal.CO oxidation and methane combustion on LaAl_(1-x)Fe_xO_3 perovskite solid solutions.Applied Catalysis B: Environmental, 2002, (37): 231~241
    [87] S Royer, H Alamdari, D Durprez, etal.Oxygen storage capacity of La_(1-x)A′_xBO_3 pervoskites (with A′=Sr,,Ce;B=Co,Mn)-relation with catalytic.Applied catalysis B:Environmental, 2005, (58): 273~288
    [88] JunjiangZhu, Zhen Zhao, Dehai Xiao, etal.Study of La_(2-x)Sr_xCuO_4 (x=0.0,0.5,1.0) catalysts for NO+CO reaetionfrom the measurements of O_3-TPD, H_2-TPR and cyclic voltammetry.Journal of Molecular Catalysis A: Chemical, 2005, (238): 35~40
    [89] Genira Carneiro, Araujo, Sania Lima, etal.Characterization of precursors and reactivity of LaNi_(1-x)Co_xO_3 for the partial oxidation of methane.Catalysis Today, 2005,(107-108): 906~912
    [90] Sebastien Royer, Franc ois Berube, Serge Kaliaguine. Effect of the synthesis conditions on the redox and eatalyticproperties in oxidation reactions of LaCo_(1-x)Fe_xO_3.Applied Catalysis A: General, 2005, (282): 273~284
    [91] Odier P, Leblanee M, Choisnet J.Structural characterization of an orthorhombic form of La2NiO4. Materials Research Bulletin, 1986, 21 (7): 787~796.
    [92] 清山哲郎,金属氧化物及其催化作用[M]。合肥:中国科技大学出版社,1991,84~89。
    [93] El-shobaky G A, Deraz N A M. Surface and catalytic properties of cobaltic oxide supported on an active magnesia. Mater Lett, 2001,47(4~5):231~240.
    [94] 熊纲.杨绪杰,陆路德等.纳米晶铁酸锌和铁酸镧的合成与表征.无机材料学报.1998。13(4):613~618
    [95] Subba G V, Rao C N. Infrared and Elect ronie Speet ra of Rare Earth Perovsk ites: O rtho-Ch rom itesM angan-ites and Ferrites. Appl Spectroscopy, 1970, 24 (4):436~443
    [96] LouH, Chen P, Ge Y P, et al. Preparation crystalst ructure, and reducibility of K_2N iF_4 type oxides Eu_(1-x)SrxNiO_4. Solid State Chem, 1998, 141 (1): 991~999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700