高温热态物体三维测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锻造行业是装备制造业得以发展的基础,特别是大型锻件,其尺寸精度是是保证重大技术装备制造质量的一个重要因素。根据美国能源部的调查,美国锻造行业中的废品率大于15%,其主要原因在于缺乏高温热态锻件的测量技术,而这种情况也同样存在于我国锻造行业,为了有效地减少锻件的废品率,需对热态锻件进行现场测量以控制锻压过程的质量。随着我国在能源电力、航空航天、核电、高速列车、化工冶金、船舶等领域的快速发展,大型锻件的需求也日益增加,高温热态物体在线测量技术研究的经济意义也与日俱增。本文结合十一五国防预研项目的相关光学测量研究,对热态锻件测量技术进行了探索性的研究,以期为控制锻压过程的质量提供有力的支持。
     本文对国内外相关的热态锻件测量技术进行分析研究之后,采用实验室现有的结构光三维测量系统,在成功地完成了测量系统的内外部参数标定的基础上,针对锻件在制造过程中伴随着高温、高压、锻件表面存在空气波动等特点,设计了合理的图像采集方案,然后根据高温热态测量的特点进行相位误差的分析,选择中值滤波算法对光栅图像进行滤波预处理,减少图像噪声对相位误差的影响,选择五步相移法作为系统的相位计算,降低相移误差和系统非线性响应对相位误差的影响,最后整个测量系统在分别使用四步相移算法和五步相移算法的情况下对待测物体进行测量,通过其三维数据的对比,可以发现五步相移算法提高了系统测量精度。
Forging industry is the basis of developing equipment manufacturing industry, especially for large forgings, whose dimensional precision is an important factor to ensure the manufacturing quality of major technical equipment. According to the survey of Department of Energy, rejection rate of forging industry in the United States is more than 15%, mainly due to the lack of measurement techniques about hot forgings, and this situation also exists in Chinese forging industry. The field measurement for hot forging parts to control the quality of forging process is needed, in order to effectively reduce forging rejection rate. As China's rapid development in energy and power, aerospace, nuclear power, high-speed trains, engineering chemistry and metallurgy, shipping and other fields, the demand for large forgings is growing, so is the economic significance of the research on field measurement techniques of high temperature objects. Connected with the related optical measurement research of the Eleventh Five-Year national defense pre-research item, this paper makes an exploratory study on measurement techniques of hot forgings, with a view to provide strong support for controlling the quality of forging process.
     After making research on the related techniques of measurement of hot forgings at home and abroad, this paper adopts the current structured light 3D measurement system and design the reasonable image acquisition scheme aiming at the characteristics that forgings in the produce process is accompanied by high temperature、high pressure and the airwaves existing in forging surface, on the basis of successfully finishing the intrinsic and extrinsic parameters calibration of measurement system. Then according to the characteristics of high temperature measurement, it makes analysis of phase error and chooses median filtering algorithm to make filtering preprocess of raster image, reducing the picture noises’influence on phase error, and chooses five-step phase-shifting method as phase computation of the system to reduce the influence of phase displacement error and system's nonlinear response on phase errors, and finally the whole measurement system measures the objects being measured under the situation of separately using five-step phase-shifting method and five-step phase-shifting method, and through the comparison of their three-dimensional data, the Five-step phase shift algorithm improving measurement precision of the system can be found.
引文
[1]罗晴岚.跨世纪中国锻造行业的发展方向[J].锻压机械, 2001, 32(5):1~4.
    [2]聂绍,李树奎.大锻件热态在线尺寸测量研究综述[J].金属加工, 2008, (11):22~25.
    [3]中国锻造行业机遇与发展态势[EB/OL].中国传动网市场研究, 2010-01-12/2010-12-2.
    [4]吴瑞敏.大尺寸高温锻件双目视觉测量技术[D].大连:大连理工大学, 2008.
    [5]张孝林,袁国文.非接触式测量点云数据的处理方法[J].信息与电子工程, 2010, (3):289~291.
    [6] K.B. Atkinson. Close range photogrammetry and machine vision. Whittles., 1996.
    [7]苏显渝.信息光学[M].北京:科学出版社,1999.
    [8] Goesele, M., Curless B., Seitz S.Multi-view stereo revisited. 2006 IEEE Computer Society Conference on EP, 2006.
    [9] Emmanuel P. Baltsavias. A comparison between photogrammetry and laser scanning. Switzerland, Institute of Geodesy and Photogrammetry.2005.
    [10] Kyoung Mu Lee., C. C. Jay Kuo. Shape from shading with perspective projection. California: University of Southern California, 1993.
    [11]唐向阳,张勇,李江有等.机器视觉关键技术的现状及应用展望[J].昆明理工大学学报,2004,29(2):36-39.
    [12]叶声华,邾继贵.视觉检测技术及应用.中国工程科学, 1999. 1(001): 49-52.
    [13]张启灿.动态过程三维面形测量技术研究[D].成都:四川大学, 2005.
    [14] Su, X., Chen W. Fourier transform profilometry: a review. Optics and Lasers in Engineering, 2001. 35(5): 263-284.
    [15]魏升,刘南生,刘朋友等.基于傅立叶变换轮廓上的物面相位提取[J].南昌大学学报, 2007, 31(3):260~263.
    [16] Zhang S. High-resolution, real-time 3-D shape measurement [D]. New York: Stony Brook University, 2005.
    [17] Forging Industry Association & Forging Industry Educational and Research Foundation .Forging Industry Technology Plan CY2005-2006 [R]. USA: 2005.
    [18] Inventions and Innovation. A HotEye(TM) Based Coordinate Measuring Machine for the Forging Industry[R]. U. S. Department of Energy, 2004.
    [19] Lacam forge. LaCam system measuring principle and general functions [DB/OL]. www.ferrotron.com.
    [20] S.B.Dworkin, T.J.Nye.Image processing for machine vision measurement of hot formed parts. Journal of Materials Processing Technology.2006,174 (1–3):1-6.
    [21]秦皇岛西重所燕大重型机械研究所.百项科技成果汇编[C].石家庄, 2007.
    [22]于鹏,高峰,郭为忠等.新型大锻件尺寸在线测量系统的关键技术研究[J].机械设计与研究.2008, 24(3):89-92.
    [23] Juan Wang, Zuron Qiu and Jin Li. Experimental research on dimensional measurement of hot parts based on CCD. Proc. of SPIE Vol. 6829 68291D-1, (2007).
    [24]马俊福,周晓军,徐志农.基于计算机视觉的锻件尺寸检测[J].控制与检测.2007, 11:48-50.
    [25]赵毅,王明辉,马品奎等.热态锻件结构光三维测量技术.中国机械工程,2006, 17:125-128.
    [26] Breuckmann, B., Thieme W. Computer-aided analysis of holographic interferograms using the phase-shift method. Applied optics, 1985. 24(14): 2145-2149.
    [27] R. J Valkenburg., A. M. Mclvor. Accurate 3D measurement using a structured light system. New Zealand: Industrial Research Limited, 1996.
    [28] Ricardo Legarda-Sa′enz, Thorsten Bothe, Werner P. Juptner. Accurate procedure for the calibration of a structured light system. Germany, 2004.
    [29] Fred W. DePieroa, Mohan M. Trivedib. 3-D computer vision using structured light: design, calibration, and implementation issues. California,1996.
    [30]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报,2001,26( 1):43-55.
    [31] Weng, J., Cohen, P., Herniou, M. Camera calibration with distortion models and accuracy evaluation. Michigan: Michigan State University, 1992.
    [32]李中伟.基于数字光栅投影的结构光三维测量技术与系统研究[D].武汉:华中科技大学, 2009.
    [33] Zhang S. High-resolution, real-time 3-D shape measurement [D]. New York: Stony Brook University, 2005.
    [34] Tzung-Sz Shen., Chia-Hsiang Menq. Digital Projector Calibration for 3-D Active Vision Systems. Ohio: The Ohio State University, 2000.
    [35]赵焕东.相位测量轮廓术的理论研究及应用[D].杭州:浙江大学, 2001.
    [36]杨锋涛.相位展开算法及在相位测量轮廓术中的应用研究[D].昆明:昆明理工大学,2005.
    [37] Ghiglia, D., Pritt M. Two-dimensional phase unwrapping: theory, algorithms, and software. New York:Wiley,1998.
    [38]岳慧敏,基于时间相位展开的三维轮廓测量研究[D].成都:四川大学, 2005.
    [39]杨世铭,陶文铨.传热学(第四版)[M].北京:高等教育出版社, 2006.
    [40]刘国宏,郭文明.改进的中值滤波去噪算法应用分析[J].计算机工程与应用, 2010, 46(10):187~189.
    [41] Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing〔M〕. Second Edition.北京:电子工业出版社, 2003.3
    [42]周利兵.PMP中相移算法与误差分析研究[D].成都:四川大学, 2003.
    [43] Srinivasan, V., Liu H., Halioua M. Automated phase-measuring profilometry: a phase mapping approach. Applied optics, 1985. 24(2): 185-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700