等温热处理对挤压态变形镁合金组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是最轻的一类金属结构材料,因镁的密排六方结构导致了镁合金的室温塑性低,成型能力差,限制了变形镁合金的工业应用。目前热处理细化晶粒成为提高镁合金塑性的一种有效手段,但是研究工作多集中在铸造态镁合金,关于挤压态镁合金型材的研究很少。
     挤压态镁合金型材应用日益广泛,同时要求型材的后续塑性加工能力越来越高。因挤压态镁合金型材有其独特的组织特点,故研究热处理工艺对其组织和性能的影响具有特别重要的意义。本论文以典型的挤压态AZ31管材作为实验材料,对其进行等温热处理实验和力学性能测试,为通过等温热处理方法提高管材的后续塑性加工能力奠定工艺理论基础和技术指导。
     对取自挤压成型的AZ31管材的试样分别按不同工艺进行等温热处理,实验主要影响因素包括加热速度(10℃/min、20℃/min、30℃/min、40℃/min)、保温温度(240℃、260℃、280℃、300℃、320℃、340℃)、保温时间(15min、30min、60min、90min、120min)和冷却方式(随炉冷、空冷、冷水、热水);等温热处理结束后观察微观组织,测量晶粒尺寸和硬度变化,找到等温热处理时对晶粒细化效果影响显著的条件,确定晶粒最佳细化效果的热处理工艺;然后按照国家标准对管材进行力学性能测试。
     研究结果表明:挤压成型的AZ31镁合金管材组织中存在变形程度很大的孪晶、大尺寸晶粒、丧失了进一步变形能力的条带状组织等易导致后续塑性加工时变形不均,引起断裂的组织缺陷;采用最佳等温热处理工艺以20℃/min加热至300℃保温30min后空冷处理可以使试样平均晶粒直径从挤压态的50μm细化为19μm,同时基本消除上述组织缺陷;明显影响热处理效果的因素为保温温度、保温时间、冷却方式;室温下,采用最佳工艺热处理前后管材弧形试样的单向拉伸伸长率由10.8%提高至20.1%,管件的自由胀形极限伸长率由8.0%提高至14.9%。
     实验结果证明本论文得到的最佳等温热处理工艺可以明显改善挤压态镁合金管材的组织结构,有效提高管材塑性。
Magnesium alloys is one of most lightweight structure materials, andhave found wide applications of aerospace, automobile and electronics due totheir high physical and mechanical properties. However, magnesium alloyshave poor formability and limited ductility at room temperature ascribed totheir hexagonal close-packed crystal structure. Grain refinement by heattreatment is an important measure to improve the mechanical properties ofmagnesium alloy. But now most reach findings are about as-cast magnesiumalloy, and there are few findings about as-extruded magnesium alloy, evenless about extruding sectional material.
     The extruding sectional material has unique texture, so its heat treatmentshould be different from other-materials. Now the wrought magnesium alloyis used more and more widespread, and consumers ask that the material hashigh quality, so it is important to research the heat treatment about extrudingsectional material. Therefor we take the AZ31 magnesium tube as the subjectinvestigated, have assays about heat treatment and mechanical property, andhope to get an example for the heat treatments of other extruding sectionalmaterials.
     Then we take the heat treatment about AZ31 tube by differenttechnologies. Elements include firing rate(10℃/min、20℃/min、30℃/min、40℃/min),holding temperature(240℃、260℃、280℃、300℃、320℃、340℃), holding time(15min、30min、60min、90min、120min),cool-downmethods (air cooling、furnace cooling、water cooling、hot water cooling),After heat treatment have an observation of microstructure, measure grainsize and hardness, find out significant elements, then get the best technology,at last take the mechanical property assay.
     It has been found that there are some texture flaws such as large grain、badly distorted twin and streaky structure. But recrystallization grains ofaround 19μm in diameter on average are obtainable through heat treatment at300℃for 30min by air-cooling, meanwhile the twin and streaky structurethat would weaken the plasticity of alloy are eliminated; significant elementsare holding temperature、holding time、cool-down methods. Mechanicalproperties of tube are obtained, simple tension elongation ratio of arc testsample increases from 10.8% to 20.1%, elongation ratio with elastic internaldie of tube increases from 8.0% to 14.9%.
     Test results show that proper heat treatment technology can optimizeas-extruded magnesium alloy and increases the plastic nature of AZ31 tube tomeet secondary operation.
引文
[1] 赵浩峰,池成忠.镁合金及其复合材料,北京:中国科学技术出版社,2002
    [2] 美国金属学会.《金属手册》,北京:冶金工业出版社,1989
    [3] Polmear I J,Magnesium alloys and applications,Materials Science and Technology,1994, 10(1): 1-14
    [4] 曹荣昌,柯伟,徐永波等.Mg合金的最新进展及应用前景,金属学报,37(7),2001,673~685
    [5] H.Friedrich Schumarn, Research for a New age of magnesium in the automotive industry, Journey of Materials Processing Technology, 2002, 117 (3):276-281
    [6] Kimberley W. et al., Magnesium flair, Automotive Engineer, 22 {4), 1997, 69~70
    [7] 叶久新,陈明安等.镁合金成型技术及其在工业中的应用,湖南大学学报,2002,29,112~116
    [8] Asm International, Magnesium And Magnesium Alloy, OH: Metal Park, 1999. 1
    [9] Watanabe T., Creep and Fracture of Engineering Materials and Structures, Pineridge press, Swansea, U. K., 1981, 263
    [10] 曾小勤,王渠东,吕宜振等.镁合金应用进展,铸造,1998,(11):39
    [11] 韦涵光.世界镁工业动向,世界有色金属,2000(4):4
    [12] 彭大暑,金属塑性加工力学.长沙:中南工业大学出版社,1989.
    [13] Eliezer D, Aghion E. and Froes F. H., Magnesium science, technology and applications, Advanced Performance Mater., (5), 1998, 201~212;
    [14] 柴蓉霞,温莉敏,许树勤等.AZ31镁合金挤压管材力学性能测试,轻合金加工技术,2006,Vol34.No2:21~24
    [15] 哈宽富.金属力学性质,北京:科学出版社,1983
    [16] J. Burke, W. Weiss,王应文译.超细晶粒金属,北京:国防工业出版社,1982
    [17] 何承荣.十种常用有色金属材料手册,北京:中国物资出版利,1997
    [18] 刘天喜,傅定发,许芳艳等.退火工艺对快速凝固镁合金薄带组织性能的影响,工艺技术,2005,(10):25~28
    [19] 黄笃景.MA5合金热处理的工艺研究,轻合金技术,北京:科学出版社,196~206
    [20] 杨林,李宝东.镁合金铸造技术进展,铸造,2001,50(9),522~526
    [21] 彭彩虹,王中光等.镁基轻质材料的研究与应用,材料研究学报,2004,14(5),449~456
    [22] 宋孚群,张青来,徐永超等.变形镁合金晶粒细化及预处理后的组织和性能.金属成形工艺,2004,22(3):46~49
    [23] 刘饶川,汪凌云,黄光胜等.AZ31B镁合金板材退火工艺及晶粒尺寸模型的研究,轻合金加工技术,2004,32,22~25
    [24] 余琨,黎文献,王日初等,变形镁合金的研究、开发及应用,中国有色金属学报,13(2),2003,277~288
    [25] 黄光胜,汪凌云,黄光杰等.均匀化退火对AZ31B镁合金组织与性能的影响,重庆大学学报,2004,(11):18~22
    [26] 杨平,孟利,毛卫民等.利用道次间退火改善镁合金轧制成形性的研究,材料热处理学报,2005,(4):35~42
    [27] 程永胜,黄永青,葛立新等.GB/T16865-1997,变形铝、镁及其合金加工制品拉伸实验用试样,北京,国家技术监督局,1997
    [28] 梁新邦,李久林,陶丽英等.GB/T228-2002,金属材料室温拉伸实验方法,北京,国家技术监督局,2002
    [29] PolmearIJ, Magnesium Alloys and Application. Materials Science and Technologe, 1994(1):1~14
    [30] 翟秋亚,王智民,袁森等.挤压变形对AZ31镁合金组织和性能的影响,西安理工大 学学报,2002,Vol.18,No.3:254~259
    [31] 波尔特诺伊,列别杰夫.镁合金手册,北京:冶金工业出版社,1959
    [32] 毛卫民,赵新民.金属的再结与晶粒长大,北京:冶金工业出版社,1994:197~213
    [33] J. Enss, T. Evertz, T. Reier, P. Juchmann, S. Schumann, W. Sebastian, New magnesium rolled Productions for automobile applications. Proceedings of the Second Is-raeli International Conference on magnesium Science & Technology, 22~24
    [34] Emley, Principles of Magnesium Technology, Oxford: Pergamon, 1966
    [35] Somekawa H, Hosokawa H, Hiroyuki W, Kenji H,Diffusion Bonding in Superlastic Magnesium Alloys. Materials Science and Engineering A, 2003, 339:328~333
    [36] 李忠盛,潘复生,张静.AZ31镁合金的研究现状和发展前景,金属成形工艺22(1):54~57
    [37] 刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用,北京:机械工业出版社,2002
    [38] Polmear I J, Magnesium alloys and applications,MaterSci&Tech, 1994,10:1~14
    [39] Kubota K, Mabuchi M, Higashi K,Review processing and mechanical properties of fine-grained magnesium alloys, Journal of Materials Science, 1999, 34 (10): 4311~4320
    [40] 张凯锋,尹德良,韩文波.热轧AZ31镁合金温变形中的微观组织演变,航空学报,2005,26(4):505~509
    [41] 张津,章宗和等.镁合金及应用,北京:化学工业出版社,2004
    [42] Polmear I J. Recent Developments in Light Alloys. Materials Transactions, JIM, 1996, 37: 12-31.
    [43] 陈振华.变形镁合金,北京:化学工业出版社,2005
    [44] 潘洪平,丁志勇,谢水生.镁合金加工技术的研究现状与应用.轻合金加工技术,2002,30(7):7~10
    [45] 刘正,王越,王中光等.镁基轻质材料的研究与应用,材料研究学报,2000,(5):451~ 456
    [46] Decker R F, C arnahan R D,Magnesium Semisolid metal forming, Advanced Mater & Proc, 1996 (2):41~44
    [47] 何景素,王燕文.金属的超塑性,北京:科学出版社,1986
    [48] 卡恰诺夫.塑性理论基础,周承佃译,北京:人民教育出版社,1982
    [49] 侯增寿.金属学原理,上海:上海科学技术出版社,1990
    [50] R. F. Decker, R. D. Camahan, Advanced Mater.&Proc., 1996(2): 41
    [51] 根岸佑司,西村卓宽,桐生雅夫等.轻金属,北京::人民教育出版社,1995,Vol.45(2):5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700