镁基复合材料微观结构与力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对材料强度和节能降耗要求的不断提高,轻金属元素镁及镁基复合材料在航空航天和汽车行业的应用引起研究人员的极大关。纳米颗粒(如SiC、Cu、Al2O3、CNTs)及其混合物增强镁基复合材料得到广泛研究以期获得最优的强度,但对其高比强度的研究还不深入,需进一步研究。
     本实验,采用石墨烯纳米片做增强相颗粒来提高镁基复合材料的机械强度,此外,也探索了金属-石墨烯、金属-金属复合强化颗粒的添加对纯镁显微结构及力学性能的影响。实验发现石墨烯纳米片与少量铝颗粒复合添加可使石墨烯和镁基体界面结合良好。主要内容总结如下:
     首先研究了单独添加石墨烯纳米片对纯镁的影响,试验表明,石墨烯纳米片的加入可提升纯镁的抗拉强度,但塑性会有所降低。虽然石墨烯纳米片可强化镁基体,但强度提升幅度不大,其原因在于石墨烯纳米片与镁基体的界面结合效果不佳。然而少量铝的加入可有效改善石墨烯与镁基体的结合,当铝含量保持在1.0wt%,石墨烯纳米片含量为0.09~0.3wt%,0.3%,复合材料的抗拉强度和塑性均增加,这是因为越来越多的石墨烯纳米片位向与挤压方向趋于一致,从而达到阻碍基体断裂的效果。另一方面,当石墨烯纳米片含量维持在0.18wt%,铝颗粒含量为0.5%~1.0wt%时,复合材料的抗拉强度和塑性也同时增加。复合材料机械强度的提高,可用基本的强化机制解释,即强化相与基体热膨胀系数的不同,Orowan环及载荷转移机制。
     第二,研究了符合添加石墨烯和碳纳米管对镁基体的强化作用。对于只添加石墨烯纳米片或多壁碳纳米管强化复合材料,石墨烯纳米片-碳纳米管-铝颗粒混合添加强化复合材料具有更高的拉伸失效应变,拉伸失效应变(%)的显著增加说明石墨烯纳米片和多壁碳纳米管对镁基体的协同强化作用效果明显,原因如下:(a)一维多壁碳纳米管的引入阻碍了二维石墨烯纳米片的快速聚集。(b)基体中即软又长的多壁碳纳米管桥接相邻的石墨烯纳米片形成三维复合结构,从而阻挡了它们的聚集,使得碳纳米管+石墨烯纳米片复合结构与基体的接触面积增大。
     第三,研究了添加石墨烯纳米片对Mg-10Ti合金力学性能的影响,室温拉伸结果表明,钛和钛-石墨烯纳米片复合加入镁基体,复合材料的抗拉强度和失效应变均增加。此外,还研究了铜-石墨烯纳米片复合添加对纯镁力学性能的影响,试验发现铜含量保持在1.0wt%,石墨烯纳米片含量为0.18%~0.36wt%,材料强度和失效应变随之增加,然而,由于GNPs的团聚,当GNPs的含量从0.36%增加到0.54%时,失效应变逐渐下降。当继续增加其含量时,由于石墨烯纳米片的团聚,失效应变逐渐下降,直到石墨烯纳米片含量增加到0.54wt%。
     第四,采用粉末冶金法,研究了石墨烯纳米片对Mg-1Al-Sn合金拉伸强度的影响,试验表明,向Mg-1Al-Sn合金中加入0.18wt%的石墨烯纳米片,合金抗拉强度提高塑性降低。,复合材料强度的提升可由基本的强化机制解释。
     第五,研究了不同金属混合颗粒的添加对纯镁的影响,试验发现当复合添加10wt%Ti和10%Ti-1%Al颗粒时,Al元素对Ti颗粒与Mg基体界面结合的改善,Mg基复合材料的强度和塑形均得到提高。此外,也研究了复合添加Al、Cu颗粒对镁基体的影响,发现Cu颗粒在Mg基体中弥散分布,因此,当1.0wt.%Al-0.6wt.%Cu颗粒混合添加时,可同时提升材料强度和塑性。另一方面,当Cu含量保持不变,Al含量从1%增加到9%,复合材料的硬度、抗拉和抗压强度均有所提高。当Al含量在3wt.%以下时,随Al含量的增加,材料拉伸失效应变相应增大。当复合材料中Al含量从6wt%变化到9wt%时,由于脆性中间化合物Mg17Al12的产生,拉伸失效应变具有下降趋势。金属颗粒强化镁基复合材料机械强度的提升,在于基体与强化颗粒的热膨胀系数不同,造成界面处位错钉扎,同时,Orowan环和载荷也由软基体向硬质相或第二相转移。
Due to ever-increasing demand for structural strength and energy efficientmaterials, the light weight magnesium metal and its composites have attractedsignificant research interest in aerospace and automotive industry. Magnesium basedcomposites reinforced with nano-size (i.e, SiC, Cu, Al2O3and CNTs) and hybridparticles have been explored extensively to achieve the optimum strength. However,further research is required to achieve high strength to weight ratio for these composites.
     In present work, carbonaceous material graphene nanoplatelets (GNPs) have beenused as reinforcement particles to enhance the mechanical strength of magnesiummatrix composites. Along with individual GNPs particles, the effects of metal-grapheneand metal-metal hybrid reinforcement particles addition on microstructure andmechanical behavior of pure magnesium were also investigated. Addition of smallamount of aluminum metal particle along with the graphene nanoplatelets isadvantageous to obtain good compatibility between graphene and matrix magnesium.The main contents can be summarized below:
     Firstly, the effect of individual GNPs addition to pure magnesium was investigated.Experimental results revealed improvement in tensile strength of pure magnesium butductility of the composite was adversely affected. It was observed that improvement intensile strength is low which may be attributed to the poor compatibility of GNPs withmagnesium matrix. In order to improve the compatibility between graphene andmagnesium matrix, small amount of aluminum was added in the composite.Experimental results showed that when aluminum content is kept constant at1.0wt.%and GNPs content was varied from0.09to0.3wt.%, both tensile strength and ductilitywas increased simultaneously. This is because more and more GNPs align along theextrusion direction and resist composite rupture. On the other hand when GNPs contentwas kept constant at0.18wt.%and aluminum particle contents were varied from0.5to1.5wt.%, then tensile strength and ductility of resulting composite increase till thethreshold of1.0wt.%. Improved mechanical strength of the composites is attributed tothe basic strengthening mechanisms, mismatch in coefficient of thermal expansionbetween reinforcement and matrix, Orowan looping and load transfer mechanism.
     Secondly, synergetic effect of graphene and carbon nanotubes was investigated inthe magnesium matrix. Mechanical characterization revealed that composite reinforced with hybrid (GNPs+CNTs)-Aluminum particles exhibited higher tensile failure strainrelative to those reinforced with individual GNPs and MW-CNTs. The impressiveincrease in tensile failure strain (%) confirmed the significant synergetic effect betweenGNPs and MW-CNTs. This improvement in failure strain can be attributed to:(a) therapid aggregation of two-dimensional GNPs can be inhibited by intercalating one-dimensional multi-walled carbon nanotubes (MW-CNTs) and (b) long and flexibleMW-CNTs bridge adjacent GNPs to form three dimensional hybrid structures whichprevent their aggregation, thus resulting in a high contact area between CNTs+GNPshybrid structure and the matrix.
     Thirdly, the effect of GNPs addition on mechanical properties of magnesium-10wt.%Titanium alloy was investigated. Room temperature tensile results revealed thataddition of Ti and Ti+GNPs into monolithic Mg lead to increase in both tensile strengthand failure strain. In addition, effect of1Cu-GNPs hybrids on mechanical strength ofpure magnesium was investigated. Experimental results shows that strength and failurestrain increase with increase in GNPs contents from0.18to0.36wt.%. However, whenGNPs contents increase from0.36to0.54wt.%then failure strain start to decrease,which is due to GNPs clustering.
     Fourthly, effect of graphene nanoplatelets addition on tensile strength of Mg-1Al-1Sn alloy was also investigated using powder metallurgy method. Tensile resultsrevealed that addition of0.18wt.%GNPs to the Mg-1Al-1Sn alloy matrix leads toincrease in tensile strength. However, the ductility of the resulting composite wasadversely affected. Increased tensile strength of the composite is attributed to the basicstrengthening mechanisms.
     Fifthly, effect of different metallic hybrid particles addition into pure magnesiumwas investigated. Pure Mg reinforced with10%Ti and10%Ti-1%Al hybrid particulatesrevealed improvement in both tensile strength and ductility. This can be attributed to thebetter compatibility between Ti particle and matrix due to presence of Al as alloyingelement. Furthermore, effect of Al-Cu particulates hybrids addition into pure Mg wasalso examined. The synthesized composites exhibited homogeneous dispersion of Cuparticles in the matrix, therefore leading to enhancement in tensile strength and ductilityby addition of1.0wt.%Al-0.6wt.%Cu hybrid particles. On the other hand, when Cucontent is kept constant and Al content was varied from1to9wt.%, experimentalresults showed improvement in hardness, tensile and compressive strength of the hybridcomposites. Increase in aluminum content led to increase in Vickers harness, strength (both in tension and compression). However, tensile failure strain of compositesincreases till the threshold value of3wt.%Al is reached. Decreasing trend of tensilefailure strain for the composites with6and9wt.%Al contents can be attributed to theformation of brittle intermetallic phases Mg17Al12. The increased mechanical strength ofmetallic particulate reinforced magnesium composites is caused by mismatch incoefficient of thermal expansion (between matrix and reinforcement particles) whichresults in punching of dislocations at the interface, Orowan looping and load transferfrom soft matrix to hard reinforcements or second phases.
引文
[1] E. Aghion, B. Bronfín, F. Buch, S. Schumann, H. Friedrich, Newly developed magnesiumalloys for powertrain applications, JOM,2003,55:30-33.
    [2] J. Jain, P. Cizek, W.J. Poole, M.R. Barnett, Precipitate characteristics and their effect on theprismatic-slip-dominated deformation behaviour of an Mg–6Zn alloy, Acta Materialia,2013,61:4091-4102.
    [3] B.-T. Lin, C.-C. Kuo, Application of an integrated RE/RP/CAD/CAE/CAM system formagnesium alloy shell of mobile phone, Journal of Materials Processing Technology,2009,209:2818-2830.
    [4] K.U. Kainer, F. Von Buch, Magnesium alloys and Technologies, DGM, WILEY-VCHVerlag GmbH&Co. KG aA, Weinheim,2003.
    [5] P.Kurze. Magnesium alloys and Technologies. DGM, WILEY-VCH Verlag GmbH&Co.KG aA,, Weinheim,2003.
    [6] F.Von Buch, B.L.Modike, Magnesium alloys and Technologies, DGM, WILEY-VCH VerlagGmbH&Co. KG aA, Weinheim,2003.
    [7] F. E. Hauser, P. R. Landon, J. E. Dorn, Deformation and Fracture of Alpha Solid Solutions ofLithium in Magnesium, Trans. ASM,1958,50:856–883.
    [8] R.Berry, G.V.Raynor, Structure of Magnesium–Lithium β-Phase Alloys, Nature,1953,171:1078-1086.
    [9] T.B.Massalski, H.Okamoto, P.R.Subramanian and L.Kacprzak (Eds.), Binary Alloy PhaseDiagrams, ASM International, Materials Park,1990.
    [10] B. Lv, J. Peng, Y. Peng, A. Tang, The effect of addition of Nd and Ce on the microstructureand mechanical properties of ZM21Mg alloy, Journal of Magnesium and Alloys,2013,1:94-100.
    [11] M. Yang, Y. Zhu, X. Liang, F. Pan, Effects of Gd addition on as-cast microstructure andmechanical properties of Mg–3Sn–2Ca magnesium alloy, Materials Science and Engineering:A,2011,528:1721-1726.
    [12] M. Yang, F. Pan, Effects of Y addition on as-cast microstructure and mechanical propertiesof Mg–3Sn–2Ca (wt.%) magnesium alloy, Materials Science and Engineering: A,2009,525:112-120.
    [13] S. G. Fishman, Interfaces in Composites, Journal of Metals,1986,38:26-27.
    [14] Y. Flom, R.J. Arsenault, Deformation of SiC/Al Composites, JOM,1986,38:31-34.
    [15] Y. Flom and R. J. Arsenault,Temperature effect on fracture behaviour of an aluminaparticulate-reinforced6061-aluminium composite, Mater. Sci. Eng.,1986,77:191-196.
    [16] M.A.H Howes, Ceramic-Reinforced MMC Fabricated by Squeeze Casting,JOM,1986,38:28-29.
    [17] A. Mortensen, M. N. Gungor, J. A. Cornie, M. C. Flemings, Alloy Microstructures in CastMetal Matrix Composites, JOM,1986,38:30-35.
    [18] A. Mortensen, J. A. Cornie, M. C. Flemings, Solidification Processing of Metal-MatrixComposites, JOM,1988,40:12-19.
    [19] V.C. Nardone, K.M. Prewo, On the strength of discontinuous silicon carbide reinforcedaluminum composites, Scripta Metallurgica,1986,20:43-48.
    [20] T.W. Chou, A. Kelly, A. Okura, Fibre-reinforced metal-matrix composites, Composites,1985,16:187-206.
    [21] A.P. Divecha, S.G. Fishman, Mechanical Properties of Silicon Carbide ReinforcedAluminum, in: in Proc.3rd Int. Conf. on Composite Materials,1979,3:351-356.
    [22] H.J. Rack, Processing and Properties of Powder Metallurgy Composites edited by P. Kumar,K. Vedula and A. Ritter, The Metallurgical Society,1988, pp.155-158.
    [23] S.R.Nutt, Defects in Silicon Carbide Whiskers, J. Amer. Ceram. Soc.,1984,67:428-431.
    [24] A. P. Divecha, S. G. Fishman, S. D. Karmaker, Silicon Carbide Reinforced Aluminum-AFormable Composite, Journal of Metals,1981,33:12-17.
    [25] C.R. Crowe, R.A.Gray, D.F.Hasson, Proceedings of the5th International Conference inComposite Materials edited by W. Hanrigaan, J. Strife and A. K. Dhingra, The MetallurgicalSociety of AIME,1985, pp.843.
    [26] S.V. Nair, J.K. Tien, R.C. Bates, SiC-reinforced Aluminum Metal Matrix Composites, Int.Met. Rev.,1985,30:275-290.
    [27] A. Mortensen, J. A. Cornie, M. J. C. Flemings, Solidification Processing, Met. Trans. A,1988,19A:709-712.
    [28] A.L. Geiger, M. Jackson, Kinetic study of low-temperature transient liquid phase, Adv.Mater. Process.,1989,136,:23–30.
    [29] J.Y. Lynch, G.G. Ruderer, W.H. Duckworth, Engineering Properties of Selected CeramicMaterials, The American Ceramic Society, Ohio,1966.
    [30] B.A. Mikucki, S.O. Shook, W.E. Mercer, W.G. Green, Light Met Age,1986,44:16-20.
    [31] P. Rohatgi, R. Asthana, The solidification of metal-matrix particulate composites, JOM,1991,43:35-41.
    [32] A. Luo, Wood head Publishing Limited, UK,1995, p.287.
    [33] V. Skleni ka, M. Svoboda, M. Pahutová, K. Kucha ová, T.G. Langdon, Microstructuralprocesses in creep of an AZ91magnesium-based composite and its matrix alloy, MaterialsScience and Engineering: A,2001,319–321:741-745.
    [34] S.F. Hassan, M. Gupta, Development of a novel magnesium/nickel composite with improvedmechanical properties, Journal of Alloys and Compounds,2002,335: L10-L15.
    [35] S.F. Hassan, M. Gupta, Development of a novel magnesium–copper based composite withimproved mechanical properties, Materials Research Bulletin,2002,37(2):377-389
    [36] S. F. Hassan, M. Gupta, Development of high strength magnesium based composites usingelemental nickel particulates as reinforcement, J.Mater. Sci.,2002,37:2467-2474.
    [37] S.F. Hassan, M. Gupta, Development of ductile magnesium composite materials usingtitanium as reinforcement, J.Alloys Comp.,2002,345(1/2):246-251.
    [38] E. M. Gutman, Y. Unigovski, M. Levkovitch and Z. Koren, Computer simulation of processinduced stress and strain,J. Mater. Sci. Lett.,1998,17:1787–1789.
    [39] P.K.Ghosh, S.Ray, Fabrication and Properties of Compocast Al2O3Composite, IndianJournal of Technolgoy,1988,26:83-94
    [40] Z. Xiaonong, Z. Di, W. Renjie, Z. Zhengang, W. Can, Mechanical properties and dampingcapacity of (SiCw+B4Cp)ZK60A Mg alloy matrix composite, Scripta Metallurgica,1997,37(11):1631-1935.
    [41] D. Lloyd, Influence of matrix strength and damage accumulation on the mechanical responseof a particulate metal matrix composite, Acta Metall.,1991,39:59-71.
    [42] T. S. Srivatsan, A-H. Meslet, P. C. LAM, D. Schapel, M. Petraroli, in Processing andFabrication of Advanced Materials IX; in Proceedings of the Symposium, St. Louis, MO, Oct.9–12,2000(A01-3515109-23), Materials Park, OH, ASM International,2001p.209.
    [43] A. R. Vaidya, J. J. Lewandowski, Effects of SiCp size and volume fraction on the high cyclefatigue behavior of AZ91D magnesium alloy composites, Mater. Sci.Eng. A,1996,220:85-92.
    [44] L.I. Lu, M.O. Lai, M. Gupta, B.W. Chua, A. Osman, J.Mater. Sci.,2000,35:5553-5561.
    [45] V. Skleni ka, M. Pahutová, K. Kucha ová, M. Svoboda, T.G. Langdon, Metall. Mater. Trans.,2002,33A:883-890.
    [46] W. Hiroyuki, M. Toshiji, I. Koichi, M. Takeshi, M. Mamoru, H. Kenji, Mater. Trans.,2001,42(1):157.
    [47] K.U. Kainer, Aluminum and magnesium based metal matrix composites, Kovine ZlitineTehnologije,1996,6:509-516.
    [48] M. Di Ventra, S. Evoy, J. R. Heflin, Introduction to nanoscale science and technology,Springer,2004.
    [49] S. Ray, M Tech. Dissertation, Indian Institute of Technology, Kanpur,1969.
    [50] A. Luo, Processing, microstructure, and mechanical behavior of cast magnesium metalmatrix composites, Metall. Mater. Trans.A,1995,26A:2445-2455.
    [51] R. A. Saravanan, M. K. Surappa, Fabrication and characterisation of pure magnesium-30vol.%SiCPparticle composite, Mater. Sci. Eng. A,2000,276:108-116.
    [52] B. A. Mikicki, W. E. Mercer, W. G. Green, Light Met. Age,1990,48(5/6):12.
    [53] B. Inem, G. Pollard, DGM Informations gesellschaft M.B.H., Germany,1992, p.439.
    [54] T. E. Wilks, J. F. King, DGM Informations gesellschaft M.B.H., Germany,1992, p.431.
    [55] N. Harnby, M. F. Edward, A. W. Nienow, Mixing in Process Industries, Butterworths,London,1985.
    [56] F. A. Girot, L. Albingre, J. M. Quenisset, R. Naslain, Rheocasting Al Matrix Composites,JOM,1987,39:18-21.
    [57] W. Zhou, Z.M. Xu, Casting of SiC reinforced metal matrix composites, J.Mater. Proc. Techn.,1997,63:358-363.
    [58] V.G. Welter, Z.Metallkd.,1931,23:255.
    [59] J. Hollinggrak, Casting Metals, UK Patent4371,1819.
    [60] D. K. Chernov, Reports of the Imperial Russian Metallurgical Scoeity, Dec.1878.
    [61] A.Luo, J. Renaud, I. Nakatsugawa, J. Plourde, Magnesium Castings for AutomotiveApplications, JOM,1995,47:28-31.
    [62] H. Lianxi, W. Erde, Fabrication and mechanical properties of SiCw/ZK51A magnesiummatrix composite by two-step squeeze casting,Mater. Sci. Eng. A,2000,278:267-271.
    [63] K.S. Sohn, K. Euh, S. Lee, I. Park, Mechanical property and fracture behavior of squeeze-cast Mg matrix composites, Mater. Trans.A,1998,29A:2543-2554.
    [64].M. Zarinejad,, S. Firoozi, P. Abachi, K. Purazrang, Canadian Institute of Mining, Metallurgyand Petroleum, Metal/Ceramic Interactions, Canada,2002, p.191.
    [65] J. Idris, J. C. Tan, Minerals, Metals and Materials Society/AIME, Magnesium Technology,USA,2000, p.311.
    [66] B.W. Chua, L. Lu, M.O. Lai, Influence of SiC particles on mechanical properties of Mgbased composite, Composite Structures,1999,47:595-601.
    [67] A. Yamazaki, J. Kaneko,M. Sugamata, J. Jpn. Soc. Powder Powder Metall. Japan,2001,48(10):935-939.
    [68] A. Rudajevova,P. Lukac, Kovove Materialy,Slovak Republic,2000,38(1):1-5.
    [69] C. Badini, F. Marino, M. Montorsi, X. B.Guo, Mater. Sci. Eng.A,1992,157:53-57.
    [70] K. K. Chawla, Metal matrix composites, Birkh user,2006.
    [71] G. Garces, M. Rodriguez, P. Perez, P. Adeva, Effect of volume fraction and particle size onthe microstructure and plastic deformation of Mg–Y2O3composites,Mater. Sci. Eng. A,2006,419(1–2):357–364.
    [72] Q.B. Nguyen, M. Gupta, Increasing significantly the failure strain and work of fracture ofsolidification processed AZ31B using nano-Al2O3particulates, J.Alloy Compd.2008,459(1–2):244–250.
    [73] G.Huard, R. Angers, M.R. Krishnadev, R. Tremblay, D. Dube, SiCp/Mg composites made bylow-energy mechanical processing, Can Metall Q1999,38(3):193–200.
    [74] M.Y.Zheng, W.C. Zhang, K. Wu, C.K.Yao, The deformation and fracture behavior ofSiCw/AZ91magnesium matrix composite during in situ TEM straining, J. Mater. Sci.,2003,38(12):2647–2654.
    [75] S.F. Hassan, M. Gupta, Development of ductile magnesium composite materials usingtitanium as reinforcement, J. Alloy Compd.,2002,345(1–2):246–251.
    [76] P. Perez, G. Garces, P. Adeva, Mechanical properties of a Mg-10(vol.%)Ti composite,Compos. Sci. Technol.,2004,64(1):145–151.
    [77] H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang, In situ synthesis of TiC/Mg composites inmolten magnesium, Scripta Mater.,2003,48(9):1349–1354.
    [78] C.S. Goh, J. Wei, L.C. Lee, M.Gupta, Ductility improvement and fatigue studies in Mg-CNTnanocomposites, Compos. Sci. Technol.,2008,68(6):1432–1439
    [79] M.K. Habibi, A.M.S. Hamouda, M. Gupta, Enhancing tensile and compressive strength ofmagnesium using ball milled Al+CNT reinforcement, Composites Science and Technology,2012,72:290-298.
    [80] M.K. Habibi, M. Paramsothy, A.M.S. Hamouda, M. Gupta, Using integrated hybrid(Al + CNT) reinforcement to simultaneously enhance strength and ductility ofmagnesium, Composites Science and Technology,2011,71:734-741.
    [81] T. Hertel, R.E. Walkup, P. Avouris, Deformation of carbon nanotubes by surface van derWaals forces, Physical Review B,1998,58:13870-13873.
    [82] L.Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K.C. Hwang, B. Liu, A cohesivelaw for carbon nanotube/polymer interfaces based on the van der Waals force, Journal of theMechanics and Physics of Solids,2006,54:2436-2452.
    [83] J.H. Ahn, H.S. Shin, Y.J. Kim, H. Chung, Structural modification of carbon nanotubes byvarious ball milling, Journal of Alloys and Compounds,2007,434–435:428-432.
    [84] C. Deng, X. Zhang, Y. Ma, D. Wang, Fabrication of aluminum matrix composite reinforcedwith carbon nanotubes, Rare Metals,2007,26:450-455.
    [85] A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder,Composites Part A: Applied Science and Manufacturing,2007,38:646-650.
    [86] X.X. Zhang, C.F. Deng, Y.B. Shen, D.Z. Wang, L. Geng, Mechanical properties ofABOw+MWNTs/Al hybrid composites made by squeeze cast technique, Materials Letters,2007,61:3504-3506.
    [87] Z. Xiuqing, W. Haowei, L. Lihua, T. Xinying, M. Naiheng, The mechanical properties ofmagnesium matrix composites reinforced with (TiB2 + TiC) ceramicparticulates, Materials Letters,2005,59:2105-2109.
    [88] J. Gu, X. Zhang, M. Gu, Mechanical properties and damping capacity of (SiCp+Al2O3·SiO2f)/Mg hybrid metal matrix composite, Journal of Alloys and Compounds,2004,385:104-108.
    [89] S.K. Thakur, T.S. Srivatsan, M. Gupta, Synthesis and mechanical behavior of carbonnanotube–magnesium composites hybridized with nanoparticles of alumina, MaterialsScience and Engineering: A,2007,466:32-37.
    [90] M.-j. Zhang, Z.-y. Cao, X.-h. Yang, Y.-b. Liu, Microstructures and wear properties ofgraphite and Al2O3reinforced AZ91D-Cex composites,Transactions of Nonferrous MetalsSociety of China,20, Supplement2,2010, s471-s475.
    [91] M.-j. Zhang, Y.-b. Liu, X.-h. Yang, J. An, K.-s. Luo, Effect of graphite particle size on wearproperty of graphite and Al2O3reinforced AZ91D-0.8%Ce composites, Transactions ofNonferrous Metals Society of China,18, Supplement1,2008, s273-s277.
    [92] W.L.E. Wong, M. Gupta, Development of Mg/Cu nanocomposites using microwave assistedrapid sintering, Composites Science and Technology,2007,67:1541-1552.
    [93] K. Tun, V. Tungala, Q. Nguyen, J. Chan, R. Kwok, J. Kuma, M. Gupta, Enhancing tensileand compressive strengths of magnesium using nanosize (Al2O3+Cu) hybridreinforcements, Journal of Composite Materials,2012,46:1879-1887.
    [94] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of individual and combined additionof micro/nano-sized metallic elements on the microstructure and mechanical properties ofpure Mg, Materials&Design,2012,37:274-284.
    [95] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, SuperiorThermal Conductivity of Single-Layer Graphene, Nano Letters,2008,8:902-907.
    [96] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer,Ultrahigh electron mobility in suspended graphene, Solid State Communications,2008,146:351-355.
    [97] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and IntrinsicStrength of Monolayer Graphene, Science,2008,321:385-388.
    [98] B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie, Directmechanical measurement of the tensile strength and elastic modulus of multiwalled carbonnanotubes, Materials Science and Engineering: A,2002,334:173-178.
    [99] M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, Covalent polymer functionalization of graphenenanosheets and mechanical properties of composites, Journal of Materials Chemistry,2009,19:7098-7105.
    [100] J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Molecular-LevelDispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of theirNanocomposites, Advanced Functional Materials,2009,19:2297-2302.
    [101] L. Jiang, X.-P. Shen, J.-L. Wu, K.-C. Shen, Preparation and characterization ofgraphene/poly(vinyl alcohol) nanocomposites, Journal of Applied Polymer Science,2010,118:275-279.
    [102] M. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, Enhanced MechanicalProperties of Nanocomposites at Low Graphene Content, ACS Nano,2009,3:3884-3890.
    [103] T. Hertel, R.E. Walkup, P. Avouris, Deformation of carbon nanotubes by surface van derWaals forces, Physical Review B,1998,58:13870-13873.
    [104] L.Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K.C. Hwang, B. Liu, A cohesivelaw for carbon nanotube/polymer interfaces based on the van der Waals force, Journal of theMechanics and Physics of Solids,2006,54:2436-2452.
    [105] C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Development of novel carbon nanotube reinforcedmagnesium nanocomposites using the powder metallurgy technique, Nanotechnology,2006,17:7-12.
    [106] E. Carre o-Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C.Bonjour,L. Forró, R. Schaller, Carbon nanotube/magnesium composites. Phys. Stat. Sol.(a).,2004,201:R53–R55.
    [107] R.J. Arsenault, N. Shi, Dislocation generation due to differences between the coefficients ofthermal expansion, Mater. Sci. Eng.,1986,81(c):175-187
    [108] E.Z.Orowan, The crystal plasticity. III: About the mechanism of the sliding, Phys.1934,89(9-10):634-659.
    [109] T.W. Clyne, An Introduction to Metal Matrix Composites, Cambridge,CambridgeUniversity Press;,1995, p.26-43.
    [110] M. Gupta, M.O. Lai, D. Saravanaranganathan, Synthesis, Microstructure and PropertiesCharacterization of Disintegrated Melt Deposited Mg/SiC Composites, J.Mater.Sci.,2000,35:2155–2165.
    [111] P.E. Holden, R. Pilkington, G.W. Lorimer, J.F. King, T.E. Wilks, The Institute of Materials,Proceedings of3rd international magnesium conference, London,1997. pp.647–62.
    [112] H. Ferkel, B.L. Mordike, Magnesium strengthened by SiC nanoparticles, Materials Scienceand Engineering: A,2001,298:193-199.
    [113] C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Simultaneous enhancement in strength and ductilityby reinforcing magnesium with carbon nanotubes, Materials Science and Engineering: A,2006,423:153-156.
    [114] S. Hassan, M. Gupta, Development of high strength magnesium based composites usingelemental nickel particulates as reinforcement, Journal of materials science,2002,37:2467-2474.
    [115] S.F. Hassan, M. Gupta, Effect of length scale of Al2O3particulates on microstructural andtensile properties of elemental Mg, Materials Science and Engineering: A,2006,425:22-27.
    [116] G.M. Hassan SF, Development of high strength magnesium copper based hybrid compositeswith enhanced tensile properties, Mater. Sci. Technol,2003,19:253-259.
    [117] L.J. Vaida AR, Effects of SiCp size and volume fraction on the high cycle fatigue behaviorof AZ91D magnesium alloy composites., Mater Sci Eng: A,1996,220:85-92.
    [118] X.Q.F. Dong Li Shi, Yonggang Y. Huang, Keh Chih Hwang, Critical Evaluation of theStiffening Effect of Carbon Nanotubes in Composites, Key Engineering Materials,2004,261-263:1487-1492.
    [119] J.-U. Lee, D. Yoon, H. Cheong, Estimation of Young’s Modulus of Graphene by RamanSpectroscopy, Nano Letters,2012,12:4444-4448.
    [120] R.J. Arsenault, N. Shi, Dislocation generation due to differences between the coefficients ofthermal expansion, Materials Science and Engineering,1986,81:175-187.
    [121] D. GE, Mechanical Metallurgy, third ed New York: McGraw-Hill,1976.
    [122] O. E, Zur Kristallplastizit t: iii. über den Mechanismus des Gleitvorganges Zeitschrift fürPhysik,1934,89:634-659.
    [123] G. RM, Powder metallurgy science Princeton (NJ), USA: Metal Powder IndustriesFederation,1994.
    [124] C. TW, An Introduction to Metal Matrix Composites, Cambridge UK: Cambridge UniversityPress,1995.
    [125] M. Rashad, F. Pan, A. Tang, Y. Lu, M. Asif, S. Hussain, J. She, J. Gou, J. Mao, Effect ofgraphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titaniumalloys, Journal of Magnesium and Alloys,2013,1:242-248.
    [126] M.K. Habibi, A.S. Hamouda, M. Gupta, Using hierarchical composite approach to improvemechanical response of Mg and Mg–Bi2O3nano-composites, Materials&Design,2013,49:627-637.
    [127] K. Tun, V. Tungala, Q. Nguyen, J. Chan, R. Kwok, J. Kuma, M. Gupta, Enhancing tensileand compressive strengths of magnesium using nanosize (Al2O3+Cu) hybridreinforcements, Journal of Composite Materials,2012,46:1879-1887.
    [128] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of individual and combined additionof micro/nano-sized metallic elements on the microstructure and mechanical properties ofpure Mg, Materials&Design,2012,37:274-284.
    [129] S.C.V. Lim, M. Gupta, Enhancing the microstructural and mechanical response of a Mg/SiCformulation by the method of reducing extrusion temperature, Materials Research Bulletin,2001,36:2627-2636.
    [130] X.L. Zhong, W.L.E. Wong, M. Gupta, Enhancing strength and ductility of magnesium byintegrating it with aluminum nanoparticles, Acta Materialia,2007,55:6338-6344.
    [131] D.K. Lim, T. Shibayanagi, A.P. Gerlich, Synthesis of multi-walled CNT reinforcedaluminium alloy composite via friction stir processing, Materials Science and Engineering: A,2009,507:194-199.
    [132] R. Pérez-Bustamante, C.D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S.A. Pérez-García, R. Martínez-Sánchez, Microstructural and mechanicalcharacterization of Al–MWCNT composites produced by mechanical milling, MaterialsScience and Engineering: A,2009,502:159-163.
    [133] Y. Shimizu, S. Miki, T. Soga, I. Itoh, H. Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y.A.Kim, M. Endo, S. Morimoto, A. Koide, Multi-walled carbon nanotube-reinforced magnesiumalloy composites, Scripta Materialia,2008,58:267-270.
    [134] C. Deng, X. Zhang, Y. Ma, D. Wang, Fabrication of aluminum matrix composite reinforcedwith carbon nanotubes, Rare Metals,2007,26:450-455.
    [135] J.H. Ahn, H.S. Shin, Y.J. Kim, H. Chung, Structural modification of carbon nanotubes byvarious ball milling, Journal of Alloys and Compounds,2007,434–435:428-432.
    [136] A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder,Composites Part A: Applied Science and Manufacturing,2007,38:646-650.
    [137] Q. Li, A. Viereckl, C.A. Rottmair, R.F. Singer, Improved processing of carbonnanotube/magnesium alloy composites, Composites Science and Technology,2009,69:1193-1199.
    [138] M. Gupta, W.L.E. Wong, Enhancing overall mechanical performance of metallic materialsusing two-directional microwave assisted rapid sintering, Scripta Materialia,2005,52:479-483.
    [139] B.Q. Han, D.C. Dunand, Microstructure and mechanical properties of magnesium containinghigh volume fractions of yttria dispersoids, Materials Science and Engineering: A,2000,277:297-304.
    [140] C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Development of novel carbon nanotube reinforcedmagnesium nanocomposites using the powder metallurgy technique, Nanotechnology,2006,17:7-12.
    [141] M.G.N. N. Eustathopoulos, and B. Drevet, Wettability at High Temperatures, PergamonMaterials Series Pergamon,3,1999.
    [142] H. Sevik, S.C. Kurnaz, Properties of alumina particulate reinforced aluminum alloy producedby pressure die casting, Materials&Design,2006,27:676-683.
    [143] D.L. Shi, X.Q. Feng, Y.Y. Huang, K.C. Hwang, Critical evaluation of the stiffening effect ofcarbon nanotubes in composites, in,2004, pp.1487-1492.
    [144] S. Iijima, Helical microtubules of graphitic carbon, Nature,1991,354:56-58.
    [145] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science,2004,306:666-669.
    [146] A. K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials,2007,6:183-191.
    [147] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and IntrinsicStrength of Monolayer Graphene, Science,2008,321:385-388.
    [148] B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie, Directmechanical measurement of the tensile strength and elastic modulus of multiwalled carbonnanotubes, Materials Science and Engineering: A,2002,334:173-178.
    [149] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphouscarbon, Physical Review B,2000,61:14095-14107.
    [150] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D.Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman Spectrum of Graphene and GrapheneLayers, Physical Review Letters,2006,97:187401.
    [151] A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, anddiamondlike carbon, Physical Review B,2001,64:075414.
    [152] I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature Dependence of theRaman Spectra of Graphene and Graphene Multilayers, Nano Letters,2007,7:2645-2649.
    [153] M. Russell-Stevens, R. Todd, M. Papakyriacou, Microstructural analysis of a carbon fibrereinforced AZ91D magnesium alloy composite, Surface and Interface Analysis,2005,37:336-342.
    [154] M.-Y. Shen, T.-Y. Chang, T.-H. Hsieh, Y.-L. Li, C.-L. Chiang, H. Yang, M.-C. Yip,Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced PolymerNanocomposites, Journal of Nanomaterials,2013,2013,9-14.
    [155] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: Past,present and future, Progress in Materials Science,2011,56:1178-1271.
    [156] S.-Y. Yang, W.-N. Lin, Y.-L. Huang, H.-W. Tien, J.-Y. Wang, C.-C.M. Ma, S.-M. Li, Y.-S.Wang, Synergetic effects of graphene platelets and carbon nanotubes on the mechanical andthermal properties of epoxy composites, Carbon,2011,49:793-803.
    [157] R.E. Reed-Hill, Physical metallurgy principles, D. Van Nostrand: Princeton,1964,95-97.
    [158] L.E. Murr, Interfacial phenomena in metal and alloys, Addison Wesley: Massachusetts,1975.
    [159] W.F Gale,T.C. Totemeier, Smithells metal reference book, Butterworth-Heinemann,Elsevier,2004.
    [160] N. Eustathopoulos, M. G. Nicholas, D. Beatrice, Wettability at high temperatures,Amsterdam, Elsevier,1999.
    [161] J.L. Murray (Ed.), Phase Diagrams of Binary Titanium Alloys, ASM International,1998.
    [162] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta,Effect of individual and combined additionof micro/nano-sized metallic elements on the microstructure and mechanical properties ofpure Mg, Materials and Design,2012,37:274–284.
    [163] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of ball milling the hybridreinforcements on the microstructure and mechanical properties of Mg–(Ti+n-Al2O3)composites, Journal of Alloys and Compounds.2011,509:7229–7237
    [164] C.J. Smithells, in: Metals Reference Book,7th Edition, Butterworth-Heinemann, London,1992, p.14-4, see also14-5,15-2,15-3and22-51.5.
    [165] Jae-Ung Lee,Duhee Yoon,and Hyeonsik Cheong. Estimation of Young’s Modulus ofGraphene by Raman Spectroscopy, Nano Lett.,2012,12(9):4444–4448.
    [166] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of individual and combined additionof micro/nano-sized metallic elements on the microstructure and mechanical properties ofpure Mg, Materials&Design,2012,37:274-284.
    [167] Binary alloy phase diagrams second edition plus updates, Version1.0. ed., ASMInternational, Materials Park, Ohio,1996.
    [168] W.L.E. Wong, M. Gupta, Development of Mg/Cu nanocomposites using microwave assistedrapid sintering, Composites Science and Technology,2007,67:1541-1552
    [169] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and IntrinsicStrength of Monolayer Graphene, Science,2008,321:385-388.
    [170] M.-Y. Shen, T.-Y. Chang, T.-H. Hsieh, Y.-L. Li, C.-L. Chiang, H. Yang, M.-C. Yip,Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced PolymerNanocomposites, Journal of Nanomaterials,2013,2013:9-14.
    [171] I.J. Polmear, Magnesium alloys and applications, Materials Science and Technology,1994,10:1-16.
    [172] S. Ugandhar, M. Gupta, S.K. Sinha, Enhancing strength and ductility of Mg/SiC compositesusing recrystallization heat treatment, Composite Structures,2006,72:266-272.
    [173] M. Gupta, N. S. M. Ling, Magnesium technology. Wiley,2011.
    [174] E. Orowan, The Crystal Plasticity: iii. On the mechanism of the sliding process, NuclearPhysics1934,89:634-659.
    [175] K. Tun, V. Tungala, Q. Nguyen, J. Chan, R. Kwok, J. Kuma, M. Gupta, Enhancing tensileand compressive strengths of magnesium using nanosize (Al2O3+Cu) hybridreinforcements, Journal of Composite Materials,2012,46:1879-1887.
    [176] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of ball milling the hybridreinforcements on the microstructure and mechanical properties of Mg–(Ti + n-Al2O3) composites, Journal of Alloys and Compounds,2011,509:7229-7237.
    [177] J.W. Luster, M. Thumann, R. Baumann, Mechanical properties of aluminium alloy6061-Al2O3composites, Materials Science and Technology,1993,9:853-862.
    [178] W.S. Miller, F.J. Humphreys, Strengthening mechanisms in particulate metal matrixcomposites, Scripta Metallurgica et Materiala,1991,25:33-38.
    [179] R.M. German, Powder metallurgy science, Metal Powder Industries Federation, Princeton(NJ), USA,1994.
    [180] Z. Zhang, D.L. Chen, Consideration of Orowan strengthening effect in particulate-reinforcedmetal matrix nanocomposites: A model for predicting their yield strength, Scripta Materialia,2006,54:1321-1326.
    [181] T. Clyne, An Introduction to Metal Matrix Composites, Cambridge University Press,1995.
    [182] R.M. Aikin Jr, L. Christodoulou, The role of equiaxed particles on the yield stress ofcomposites, Scripta Metallurgica et Materialia,1991,25:9-14.
    [183] Y. Shimizu, S. Miki, T. Soga, I. Itoh, H. Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y.A.Kim, M. Endo, S. Morimoto, A. Koide, Multi-walled carbon nanotube-reinforced magnesiumalloy composites, Scripta Materialia,2008,58:267-270.
    [184] K. Kondoh, H. Fukuda, J. Umeda, H. Imai, B. Fugetsu, M. Endo, Microstructural andmechanical analysis of carbon nanotube reinforced magnesium alloy powder composites,Materials Science and Engineering: A,2010,527:4103-4108.
    [185] M. Gupta, M.O. Lai, D. Saravanaranganathan, Synthesis, microstructure and propertiescharacterization of disintegrated melt deposited Mg/SiC composites, Journal of MaterialsScience,2000,35:2155-2165.
    [186] A. Rudajevová, P. Luká, Thermal strain in Mg composites, Acta Materialia,2003,51:5579-5586.
    [187] C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Properties and deformation behaviour of Mg–Y2O3nanocomposites, Acta Materialia,2007,55:5115-5121.
    [188] S.K. Thakur, T.S. Srivatsan, M. Gupta, Synthesis and mechanical behavior of carbonnanotube–magnesium composites hybridized with nanoparticles of alumina, MaterialsScience and Engineering: A,466(2007)32-37.
    [189] M.K. Habibi, S.P. Joshi, M. Gupta, Hierarchical magnesium nano-composites for enhancedmechanical response, Acta Materialia,58(2010)6104-6114.
    [190] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of ball milling the hybridreinforcements on the microstructure and mechanical properties of Mg–(Ti + n-Al2O3) composites, Journal of Alloys and Compounds,509(2011)7229-7237.
    [191] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of individual and combined additionof micro/nano-sized metallic elements on the microstructure and mechanical properties ofpure Mg, Materials&Design,37(2012)274-284.
    [192] S. Sankaranarayanan, R.K. Sabat, S. Jayalakshmi, S. Suwas, M. Gupta, Effect of hybridizingmicron-sized Ti with nano-sized SiC on the microstructural evolution and mechanicalresponse of Mg–5.6Ti composite, Journal of Alloys and Compounds,575(2013)207-217.
    [193] S.F. Hassan, M. Gupta, Development of ductile magnesium composite materials usingtitanium as reinforcement, Journal of Alloys and Compounds,345(2002)246-251.
    [194] M. Gupta, T.S. Srivatsan, Microstructure and grain growth behavior of an aluminum alloymetal matrix composite processed by disintegrated melt deposition, J. of Materi Eng andPerform,8(1999)473-478.
    [195] D.J. Lloyd, Particle Reinforced Aluminium And Magnesium Matrix Composites, Int MaterRev,39(1994)1-23.
    [196] C.J. Smithells, Metals reference book.5th ed. London: Butterworth’s&Co. Ltd.,1976.
    [197] G. Meijer, F. Ellyin, Z. Xia, Aspects of residual thermal stress/strain in particlereinforced metal matrix composites, Composites B,2000,31:29–37.
    [198] G.E. Dieter, Mechanical metallurgy, USA, McGraw-Hill,1986.
    [199] U. Kock, H. Mecking, Physics and phenomenology of strain hardening: the FCC Case, Prog.Mater. Sci.,2003,48:171–273.
    [200] N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Strain hardening behavior of a friction stir weldedmagnesium alloy, Scripta Mater.,2007,57:1004–1007.
    [201] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of ball milling the hybridreinforcements on the microstructure and mechanical properties of Mg–(Ti + n-Al2O3) composites, Journal of Alloys and Compounds,2001,509:7229-7237.
    [202] S. Sankaranarayanan, R.K. Sabat, S. Jayalakshmi, S. Suwas, M. Gupta, Microstructuralevolution and mechanical properties of Mg composites containing nano-B4C hybridizedmicro-Ti particulates, Materials Chemistry and Physics,2014,143:1178-1190.
    [203] S. Sankaranarayanan, R.K. Sabat, S. Jayalakshmi, S. Suwas, M. Gupta, Effect of hybridizingmicron-sized Ti with nano-sized SiC on the microstructural evolution and mechanicalresponse of Mg–5.6Ti composite, Journal of Alloys and Compounds,2013,575:207-217.
    [204] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of nano-Al2O3addition and heattreatment on the microstructure and mechanical properties of Mg-(5.6Ti + 3Al)composite, Materials Characterization,2013,75:150-164.
    [205] W.L.E. Wong, M. Gupta, Development of Mg/Cu nanocomposites using microwave assistedrapid sintering, Composites Science and Technology,2007,67:1541-1552.
    [206] K. Tun, V. Tungala, Q. Nguyen, J. Chan, R. Kwok, J. Kuma, M. Gupta, Enhancing tensileand compressive strengths of magnesium using nanosize (Al2O3+Cu) hybridreinforcements, Journal of Composite Materials,2012,46:1879-1887.
    [207] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of individual and combined additionof micro/nano-sized metallic elements on the microstructure and mechanical properties ofpure Mg, Materials&Design,2012,37:274-284.
    [208] K.U. Kainer, Metal matrix composites: custom-made materials for automotive and aerospaceengineering, Wiley-VCH Verlag GmbH&Co. KGaA,2006.
    [209] R.A. Sutton, S.H. Huo, G.B. Schaffer, Effect of particle size ratio and particle clustering onsintering and stiffness of aluminium matrix composite, Powder Metallurgy,2006,49:323-327.
    [210] D.J. Lloyd, Particle Reinforced Aluminium And Magnesium Matrix Composites, Int MaterRev,1994,39:1-23.
    [211] I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites—a review, Journal of Materials Science,1991,26:1137-1156.
    [212] F. Moll, K.U. Kainer, Particle-Reinforced Magnesium Alloys, in: Magnesium-Alloys andTechnology, Wiley-VCH Verlag GmbH&Co. KGaA,2004, pp.197-217.
    [213] W.F Gale, Smithells metal reference book, Butterworth-Heinemann, Elsevier,2004.
    [214] B.Q. Han, D.C. Dunand, Microstructure and mechanical properties of magnesium containinghigh volume fractions of yttria dispersoids, Materials Science and Engineering: A,2000,277:297-304.
    [215] S.F. Hassan, M. Gupta, Development of high performance magnesium nano-compositesusing nano-Al2O3as reinforcement, Materials Science and Engineering: A,2005,392:163-168.
    [216] R.M. Aikin Jr, L. Christodoulou, The role of equiaxed particles on the yield stress ofcomposites, Scripta Metallurgica et Materialia,1991,25:9-14.
    [217] C.J.D. N. G. Ma, P. Yu, W. Y. Kwok, M. Aravind, D. H. L. Ng and S. L. I. Chan, Formationof Mg–Mg2Cu nanostructured eutectic in Mg-based metal matrix composite, Journal ofMaterials Research,2003,18:1934-1942.
    [218] M. Gupta, M.O. Lai, D. Saravanaranganathan, Synthesis, microstructure and propertiescharacterization of disintegrated melt deposited Mg/SiC composites, Journal of MaterialsScience,2000,35:2155-2165.
    [219] R.P. P.E. Holden, G.W. Lorimer, J.F. King, T.E. Wilks The Institute of Materials,Proceedings of3rd international magnesium conference London,1997,647-662.
    [220] B.W. Chua, L. Lu, M.O. Lai, Influence of SiC particles on mechanical properties of Mgbased composite, Composite Structures,1999,47:595-601.
    [221] M.R. Ghomashchi, A. Vikhrov, Squeeze casting: an overview, Journal of MaterialsProcessing Technology,2000,101:1-9.
    [222] M. Zheng, K. Wu, C. Yao, Effect of interfacial reaction on mechanical behavior ofSiCw/AZ91magnesium matrix composites, Materials Science and Engineering: A,2001,318:50-56.
    [223] J. Lan, Y. Yang, X. Li, Microstructure and microhardness of SiC nanoparticles reinforcedmagnesium composites fabricated by ultrasonic method, Materials Science and Engineering:A,2004,386:284-290.
    [224] D.M. Lee, B.K. Suh, B.G. Kim, J.S. Lee, C.H. Lee, Fabrication, microstructures, and tensileproperties of magnesium alloy AZ91/SiCp composites produced by powder metallurgy,Materials Science and Technology,1997,13:590-595.
    [225] J.B. Clark, Age hardening in a Mg-9wt.%Al alloy, Acta Metallurgica,1968,16:141-152.
    [226] S. Celotto, TEM study of continuous precipitation in Mg–9wt%Al–1wt%Zn alloy, ActaMaterialia,2000,48:1775-1787.
    [227] A. Luo, Processing, microstructure, and mechanical behavior of cast magnesium metalmatrix composites, MMTA,1995,26:2445-2455.
    [228] B.W. Chua, L. Lu, M.O. Lai, Influence of SiC particles on mechanical properties of Mgbased composite, Composite Structures,1999,47:595-601.
    [229] M. Gupta, M.O. Lai, D. Saravanaranganathan, Synthesis, microstructure and propertiescharacterization of disintegrated melt deposited Mg/SiC composites, Journal of MaterialsScience,2000,35:2155-2165.
    [230] R.P. P.E. Holden, G.W. Lorimer, J.F. King, T.E. Wilks The Institute of Materials,Proceedings of3rd international magnesium conference London,1997,647-662.
    [231] W. E Wong, M. Gupta, Simultaneously Improving Strength and Ductility of Magnesiumusing Nano‐size SiC Particulates and Microwaves, Advanced Engineering Materials,2006,8:735-740.
    [232] S. Hassan, M. Gupta, Effect of different types of nano-size oxide particulates onmicrostructural and mechanical properties of elemental Mg, Journal of Materials Science,2006,41:2229-2236.
    [233] C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Development of novel carbon nanotube reinforcedmagnesium nanocomposites using the powder metallurgy technique, Nanotechnology,2006,17:7-13.
    [234] W.L.E. Wong, M. Gupta, Development of Mg/Cu nanocomposites using microwave assistedrapid sintering, Composites Science and Technology,2007,67:1541-1552.
    [235] H. Ferkel, B.L. Mordike, Magnesium strengthened by SiC nanoparticles, Materials Scienceand

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700