AZ31镁合金自行车曲柄等温闭式锻造数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金在低于200℃以下的温度范围内塑性较差,在高于400℃时,由于镁合金极易氧化,不适合塑性加工。镁合金的锻造温度范围窄,而其导热系数大约是钢的2倍。锻造时如果模具温度低,则坯料降温快,塑性降低,变形抗力增大,变形率低,变形过程中坯料易形成裂纹,所以镁合金一般采用等温锻造。
     本课题介绍镁合金锻造原理以及数值模拟在锻造成形中的应用;介绍刚塑性有限元理论及锻造数值模拟中的关键技术,在三维造型软件UG的CAD平台下进行自行车曲柄锻件模具和坯料的CAD参数化实体三维造型,并建立AZ31镁合金材料模型,最终构建自行车镁合金曲柄成形的有限元模型;根据刚塑性有限元法基本原理,利用数值模拟软件DEFORM-3D,对镁合金曲柄锻件的成形过程进行模拟仿真,并优化其工艺参数;根据模拟结果,分析锻件的金属塑性成形过程,得出影响成形的主要影响因素及影响规律,研究成形参数对成形过程的影响,金属流动规律等;优化其工艺参数及模具型腔,获得能够锻出合格锻件的工艺及模具参数;最后对自行车曲柄零件进行工艺分析及模具设计,根据数值模拟结果进行锻造参数的计算,模具图的绘制等。
In the process when the bicycle enterprise are pursuing product lightweight magnesium alloy gradually receives the manufacturer and consumer’s favor because of its outstanding specific tenacity and compared to the rigidity. Furthermore the magnesium alloy that applied on the bicycle also has other unique outstanding performance:①Prominent character that hasn’t the memory of wearily;②Good dynamics performance;③Better carrying capacity compareed to the plastic parts;④Better antivibration characteristic compared to the metal parts such as steel and aluminum;⑥Easy to be recycled.
     Magnesium is the lightest commercial construction metals being used in practice at present. At the same time,magnesium alloys have lower density, the highest strength to weigh ratio, good thermal conductivity , electrical conductivity, damping capacity, and good electromagnetic interference shielding property, the property of being easy to manufacture and recyclable. The magnesium alloy has a narrow forging temperature rang , but it has a high thermal conductivity which is about twice more than steel. Therefore we generally choose isothermal forging method for magnesium alloy.
     In this paper,using the finite element numerical simulation soft DEFORM-3D, simulate the forming processes of crank forge piece, According the numerical simulation rusults, bring foreword influence crank shape's processes parameters, analysis and study some mostly influence factor of forging part shaping rule, optimize and gain possibility forge up to qualified forging part's processes and die parameters. The result plays guidance to the production of crank forge piece. The actual content is as follows:
     (1) Introduced the magnesium alloy forging and its domestic and foreign present research situation, gave some elaborate introductions on the isothermal forging and precision forging craft characters of the magnesium alloy.
     (2) Introduced the rigid-plastic finite element method and critical technical in the numerical simulation of forging forming. through the UG software, designed the forging and die's 3D model, established AZ31 magnesium alloy material model. provided the finite element model for the following simulation and analysis.
     (3) Using the numerical simulation software DEFORM-3D, Carried on the numerical simulation of the forming process, in-depth and meticulous analyzed the flow pattern of the metal in the forming process, obtained the distributive rule of the corresponding speed, stress, strain and curve of load-distance, understood the general rule of the metal in the forming process of the crank. Established the different models and has carried on the numerical simulations using the main formed parameter. Inspected the influence that the formed parameters such as working temperature, working speed and lubrication to the distortion.
     (4) Calculated die forging process technological parameter of the bicycle crank, determined the technical process of the crank and the specification of the semifinished materials and designed the model designed the heat device and hydraulic jacking equipment of the isothermal forging.
引文
[1] Yo Kojima, Shigeharu Kamado. Fundamental Magnesium researches in Japan [J] .Materials Science Forum,2005,488~489: 9~16.
    [2] Zhang P, Lindemann J. Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80 [J] . Scripta Materialia, 2005, 52: 485~490.
    [3] Mordike B L, Ebert T. Magnesium: Properties-applications-poten- tial [J]. Materials Science Engineering A, 2001,(302) : 37~45.
    [4] Ogawa N, Shiomi M, Osakada K. Forming limit of magnesium alloy at elevated temperatures for precision forging [J] .Mater1 Sci. Forum, 2002, 42: 607~614.
    [5] 张士宏, 王忠堂, 许沂. 镁合金的塑性加工技术 [J] . 金属成形工艺, 2002 , 20 (5) : 1~4.
    [6] 胡亚民, 夏华, 孙智富. 镁合金的塑性加工技术 [J] . 锻压装备与制造技术, 2004 , (5) : 51~66.
    [7] COLLEEN J B, MARK A G Current wrought magnesium alloys:Streng- ths and Weaknesses[J]. JOM, 2005, 57(5) : 46~49.
    [8] Aghion E, Eliezer D.Magnesium and magnesiumalloys-Science,Techn- ology and Applications [M] . Israel : Avi Moshe Bregman Ltd , 2004.
    [9] Michael M Avedisian , Hugh Baker. ASM speciality handbook- Magnesium and magnesium alloys [C] . ASM International , Material Park , Ohio ,1999.
    [10] 陈振华,变形镁合金,化学工业出版社,2005.
    [11] 陈振华, 夏伟军, 严红革. 镁合金材料的塑性变形理论及其技术[J] . 化工进展, 2003 , 23 (2) : 127~135.
    [12] 师瑞霞, 尹衍升, 谭训彦. 镁合金的研究进展[J] . 山东冶金, 2003 , 25 (2) : 53~56.
    [13] 高仑. 镁合金成形技术的开发与应用[J] . 轻合金加工技术, 2004 , 32 (8) : 5~12.
    [14] 张晓凉, 唐新民. 锻造镁材料的特性及在车轮上的应用[J] .国外金属 热处理, 1998 , (4) : 38~40.
    [15] 黄光杰,钱宝华. AZ31 镁合金热变形特性研究.材料导报, 2007 , (5) : 368~369.
    [16] 薛治中. 铝,镁合金等温精锻试验研究[J] . 锻压技术,1992 ,17 (3) :10~15.
    [17] 陈远望. 国外镁金属研究现状[J] . 世界有色金属, 2003 ,(2) : 46~49.
    [18] Swiostek J, Goken J, Letzig D, et al. On Die Forging of Magnesium Alloys [C]//ICFG 37th Plenary Meeting.Istanbul,2004:774-779.
    [19] 陈振华, 严红革, 陈吉华. 镁合金[M] . 北京: 化学工业出版社, 2004.
    [20] H.Friedrich.s.Schumarn,The second age of magnesium research strategies to bring the automotive industry’s vision to reality,Proceeding of the second IsraeliInternational Conference on Magnesium Science & Technology,22-24 February,2000,Dead sea,Israel,pp9~18.
    [21] A.Ben-Artzy,A.Shtechman,N.Ben-Ari,D.Dayan,Plastic deformation of wrought magnesium alloys AZ31,ZK60,Proceeding of the second Israeli nternational Conference on Magnesium Science &Technology, 22-24 February,2000,Dead sea,Israel,pp151~158.
    [22] N.Ogawa,M.Shiomi,K.Osakada,Fundamental study on Forging of Magnesium alloy,Proceeding of 2nd International Seminar on Precision Forging,Osaka,May15-26 2000,219~222.
    [23] During M, Schiaeffer L, Viehweger B. Bulk Forming of Magnesium Alloys AZ31 and AZ80[C]//8th ICTP 2005-International Conference on Technology of Plasticity.Verona, Italy,2005:386-391.
    [24] 郝南海,薛克敏,吕炎. 上机匣等温锻造工艺研究[J] . 热加工工艺,1997 (2) :36~37.
    [25] 薛克敏,吕炎,徐福昌,等. 上机匣成形中的质量缺陷及对策[J] . 兵工学报,2003 ,24 (2) :283~285.
    [26] 王忠堂,张士宏,徐亭风,等. 镁合金管材挤压工艺及组织性能研究[J] .锻压机械,2002 (1) :60~62.
    [27] 黄光胜,汪凌云,范永革. AZ31B 镁合金挤压工艺研究[J ] . 金属成形工艺,2002 ,20 (5) :11~14.
    [28] Zhang X H , Ruan X Y, Osakada K. Forgeability of AZ31B Magnesium Alloy in Warm Forging[J ] .Trans. Nonferrous Met . Soc. China ,2003 ,13 (3) :632~637.
    [29] 张青来,卢晨,丁文江. 分流挤压镁合金管材工艺研究[J] . 轻合金加工技术,2003 ,31 (10) :28~30.
    [30] 张先宏. 镁合金热变形过程试验研究和数值模拟[D] . 上海:上海交通大学,2003.
    [31] 付传锋,胡亚民,赖周艺,赵军华.镁合金等温锻造加热装置的设计及模具温度曲线 [J] 锻压技术 2007.
    [32] 李海江. 镁合金挤压成形工艺及数值模拟的研究[D] . 武汉:华中科技大学,2003.
    [33] 王智文,张治民,王强. AZ31 变形镁合金等温变形力学特性的研究[J] . 机械工程与自动化,2005 (1) :41~44.
    [34] 王德林. AZ31 镁合金轿车轮毂温成形工艺研究:[D] . 太原:中北大学,2005.
    [35] 李国俊,张治民,李旭斌. 镁合金散热器成形工艺的研究[J] . 轻合金加工技术,2005 ,33 (2) :41~43.
    [36] 王敏,杨振恒.工业用镁合金板材的超塑性性能。热加工工艺,1998(5):30~31.
    [37] 刘满平,马春江,王渠东等.工业态 AZ31 镁合金的超塑性变形行为.中国有色金属学报,2002(4)797~801
    [38] 王本一,石伟,刘庄.数值模拟技术在大型锻造生产中的应用(J).大型铸锻件,1999(1):15~20.
    [39] 江雄心,万平荣,扶名福,林治平.齿轮精锻的数值模拟与实验研究 塑性工程学报 2002 .[3]:62~65.
    [40] 肖红生,林新波,张质良,吴希林.温锻精密成形技术及其有限元模拟 锻压技术 2000.[2]: 3~6.
    [41] 陈泽中,林治平,连书勤.直齿圆柱齿轮镦挤精锻模拟 塑性工程学报2000.[3]:55~59.
    [42] 寇淑清,杨慎华,赵勇.直齿圆柱齿轮冷精锻成形过程数值模拟分析 农业机械学报 2001.[1]:95~98.
    [43] Mamalis A.G,Manolakos D.E,Simulation of the precision forging of bevel gears using implicit and explicit FE techniques.J Mater Process Technol,1996,57:164~171.
    [44] Szentmihali V,Lange K,Troner Y,etc.3-D finite-element simulation of the cold forging of helical gears.J Mater Process Technol,1994,43,279~291.
    [45] Coupez Thierry,Soyris Nathalie,Chenot Hean Loup.3D finite element modelling of the forging process with automatic remeshing.J mater Process Technol,1991,27:119~133.
    [46] Mei Zhan Yuli Liu He Yang , A 3D rigid–viscoplastic FEM simulation of compressor blade isothermal forging, Materials Processing Technology ,2001,117:56~61.
    [47] 林基超,刘 芳,顾仁涛,曹黎明,王国锋,曲云山.刚塑性有限元模拟技术及其在模具开发中的应用.山东内燃机。2003(4)19~23.
    [48] 李俊,李润方,游理华.模锻过程刚粘塑性有限元模拟中关键问题的处理机械科学与技术 1998.[5]:805~807.
    [49] 陈军,彭颖红,阮雪榆.锻造预成形工艺三维塑性有限元模拟 锻压机械1997.[6]:41~44.
    [50] 应富强,张更超,潘孝勇.三维有限元模拟技术在金属塑性成形中的应用(J).锻压装备与制造技术,2003(5):10~13.
    [51] 左旭,卫原平,陈军,曾令寿,阮雪榆.金属体积成形三维数值仿真的研究进展 力学进展 1999.[4]:549~556.
    [52] 寇淑清,金文明,谷诤巍.体积成形数值模拟边界接触摩擦与滑动约束处理锻压机械 2001.[3]: 21~23.
    [53] 蔡中义,李明哲,陈庆敏.大变形中摩擦接触问题的数值模拟及应用 应用力学学报 2002.[6]:1~4.
    [54] Oden J .T and PiresE. B .Non local and nonlinear friction laws and Variational principles for contact problems in elasticity,Transaction of the ASME Journal of Applied Mechanics,1983, 50:67~76.
    [55] Oden J .T and PiresE.B, Algorithms and numerical results forfinite element approximations of contact problems with non--classical friction laws, Computers & Structures,1984,19(1-2):137~147.
    [56] Fredri ksson B.,Finite element solution of surface nonlinear ities in structural mechanics with special emphasis to contactand fracture mechanics problems . Computers & Structures,1976,6:281~ 290.
    [57] Curnier A,A theory of friction, Int. J. Solids Structures ,1984,20 (7):637~647.
    [58] 蔡中义,李明哲,李广权.金属成形数值模拟中的接触单元法中国机械工程第 11 卷 2000.[8]: 933~935.
    [59] 张向,陈军,阮雪榆.塑性成形有限元模拟六面体网格划分和再划分技术模具技术 2000.[5]: 6~11.
    [60] 吕军,王忠金,王仲仁.金属体积成形过程有限元模拟中六面体网格重划技术的研究 金属成形工艺 2001.[2]:25~30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700