喷雾热解法制备二氧化钛薄膜及其亲水性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介绍了TiO_2功能薄膜的发展概况。TiO_2在光能的作用下能够产生良好的光催化特性和超亲水性。利用TiO_2超亲水特性,在普通玻璃上镀一层TiO_2薄膜,沾染在其上的污渍能够容易的被水冲走,使玻璃具有易清洁的特性。这种易清洁玻璃易于维护,在生产和生活中有良好的应用前景。
     TiO_2薄膜的亲水性能受到结构形貌及其禁带宽度的影响,锐钛矿相的TiO_2具有最好的亲水特性;平整均匀的表面不仅有利于水的铺展,而且透光率高,适于玻璃镀膜;薄膜禁带宽度降低有利于提高光能的利用率。
     根据超亲水TiO_2薄膜的要求展开了工作,通过对制备方法和原理的研究改进TiO_2薄膜的形貌,通过过渡金属离子的掺杂来降低薄膜的禁带宽度。
     目前常用的TiO_2镀膜方法主要有溶胶凝胶和反应磁控溅射等方法,溶胶凝胶法薄膜厚度难以控制,磁控溅射需要复杂的真空设备,成本较高,限制了TiO_2镀膜在工业上的大规模生产。喷雾热解法具有沉积温度、速率容易控制,对基板选择性低,所得薄膜形貌均匀致密等特点。而且设备简单,成本低廉,在大规模工业生产方面有很大潜力。
     根据防雾易清洁玻璃的性能要求,利用喷雾热解法,以透明载玻片为基板进行薄膜的制备。通过改变工艺参数获得了一系列TiO_2薄膜。并且制备了一系列组成的Fe~(3+)或Zn~(2+)掺杂TiO_2薄膜。通过XRD,SEM,AFM以及UV-VIS光谱分析等一系列手段对薄膜的结构和性能进行了全面的研究,并且测量了不同薄膜在接收光照后接触角的变化。
     沉积温度和热处理时间对薄膜材料的结晶度有较大影响。薄膜的表面形貌随着喷雾参数的改变发生了较大的改变,喷雾参数的改变使是雾化液滴大小和液流密度随之发生了一定改变。过大的液滴使薄膜表面不均匀,液滴过小又会使薄膜表面形成孔洞,只有液滴直径在一定范围内制备的薄膜才能满足要求。结果表明,在液滴直径为13μm,液流密度在0.10mL/(min·cm~2)时制备的薄膜表面平整致密,有利于水滴的铺展。
     对掺杂样品的研究结果表明,先驱体成分的改变对成膜过程没有影响,结构和形貌与未掺杂试样基本没有区别。Fe~(3+)掺杂离子的引入能够有效降低薄膜的光学能隙,提高薄膜的光响应范围,从而使薄膜的亲水性能提高;而Zn~(2+)掺杂对薄
    
    浙往大’于倾卜、浏亿论文
    膜的亲水性能没有改善。
     本工作表明使用喷雾热解法可以有效的实现Tio:镀膜玻璃的制备,以及薄
    膜的金属离子掺杂改性。讨论了喷雾参数和液滴大小的关系以及对所得薄膜质量
    的影响,从而为本方法的工业化应用和推广到其它高质量薄膜的制备提供理论指
    〔己
    ;J,。
A comprehensive introduction of photocatalitic and super hydrophilic material, TiC>2, was presented in this paper. It had many great merits such as excellent optical properties, low-cost and easiness to handle which offered promising prospects in the filed of self-cleaning, anti-fog and so on.
    The hydrophilicity of TiO2 was influenced by many factors such as crystal structure, surface morphology, band gap, etc. Preparing method and doping element would take effect on the properties of the film.
    The spray pyrolysis method has large application potency to be a method to prepare the economical thin films for its unsophisticated equipment, low-cost and high deposition rate which are great advantages if the technique is to be scaled up for industrial applications.
    TiO2 thin films with super hydrophilicity were deposited onto soda-lime glass using the spray pyrolysis method, and the films doped with different content of Fe3+ or Zn2+ were also prepared. The crystal structure and surface morphology were characterized by XRD, SEM and AFM. The optical properties were characterized by uv-vis transmission spectrum. The hydrophilicity of the films was measured by a contact angle meter. And the mechanism of the film formation during the spray pyrolysis procedure was also discussed.
    The results turned out that the crystal structure was changed by the variation of the deposition temperature and annealing time. The surface morphology was greatly influenced by the Spray parameters which atomized the precursor droplet in different diameters and different intensities.
    When the droplets were in large diameter, the surface morphology would be more rough and heterogeneous. The surface morphology would be porous when the droplets were too small. It was found that the surface would be more smooth and homogenous when the droplets were in the middle scale. The hydrophilicity measurement shows that the smooth and homogenous surface of the TiO2 film showed to favor water spreading.
    
    
    The influence of the transitional metal ion, Fe3+ and Zn2+, was discussed. Fe dopent can be easily put into the matrix of TiO2 and hardly inflects the crystal structure or surface morphology. It can decrease the band gap of the thin film effectively so that it will improve the hydrophilicity of the thin film. Zn dopent may change the crystal structure while the surface morphology becomes rough. And the band gap remains high. So the hydrophilicity of the thin film decreased.
    It shows that the spray pyrolysis method can effectively produce TiO2 thin films with superhydrophilicity and offers an extremely easy way to dope films with other element. The analysis results in this work would be significant for reasonable utilization of spray pyrolysis deposition.
引文
?
    
    
    [1]Akira Fujishima, Kenichi Honda. Electrochemical Photolysis of Water at Semiconductor Electrode. Nature, (1972) 238, 37-38
    [2]Steven N. Frank, Allen J. Bard; J. Am. Chem. Soc. Semiconductor electrodes. 12. Photoassisted oxidations and photoelectrosynthesis at polycrystalline titanium dioxide electrodes; (1977)99, 4667-4675.
    [3]Steven N. Frank, Allen J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc. (1977) 99, 303-304.
    [4]Adam Heller. Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells Acc. Chem. Res. (1981) 14, 154-1162.
    [5]Ralph W. Matthews. Photooxidation of organic impurities in water using thin films of titanium dioxide. J. Phys. Chem. (1987) 91, 3328-3333
    [6]Carl Anderson, Allen J. Bard. An Improved Photocatalyst of TiO_2/SiO_2 Prepared by a Sol-Gel Synthesis J. Phys. Chem. (1995) 99, 9882-9885
    [7]Adam Heller. Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films. Acc. Chem. Res. (1995)28, 503-508
    [8]Rong Wang, Kazuhito Hashimoto, Akira Fujishima, Makoto Chikuni, Eiichi Kojima, Atsushi Kitamura, Mitsuhide Shimohigoshi, Tohiya Watanabe. Light-induced amphiphilic surfaces. Nature, (1997) 388,431-432
    [9]Rong Wang, Kazuhito Hashimoto, Akira Fujishima, Makoto Chikuni, Eiichi Kojima, Atsushi Kitamura, Mitsuhide Shimohigoshi, Tohiya Watanabe. Photogeneration of Highly Amphiphilic TiO_2 Surfaces. Advanced Materials, (1998) 10, 135-138
    [10]Wongyong Choi, Andreas Terrain, Michael R. Hoffmann. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. (1994) 98, 13669-13679
    [11]L. Sirghi, Y. Hatanaka. Hydrophilicity of amorphous TiO_2 ultra-thin films. Surface Science (2003) 530, 323-327
    [12]S. Ikezawa, H. Homyara, T. Kubota, R. Suzukia, S. Koha, F. Mutuga, T.Yoshioka,A.
    
    Nishiwaki, Y. Ninomiya, M. Takahashi, K. Baba, K. Kida, T. Hara, T. Famakinwa. Applications of TiO_2 film for environmental purification deposited by controlled electron beam-excited plasma. Thin Solid Films (2001) 386, 173-176
    [13]Masahiro Miyauchi, Nobuo Kieda, Shunichi Hishita, Takefumi Mitsuhashi, Akira Nakajima, Toshiya Watanabe, Kazuhito Hashimoto. Reversible wettability control of TiO_2 surface by light irradiation. Surface Science (2002) 511,401-407
    [14]R. D. Sun, A. nakajima, A. Fujishima, T. Watanabe, K. Hashimoto. Photoinduced surface wettability conversion of ZnO and TiO_2 thin films, J. Phys. Chem. B. (2001) 105, 1984-1990
    [15]N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto. Enhancement of the Photoinduced Hydrophilic Conversion Rate of TiO_2 Film Electrode Surfaces by Anodic Polarization. J. Phys. Chem. B. (2001) 105, 3023-3026
    [16]Kazuhiko Takeda, Kitao Fujiwara. Characteristics on the determination of dissolved organic nitrogen compounds in natural waters using titanium dioxide and platinized titanium dioxide mediated photocatalytic degradation. Wat. Res. (1996) 30, 323-330
    [17]李晓娥,邓红,樊安,祖庸.纳米二氧化钛光催化性能的研究.西北大学学报(自然科学版),(1999)29,547-550
    [18]Akira Fujishima, Tata N. Rao, Donald A. Tryk. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews (2000) 1, 1-21
    [19]徐自立,杜尧国,尚静,井立强,郭晓静,王德军.TiO_2,ZnO光催化降解庚烷的活性研究.环境化学,(2002)21,465-470
    [20]孙奉玉,吴鸣,李文钊,李新勇,顾婉贞,王复东.二氧化钛尺寸与光催化活性的关系.催化学报,(1998)19(3),229-233
    [21]Roger I. Bickley, Teresita Gonzalez-Carreno, John S. Lees, Leonardo Palmisano and Richard J. D. Tilley. A structural investigation of titanium dioxide photocatalysts, Journal of solid state chemistry (1991) 92, 178-190
    [22]L. E. Brus. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. The Journal of Chemical Physics, (1983) 79, 5566-5571.
    [23]L. E. Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of Chemical
    
    Physics (1984) 80, 4403-4409.
    [24]H. Weller, H. M. Schmidt, U. Koch, A. Fojtik, S. Baral, A. Henglein W. Kunath, K. Weiss, E. Dieman, Photochemistry of colloidal semiconductors. Onset of light absorption as a function of size of extremely small CdS particles, Chem. Phys lett. (1986) 124, 557-560
    [25]H. M. Schmidt, H. Weller. Quantum size effects in semiconductor crystallites: Calculation of the energy spectrum for the confined exciton, Chem. Phys. Lett. (1986) 129, 615-618
    [26]Ying Ma, Jian-bin Qiu, Ya-an Cao, Zi-shen Guan, Jian-nan Yao. Photocatalytic activity of TiO_2 films grown on different substrates. Chemosphere (2001) 44, 1087-1092
    [27]Davide Vione, Valter Maurino, Claudio Minero, Ezio Pelizzetti. Phenol photonitration upon UV irradiation of nitrite in aqueous solution Ⅱ: effects of pH and TiO_2. Chemosphere (2001) 45,903-910
    [28]许宜铭.苯乙酮的TiO_2光催化降解及其影响因素.高等学校化学学报.(2000)21,1531-1543
    [29]Jincai Zhao, Hisao Hidaka, Akira Takamura, Ezio Pelizzetti, Nick Serpone. Photodegradation of surfactants. 11..zeta.-Potential measurements in the photocatalytic oxidation of surfactants in aqueous titania dispersions. Langmuir. (1993) 9, 1646-1650
    [30]N. Sakai, R. Wang, A. Fujishima, T. Watanabe, K. Hashimoto. Effect of ultrasonic treatment on highly hydrophilic TiO_2 surfaces. Langmuir, (1998) 14, 5918-5920
    [31]T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, (1999) 260-263
    [32]曾人杰,林仲华,方志敏.光诱导纳米二氧化钛超亲水薄膜SMP图像分析和氧空位浓度理论探讨,电化学,(2001)7(4),413-420
    [33]崔晓莉,沈杰,任达森,杨锡良,章世健,江志裕.纳米TiO_2薄膜的热致亲水性与光致亲水性机理.化学通报,(2003)第三期,203-206
    [34]Markus B. Hugenschmidt, Lara Gamble, Charles T. Campbell. The interaction of H2O with a TiO_2(110) surface. Surf. Sci. (1994) 302, 329-340
    [35]Li-Qiong Wang, D. R. Baer, M. H. Engelhard. Creation of variable concentrations of defects on TiO_2(110) using low-density electron beams. Surf. Sci. (1994) 320, 295-306
    [36]Li-Qiong Wang, D. R. Baer, M. H. Engelhard, A. N. Shultz. The adsorption of liquid and
    
    vapor water on TiO_2 (110) surfaces: the role of defects. Surf. Sci. (1995) 344, 237-250
    [37]Ashley N. Shultz, Winyann Jang, W. M. Hetherington, Ⅲ, D. R. Baer, Li-Qiong Wang, M. H. Engelhard. Comparative second harmonic generation and X-ray photoelectron spectroscopy studies of the UV creation and O_2 healing of Ti3+ defects on (110) rutile TiO_2 surfaces. Surf. Sci. (1995) 339, 114-124
    [38]A. Carre, J. C. Gastel, M. E. R. Shanahan, Viscoelastic effects in the spreading of liquids, Nature (1996) 379, 432-436.
    [39]T. Onda, S. Shibuichi, N. Satoh, K. Ysujii. Super-Water-Repellent Fractal Surfaces. Langmuir (1996) 12, 2125-2127
    [40]James L. Wilbur, Hans A. Biebuyck, John C. MacDonald, George M. Whitesides. Scanning Force Microscopies Can Image Patterned Self-Assembled Monolayers, Langmuir (1995) 11, 825-831
    [41]高铁,钱朝勇,于向阳.TiO_2表面超亲水性,材料导报(2000)14,27-29
    [42]Y. Paz, Z. Luo, L. Rabenberg, A. Heller. Photooxidative self-cleaning transparent titanium dioxide films on glass. J. Mater. Res. (1995) 10, 2843-2848
    [43]R.S. Sonawane, S.G. Hegde, M.K. Dongare. Preparation of titanium(IV) oxide thin film photocatalystby sol-gel dip coating. Materials Chemistry and Physics (2002) 77, 744-750
    [44]董昊,张永熙,杨锡良,沈杰,陈华仙,蒋益明,顾元壮,章壮健.直流反应磁控溅射制备二氧化钛薄膜的光催化性能研究.真空科学与技术,(2000)20,252-256
    [45]L.Sirghi, T.Aoki, Y.Hatanaka. Hydrophilicity of TiO_2 thin films obtained by radio frequency magnetron sputtering deposition. Thin Solid Films, (2002) 422, 55-61
    [46]Takeda Satoshi, Suzuki Susumu, Odaka, Hidefumi, Hosono Hideo. Photocatalytic TiO_2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Films, (2001) 392, 338-344
    [47]Tuan Allan, Yoon Meeyoung, Medvedev Valentin, Ono Yoshi, Ma Yanjun, Rogers Jr. J.W. Interface control in the chemical vapor deposition of titanium dioxide on silicon (100). Thin Solid Films, (2000) 377-378, 766-771
    [48]Karlsson, Y. Alfredsson, J. Schnadt. Metalorganic chemical vapor deposition of anatase titanium dioxide on Si: Modifying the interface by pre-oxidation, Surf. Sci. (2003) 530, 63-70
    [49]武正簧,李文漪,赵君芙.减压法制备TiO_2薄膜及影响因素的研究.太原理工大学学报,(1999)30(5),505-507
    
    
    [50]C. Natarajan, G. Nogami Cathodic. Electrodeposition of Nanocrystalline Titanium Dioxide Thin Films. Journal of the Electrochemical Society, (1996) 143(5), 1547-1550
    [51]A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa, M. Persin. Raman spectroscopy of thermally annealed TiO_2 thin films. Thin Solid Films, (1991) 198, 199-205
    [52]C. Natarajan, N. Fukunaga, G. Nogami. Titanium dioxide thin film deposited by spray pyrolysis of aqueous solution. Thin Solid Films, (1998) 322, 6-8
    [53]M.O. Abou-Helal, W.T. Seeber. Preparation of TiO_2 thin films hy spray pyrolysis to be used as a photocatalyst. Applied Surface Science, (2002) 195, 53-62
    [54]Smestad, Greg P., Spiekermann Stefan, Kowalik Janusz, Grant Christian D., Schwartzberg Adam M. A technique to compare polythiophene solid-state dye sensitized TiO_2 solar cells to liquid junction devices. Solar Energy Materials and Solar Cells, (2003) 76, 85-105
    [55]Waheed A. Badawy. Improved n-Si/oxide junctions for environmentally safe solar energy conversion. Solar Energy Materials and Solar Cells, (2002) 71 (3), 281-294
    [56]Pramod S. Patil. Versatility of chemical spray pyrolysis technique. Materals Chemistry and Physics, (1999) 59, 185-198
    [57]陈巧香,在线生产热反射镀膜玻璃工艺技术.建筑玻璃与工业玻璃.(2002)1,19~21.
    [58]M. Krunks, E. Mellikov. Zinc oxide thin films by the spray pyrolysis method, Thin Solid Films, (1995) 270, 33-36
    [59]T. Kosugi, S. Kaneko. Novel Spray-pyrolysis Deposition of Cuprous Oxide Thin Films, J. Am. Ceram. Soc., (1998) 81, 3117-3124
    [60]O. Vigil, L. Vaillant, F. Cruz, G. Santana, A. Morales, G. Contreras. Spray pyrolysis deposition of cadmium-zinc oxide thin films. Thin Solid Films, (2000) 361-362, 53-55
    [61]K. S. Ramaiah. Effect of the solution pH on the growth of spray-deposited CuInS_2 thin films.J. Mat. Sci., (1999) 10, 145-149
    [62]张永林,阮小平.超声雾化着水原理与计算.粮食与饲料工业.(1996)6,8-9
    [63]C. S. Huang, C. S. Tao, C. H. Lee. Nebulized Spray Deposition of Pb(Zr, Ti)O3 Thin Film.(1997) 144, 3556-3560
    [64]W. M. Sears, Michael A. Gee. Mechanics of film formation during the spray pyrolysis of tin oxide. Thin Solid Films, (1988) 165,265-277
    [65]C. H. Chen, A. A. J. Buysman, E. M. Kelder, J. Schoonman. Fabrication of LiCoO2 thin film
    
    cathodes for rechargeable lithium battery by electrostatic spray pyrolysis. Solid State Ionic, (1995)80, 1-4
    [66]曾卓雄,喷嘴雾化粒径的实验研究.西安交通大学学报,(2000)44(4),75-79
    [67]Li-jian Meng, M. Andritschky, M. P. dos Santos. The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films. Thin Solid Films, (1993) 223,242-247
    [68]赵青南,张君,李春领,何鑫,赵修建.用紫外-可见光谱仪研究玻璃基掺氮二氧化钛薄膜的沉积速率和光学带隙,(2003)4,20-22
    [69]姜国伟,周亚松.溶胶凝胶和超临界干燥法制备纳米TiO_2粉体,石油大学学报,(2001)25,88-91
    [70]持田隆,茎田嘉男,今村薰著,张佑国编译.喷雾干燥[M],江苏科学技术出版社,1982,109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700