侧开口限制空间内高温热气流振荡及冲击玻璃平板的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在一个容腔的容积确定、开口尺寸也确定的小空间中,当有热释放量存在时,三者在一定的匹配比例下会产生整体高温气流按一定规律反复喷出的现象。这一现象曾经被多位学者认真研究,但是在理论上没有给予有效地被大家认可的总结,有关研究多数局限于零散的实验现象的报道和描述。
     近年来,各种建筑都钟爱于玻璃幕墙材料的美观、方便以及室内装修的透明敞亮,玻璃幕墙下的有开口尺寸的小空间内如果有可燃材料,就会发生整体热气流振荡的危险。特别是高层建筑的外围护玻璃幕墙,一般都有下部的安装通道和底层小空间,这些小空间内经常存放装修中使用的可燃材料,烟囱效应会使可燃热烟气迅速到达楼的上层,在一定条件下易于产生整体热气流振荡并使玻璃幕墙破坏,而玻璃破裂后会掉落并可能伤及周围人群。
     本文系统地研究了有限侧向开口小空间热气流低频振荡的基础实验现象和工程理论计算方法,并对典型实验结果给出了理论预示的基本计算公式。在此基础上,研究了高温热气流从玻璃侧向扑打时的基本实验,并和本文提出的理论分析结果和数值模拟结果进行了比较。
     在ISO9705火灾标准实验台上,对四种典型开口、平均热释放率为650kW、大约350s燃烧时间条件下,对热气流喘振的发生、维持和强弱程度进行了实验研究。给出了该实验条件下振荡频率的范围在0.1~0.25Hz,并和本文由质量和能量方程推导出的基本振荡频率的关系式进行了比较。该推导的关系式还和以往其他学者的实验结果进行了比较和修正。实验记录图像显示了开口尺寸和位置的不同、开口空间内和外界环境温度差别和有浮力作用下产生的整体振荡的基本情况。
     本文把小空间内高温热气流引起的振荡按照压力驱动和浮力驱动进行二类数学模型的建立,给出了振荡频率f,振荡增长率α和振荡响应能力函数R m之间的关系。本文确定了浮力驱动作用下的特征滞后时间和压力驱动下的特征滞后时间。提出在小空间压力驱动流和浮力驱动流的振荡频率与室内平均温度、出口面积、空间尺寸之前的关系。
     通过对玻璃平板的专门实验,本文给出了典型实验情况下火焰和高温气流扑打玻璃板表面一侧温度变化平面上二维分布的函数。给出了温度分布变化情况下,热张力和热弯矩以及位移在不同的约束条件下的解析解。为确定玻璃破裂临界应力发生的位置、破碎时间的预示提供了理论计算基础。
     采用ANSYS软件,对玻璃平板一侧有高温气流扑打且温度场不均匀分布,随时间变化的热气流冲击进行了数值模拟,给出了在不同热冲击情况下玻璃平板热应力和热弯矩变化的数值结果。根据玻璃平板的温度分布以及周围边框的典型四种约束条件,给出不同时间后玻璃内部热应力和位移分布,可以观察到哪一种约束形式下应力和位移更大一些,从而确定约束形式对延长玻璃破裂时间的影响。同时比较了四种约束形式下哪种情况玻璃受到的拉应力最小,为工程施工指明了设计方向。
For a small opening space which has the determined cavity volume and thedetermined size, when existing the release of heat, in a certain proportion the threematches will produce the phenomenon in which the overall heat flow emits repeatedlyaccording to certain rules. This phenomenon has been carefully studied by a numberof scholars, but in theory it has not get the recognized conclusion, and the relevantresearches is largely confined to reports and description of scattered experimentalphenomena.
     In recent years, various buildings tend to glass curtain wall materials because ofthe beauty, convenient and the transparent light and spacious interior. However ifthere is combustible material in the small space under a glass wall, the overall heatflow may be at the risk of oscillation. Especially the outer enclosure glass curtainwalls of high-rise building, it generally have lower installation channel and the smallspace in bottom, and in these small spaces often there are combustible materials usedin decoration. Combustible hot flue gas will rapidly reach the upper floor because ofthe chimney effect. In certain conditions, the overall heat flow oscillations are proneto make the glass curtain wall damaged, and the broken glass may injure people.
     In this paper, systematic study of basic experimental phenomena and engineeringtheory calculations for low-frequency oscillatory heat flow in a small space withlimited lateral opening are done, and the theory indication basic formula for typicalexperiments also are obtained. Based on this study, the basic experiments of the singleheat flow lateral swatting at the glass is taken, and the comparison between theoreticalanalysis results and simulation results is made.
     On the ISO9705fire standard laboratory bench, the experimentation for theoccurrence, maintenance and the strength of hot air oscillation is done, whichaccording to four typical openings, average heat release rate of650kW, and theburning time of about350s. The oscillation frequency under the experimentalconditions range of0.1~0.25Hz and the result are modified and compared to thefundamental oscillation frequency derived from mass and energy equations. It alsocompares to previous experimental results of other scholars. Recorded image showsthe basic situation of overall oscillation with the different openings sizes, different locations, different temperature difference between inside and outside, and if with theeffect of buoyant.
     Next in this paper, two types of mathematical models for oscillation in smallspace caused by high-temperature hot are constructed, the relationship amongoscillation frequency f, oscillation rate α and the function of oscillation responsecapability Rmis given. It also determines the characteristics lag time with the effect ofbuoyancy-driven and the characteristics lag time with the effect of pressure-driven.The relationship among oscillation frequency, average indoor temperature, dischargearea and space size of pressure-driven flow and buoyancy-driven flow in a smallspace are obtained.
     The paper shows the function of two-dimension distribution on the temperaturechange plane when the flame and high temperature air swatting the side of the glasssurface in typical experimental conditions. The analytical solutions of thermal stress,hot bending moments and displacement under the condition that different constraintsand changes in temperature distribution are given. It provides the basis of theoreticalcalculations for the position fracture critical stress occurring and the indicating forbroken time. According to the temperature distribution and the four kinds of typicalconstraints border around the glass plate, it gives the heat stress and displacementdistribution within the glass in different time. It can be observed in which constraintform stress and displacement is much larger, so it will determine the impact ofconstraint form to extension of glass broken time. It uses ANSYS to carry onnumerical simulation for the impact on glass plate of hot air varying with time. Andthen it gets the numerical result about the glass plate heat stress and heat bendingmoment changes in the different case of heat shocking. It also compares fourconstraints and obtained in which form the tensile stress of the glass by the minimumin order to specify the direction for construction.
引文
[1] Epstein M. Buoyancy-driven exchange flow through small opening in horizontalpartitions. Heat Transfer,1988:885-893P
    [2] Cooper L Y. Calculation of the flow through a horizontal ceiling/floor vent.NIST Tech,Report.Rep. No. NISTIR4052, Gaithersburg, Maryland, USA,1989
    [3] Cooper L Y. Combined buoyancy and pressure driven flow through a horizontalvent. theoretical considerations, NISTIR5252, Gaithersburg,Maryland, USA,1993
    [4] Cooper L Y. Combined buoyancy-and pressure-driven flow through a shallow,horizontal, circular vent. Heat Transfer,1995(117):659-667P
    [5] Tan Q, Jaluria Y. Flow through a horizontal vent in an enclosure fire. ASMEHeat Transfer Division HTD,1992(199):115-122P
    [6] Tan Q, Jaluria Y. Mass flow through a horizontal vent in an enclosure due topressure and density differences. Heat and Mass Transfer,2001(44):1543-1553P
    [7] Gebbart B, Jaluria Y, Mahajan RL, Sammakia B. Buoyancy induced flows andtransport. Hemisphere Pub. Corp, NY.1988
    [8] Satoh K, Matsubara Y, Kumano Y. Flow and temperature oscillations of fire in acubic enclosure with a ceiling and floor vent. Part1. Report of Fire ResearchInstitute of Japan, No.55, Fire Research Institute, Tokyo, Japan,1983
    [9] Satoh K, Lloyd JR, Yang KT. Flow and temperature oscillations of fire in acubic enclosure with a ceiling and floor vent. Part III. Report of Fire ResearchInstitute of Japan, No.57, Fire Research Institute, Tokyo, Japan,1984
    [10] Than C-F. Modelling fire behaviour in an enclosure with a ceiling vent. Ph.D.Thesis, Worcester Polytechnic Institute, Worcester, New York, USA,1989
    [11] Than C-F, Savilonis B. Modelling fire behaviour in an enclosure with a ceilingvent. Fire Safety Journal,1993(20):151-174P
    [12] Takeda H. Oscillatory phenomenon and inverse temperature profile appearing incompartment fires. Combustion and Flame,1985(61):103-105P
    [13] Takeda H. Model experiments of ship fire.22ndInt. Symp. on Combustion,1988:1311-1317P
    [14] K. Kawagoe. Fire behaviour in rooms. Report N27, Building Research Institute,Japan,1958
    [15] P.H.Thomas, A.J.M.Heselden, M.Law. Fully-developed compartment fires-twokinds of behaviour. Technical paper N18, Fire Research Station,Borehamwood,1967
    [16] Harmathy, T.Z. A new look at Compartment Fires. PartI. Fire Technology.1972,8(3):196-217P
    [17] Harmathy, T.Z. A new look at Compartment Fires. PartII. Fire Technology.1972,8(3):326-351P
    [18] Kerrison L, Galea ER, Patel MK. A two-dimensional numerical investigation ofthe oscillatory flow behviour in rectangular fire compartments with a singlehorizontal ceiling vent. Fire Safety Journal,1998(30):357-382P
    [19] Emmons HM. The flow of gases through vents. Home Fire Project TechnicalReport, No.75, Harvard University, Cambridge, MA, USA,1987
    [20] Quintiere JG. Growth of fire in building compartments. Fire Standard and Safety,ASTM STP,1977(614):131-167P
    [21] Jaluria Y, Cooper L Y. Negatively buoyant wall flows generated in enclosurefires. Progress in Energy and Combustion Science,1989(15):159-182P
    [22] Abib AH, Jaluria H. Numerical simulation of the buoyancy-induced flow in apartially open enclosure. Numerical Heat Transfer,1988(14):235-254P
    [23] Beckstead MW, Price EW. Nonacoustic combustor instability. AIAA Journal,1967(5):1989-1996P
    [24] Krier H,T’ien JS,Sirignano WA,Summerfield M. Nonsteady burning phenomenaof solid propellants,theory and experiments.AIAA Journal,1968,6(2):278-285P
    [25] T’ien JS,Sirignano WA,Summerfield M. Theory of L-star combustion instabilitywith temperature oscillations. AIAA Journal,1970(8):120-126P
    [26] Schifility R.P, Meacham B.J, Custer L.P. Design of Detection Systems. SFPEHandbook of Fire Protection Engineering,2nd ed.National Fire ProtectionAssociation,Quincy,MA,995
    [27] Karlsson.B, Quintiere.J.G. Enclosure Fire Dynamics, CRC Press,2000
    [28] Hasemi Y, Nishihata M. Fuel Shape Effects On the Deterministic Properties ofTurbulent Diffusion flames. International Association of Fire Safety Science,Proceedings of the Second International Symposium, Hemisphere Publishing,Washinton D.C.1989:275-284P
    [29] Joshi A.A, Pagni P.J. Fire Induced Thermal Fields in Window Glass, I–Theory.Fire Safety Journal,1994(22):25-44P
    [30] Pagni P.J, Joshi A.A. Glass Breaking in Fires. Fire Safety Science,1991:791-802P
    [31] Joshi A.A, Pagni P.J. Fire Induced Thermal Fields in Window Glass, II–Experiments. Fire Safety Journal,1994(22):45-65P
    [32] Cuzzillo B.R, Pagni P.J. Thermal Breakage of Double-Pane Glazing by Fire. J.of Fire Prot. Engr,1998,9(1):1-11P
    [33] Keski-Rahkonen. Breaking of Window Glass Close to Fire. Fire and Materials,1988(12):61-69P
    [34] Sincaglia P.E, Barnett J.R. Development of a Glass Window Fracture Model forZone-Type Computer Fire Codes. J. of Fire Prot. Engr,1997,8(3):101-118P
    [35] Gardon R.E. A review of radiant heat transfer in glass. Journal of the AmericanCeramic Society,1961(44):305P
    [36] Gardon R.E. Caculation of temperature distributions in glass plates undergoingheat treatment. Journal of the American Ceramic Society,1958(41):200-208P
    [37] Skelly M.J, Roby R.J, Beyler C.L. An Experimental Investigation of GlassBreakage in Compartment Fires. J. of Fire Prot. Engr,1991,3(1):25-34P
    [38] Shields T.J, Silcock, G.W.H, Flood M. Performance of a Single GlazingAssembly Exposed to Enclosure Corner Fires of Increasing Severity. Fire andMaterials,2002(25):123-152P
    [39] Shields T.J, Silcock, G.W.H, Flood M. Performance of a Single GlazingAssembly Exposed to a Fire in the Centre of an Enclosure. Fire and Materials,2002(26):51-75P
    [40] Chow W.K, Hung W.Y, Gao,Y. Experimental Study on smoke movementleading to glass damages in double-skinned fa ade. Construction and BuildingMaterials,2007(21):556-566P
    [41] Chow W.K, Hung W.Y. Effect on Cavity depth on smoke spreading ofdouble-skinned fa ade. Building and Environment,2006(41):970-979P
    [42] Chow W.K, Gao,Y. Thermal stresses on window glasses upon heating.Construction and Building Materials,2008(22):2157-2164P
    [43] Ross P, Colleen A.W, Michael S. Implementing a Glass Fracture Module in theBRANZFIRE Zone Model. Journal of Fire Protection Engineering,2003(13):157-182P
    [44]吉德华.科学整治火灾隐患及社会危险源探讨.中国科技博览.2010,32:571-573页
    [45]郭铁男,傅智敏,黄金印.火灾科学与消防工程学发展现状及学科体系构架.中国消防.2004,22(6):430-436页
    [46]唐飞,胡隆华,朱伟,陆凯华,敖大成.斜坡受限条件下燃烧室内及开口外部溢流的温度场分布特性.燃烧科学与技术.2011,17(3):243-249页
    [47]陈兵,陆守香,李强,黎昌海,袁满.顶部不同开口尺寸腔室中油池火灾的发展过程.中国科学技术大学学报.2011,41(10):895-900页
    [48]霍然,范维澄.通风口高度对室内火灾发展的影响.消防科技.1991(01):2-5页
    [49]霍然,姜冯辉,向明.室内火灾时通风状况对燃烧速率的影响.中国科学技术大学学报.1991,21(4):508-512页
    [50]陈爱平,乔纳森.室内轰然预测方法研究.爆炸与冲击.2003,23(4):369-373页
    [51]陈爱平,张云明.室内火灾升温速率的试验研究.火灾科学.2004,13(1):57-62页
    [52]胡克旭,李金宝.室内火灾轰然研究的动态述评.四川建筑科学研究.2004,3(1):10-12页
    [53]冯瑞,霍然,于海春.受限空间油池火燃烧特性的实验研究.消防理论研究.2005,24(3):288-291页
    [54]宋丹萍,刘泽勤.实验研究具有单面垂直热源室内自然置换通风热力分层特性.中国制冷学会2007学术年会.2007:175-179页
    [55]邱旭东,高甫生,王砚玲.通风状况对室内火灾过程影响的数值模拟.自然灾害学报.2004,13(5):80-84页
    [56] Xie Q.Y etal. Full-Scale Experimental Study on Crack and Fallout of toughenedGlass with different Thicknesses. Fire and Materials,2008(32):293-306P
    [57]刘义祥,胡建国,李会荣.火灾中窗玻璃炸裂痕迹形成机理的研究.消防科学与技术.2005,25(04):430-432页
    [58]李建华,黄郑华.普通窗玻璃热破裂行为研究.火灾科学.1999,8(03):23-30页
    [59]张庆文.受限空间火灾环境下玻璃破裂行为研究.中国科学技术大学.2006
    [60]张庆文,张和平,万玉田,付强,周勇.4mm单层浮法玻璃全尺寸火灾实验研究.燃烧科学与技术.2007,13(1):67-71页
    [61]张庆文,张和平,程旭东,万玉田.6mm单层浮法玻璃全尺寸火灾实验.中国科学技术大学学报.2006,36(1):81-85页
    [62]张和平,万玉田,张庆文,谢启源,程旭东.10mm钢化玻璃全尺寸火灾实验.燃烧科学与技术.2008,14(1):6-10页
    [63]张毅,王青松,黄新杰,王秋红,孙金华.火灾场景中玻璃破裂行为研究综述.灾害学.2010,25(10):140-144页
    [64]富恩久.镀膜玻璃热炸裂成因与预防.辽宁建材.2005(3):33页
    [65] Shutov,A.I.,et.al.,“Determination of Practical properties ofHeat-Insulation From Glass”, Glass and Ceramics, Vol.65,2008,pp.3-5.
    [66] Emmons, H.W. The Needed Fire Science. Fire Safety Science–In: Proceedingsof the First International Symposium (Berkeley),1985:33-53P
    [67] Joshi, A.A, Pagni, P.J. Fire Induced Thermal Fields in Window Glass, II–Experiments. Fire Safety Journal,1994,22:45-65P
    [68] Cuzzillo, B.R, Pagni, P.J. Thermal Breakage of Double-Pane Glazing by Fire. J.of Fire Prot. Engr,1998,9(1):1-11P
    [69] Sincaglia P.E, Barnett, J.R. Development of a Glass Window Fracture Model forZone-Type Computer Fire Codes. J. of Fire Prot. Engr,1997,8(3):101-118P
    [70] Skelly, M.J, Roby, R.J, Beyler, C.L. An Experimental Investigation of GlassBreakage in Compartment Fires. J. of Fire Prot. Engr,1991,3(1):25-34P
    [71] Shields, T.J, Silcock, G.W.H, Hassani, S.K.S. Behaviour of Glazing in a LargeSimulated Office Block in a Multi-Story Building. J. Applied Fire Science,1998,7(4):333-352P
    [72] Hassani, S.K.S, Shields, T.J, Silcock, G.W.H. An Experimental Investigationinto the Behaviour of Glazing in Enclosure Fire. The Behaviour of Glass andOther Materials Exposed to Fire: Volume I, Ed: P.R. DeCicco, BaywoodPublishing Company, New York,2002:3-22P
    [73] Hassani, S.K.S, Shields, T.J, Silcock, G.W.H. In Situ Experimental ThermalStress Measurements in Glass Subjected to Enclosure Fires. The Behaviour ofGlass and Other Materials Exposed to Fire: Volume I, Ed: P.R. DeCicco,Baywood Publishing Company, New York,2002:39-50P
    [74] Shields, T.J, Silcock, G.W.H, Hassani, S.K.S. The Behaviour of Single Glazingin an Enclosure Fire. The Behaviour of Glass and Other Materials Exposed toFire: Volume I, Ed: P.R. DeCicco, Baywood Publishing Company, New York,2002:51-69P
    [75] Shields, T.J, Silcock, G.W.H, Hassani, S.K.S. The Behaviour of Double Glazingin an Enclosure Fire. The Behaviour of Glass and Other Materials Exposed toFire:Volume I, Ed: P.R. DeCicco, Baywood Publishing Company, New York,2002:71-89P
    [76] Harada, K, Enomoto, A, Uede, Wakamatsu, T. An Experimental Study on GlassCracking and Fallout by Radiant Heat Exposure. Fire Safety Science–Proceedings of the Sixth International Symposium (France),1999:1063-1074P
    [77] Shields, T.J, Silcock, G.W.H, Flood, M. Performance of a Single GlazingAssembly Exposed to a Fire in the Centre of an Enclosure. Fire and Materials,2002(26):51-75P
    [78] Shields, T.J, Silcock, G.W.H, Flood, M. Performance of a Single GlazingAssembly Exposed to Enclosure Corner Fires of Increasing Severity. Fire andMaterials,2002(25):123-152P
    [79] Cuzzillo, B.R, Pagni, P.J. Thermal Breakage of Double-Pane Glazing by Fire. J.of Fire Prot. Engr,1998,9(1):1-11P
    [80] Sincaglia P.E, Barnett, J.R. Development of a Glass Window Fracture Model forZone-Type Computer Fire Codes. J. of Fire Prot. Engr,1997,8(3):101-118P
    [81] Skelly, M.J, Roby, R.J, Beyler, C.L. An Experimental Investigation of GlassBreakage in Compartment Fires. J. of Fire Prot. Engr,1991,3(1):25-34P
    [82] Shields, T.J, Silcock, G.W.H, Hassani, S.K.S. Behaviour of Glazing in a LargeSimulated Office Block in a Multi-Story Building. J. Applied Fire Science,1998,7(4):333-352P
    [83] Pagni, P.J, Joshi, A.A. Glass Breaking in Fires. Fire Safety Science–In:Proceedings of the Third International Symposium (Edinburgh),1991:791-802P
    [84] Joshi, A.A, Pagni, P.J. Fire Induced Thermal Fields in Window Glass, I–Theory.Fire Safety Journal,1994(22):25-44P
    [85] Keski-Rahkonen. Breaking of Window Glass Close to Fire. Fire and aterials,1988(12):61-69P
    [86] Keski-Rahkonen. Breaking of Window Glass Close to Fire, II: Circular Panes.Fire and Materials,1991,15(1):11-16P
    [87] K. Vafai, J. Ettefagh. Thermal and fluid flow instabilities in buoyancy-drivenflows in open-ended cavities. Heat Mass Transfer,1990(33):2329-2344P
    [88] K. Vafai, J. Ettefagh. The effects of sharp corners on buoyancy-driven flowswith particular emphasis on outer boundaries. Heat Mass Transfer,1990(33):2311-2328P
    [89] J. Ettefagh, K. Vafai, S.J Kim. Non-Darcian effects in open-ended cavities filledwith a porous medium. Heat Transfer,1991(113):747-756P
    [90] W.K Chow, Y. Gao. Oscillating behaviour of fire-induced air flow through aceiling vent. Comb. Sci. Tech–Submitted for consideration to publish (2002)
    [91] Klote JH, Milke JA. Design of smoke management system. ASHRAE Inc,Atlanta, GA,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700